• Keine Ergebnisse gefunden

1. Aboulwafa MaMHS, Jr. 2004. Characterization of Soluble Enzyme II Complexes of the Escherichia coli Phosphotransferase System. J Bacteriol 186: 8453-62

2. Aiba H. 1983. Autoregulation of the Escherichia coli crp gene: Crp is a transcriptional repressor for its own gene. Cell 32: 141-9

3. Aiba H. 1985. Transcription of the Escherichia coli adenylate cyclase gene is negativley regulated by cAMP-cAMP receptor protein. J Biol Chem 260: 3063-70 4. Amersham B. 2002. Gel Filtration Calibration Kits - Product instructions;. Freiburg:

Amersham Biosciences Europe GmbH

5. Amin N, Peterkofsky, A., 1995. A dual mechanism for regulating cAMP levels in Escherichia coli. J Biol Chem 270: 11803-5

6. Atlung T, Nielsen A, Rasmussen LJ, Nellemann LJ, Holm F. 1991. A versatile method for integration of genes and gene fusions into the lambda attachment site of Escherichia coli. Gene 107: 11-7

7. Axon Instruments I. 1999. GenePix 4000A User's Guide;. Chapter 3, Imaging System Hardware Chapter 4, GenePix 4000A Software: 9-25

8. Becker A-K, Jahreis, K., 2002. The protein B1976 positively influences the expression of ptsG, the gene for the major glucose transporter in E. coli K-12.

Presented at Mechnismen der Genregulation, Rauischholzhausen, Deutschland 9. Becker A-K, Jahreis, K., 2003. Expression of ptsG, the gene for the major glucose

transporter in E. coli K-12, is influenced by the protein YeeI. Presented at VAAM Jahrestagung, Berlin, Freie Universität Berlin

10. Berg OG, von Hippel PH. 1988. Selection of DNA binding sites by regulatory proteins. II. The binding specificity of cyclic AMP receptor protein to recognition sites. J. Mol. Biol. 200: 709-23

11. Bergmeyer H.U. Abschnitt A: Allgemeine Einführung; III Experimentelles; 3.

Ermittlung von Meßergebnissen. In Methoden der enzymatischen Analyse, pp. 331 - 8.

Weinheim/Bergstr.: Verl. Chemie

12. Bernstein LS, A. A. Grillo, S. S. Loranger, M. E. Linder, 2000. RGS4 Binds to Membranes through an Amphipathic α-Helix. J. Biol. Chem. 275: 18520–6 13. BIAapplications. 1994. BIAapplications Handbook. Uppsala, Schweden 14. BIAtechnology. 1994. BIAtechnology Handbook. Uppsala, Schweden

15. Boos W, Shuman HA. 1998. The maltose/maltodextrin system of Escherichia coli;

transport, metabolism and regulation. Microbiol. Mol. Biol. Rev. 62: 204-29 16. Borowiec JA, Zhang, L., Sasse-Dwight, S., and Gralla, J. D. 1987. DNA

supercoiling promotes formation of a bent repression loop in lac DNA. J. Mol. Biol.

196: 101-11

17. Bowtell D, Sambrook, J., ed. 2003. DNA Microarrays. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press

18. Boyd D, Weiss DS, Chen JC, Beckwith J. 2000. Towards Single-Copy Gene

Expression Systems Making Gene Cloning Physiologically Relevant: Lambda InCh, a Simple Escherichia coli Plasmid-Chromosome Shuttle System. JOURNAL OF

BACTERIOLOGY, 182: 842–7

19. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:

248-54

20. Breazeale SD, Anthony A. Ribeiro and Christian R. H. Raetz. 2003. Origin of Lipid A Species Modified with 4-Amino-4-deoxy-L-arabinose in Polymyxin-resistant Mutants of Escherichia coli. J. Biol. Chem. 278: 24731-9

21. Buhr A, Erni B. 1993. Membrane topology of the glucose transporter of Escherichia coli. J. Biol. Chem. 268: 11599-603

22. Buhr A, Flukiger K, Erni B. 1994. The glucose transporter of Escherichia coli;

Overexpression, purification, and characterization of functional domains. J. Biol.

Chem. 269: 23437-43

23. Busby S, Ebright RH. 1999. Transcription activation by catabolite activator protein (CAP). J. Mol. Biol. 293: 199-213

24. Busby S, Ebright, R. H., 1997. Transcription activation at Class II CAP-dependentdent promotors. Mol Microbiol 23: 853-9

25. Cai M, Wiliams Jr., D. C., Wang, G., Lee, B. R., Pterkofsky, A., Clore, M. G., 2003. Solution structure of the phophoryl transfer complex between the signal-transducing protein IIAGlucose and the cytoplasmic domain of th glucose transporter IICBGlukose of the Escherichia coli glukose phosphotransferase system. J. Biol. Chem.

278: 25191-206

26. Carter. 1985. Improved oligonucleotide site-directed mutagenesis using M13 vectors.

Nucl. Acids Res. 13: 4431-43

27. Casadaban MJ. 1976. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J. Mol. Biol. 104: 541-55 28. Chang WI, Matthews KS. 1995. Role of Asp(274) in lac repressor: Diminished sugar

binding and altered conformational effects in mutants. Biochemistry 34: 9227-34 29. Chung CT, Niemela SL, Miller RH. 1989. One-step preparation of competent

Escherichia coli: transformation and storage of bacterial cells in the same solution.

Proc. Natl. Acad. Sci. USA 86: 2172-5

30. Coutts G, Thomas G, Blakey D, Merrick M. 2002. Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. EMBO J. 21:

536-45

31. Crasnier M, Danchin, A., 1990. Charakterization of Escherichia coli adenylate cyclase mutants with modified regulation. J Gen Microbiol 136: 1825-31

32. De Reuse H, Danchin A. 1991. Positive Regulation of the pts Operon of Escherichia Coli - Genetic Evidence for a Signal Transduction Mechanism. J Bacteriol 173: 727-33

33. Dean DA, Reizer J, Nikaido H, Saier M. 1990. Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the

phosphoenolpyruvate-sugar phosphotransferase system. Characterization of inducer exclusion-resistant mutants and reconstitution of inducer exclusion in

proteoliposomes. J. Biol. Chem. 265: 21005-10

34. Decker K, Plumbridge J, Boos W. 1998. Negative transcriptional regulation of a positive regulator: the expression of malT, encoding the transcriptional activator of the maltose regulon of Escherichia coli, is negatively controlled by Mlc. Mol. Microbiol.

27: 381-90

35. Dörschung M, R. Frank, H. R. Kalbitzer, W. Hengstenberg, and J. Deutscher.

1984. Phosphoenolpyruvate-dependent phosphorylation site in Enzyme IIIGlc of the Escherichia coli phosphotransferase system. Eur. J. Biochem. 144: 113-9

36. Dumay V, Danchin A, Crasnier M. 1996. Regulation of Escherichia coli adenylate cyclase activity during hexose phosphate transport. Microbiol. 142: 575-83

37. Eberstadt M, Grdadolnik SG, Gemmecker G, Kessler H, Buhr A, Erni B. 1996.

Solution structure of the IIB domain of the glucose transporter of Escherichia coli.

Biochemistry 35: 11286-92

38. El-Kazzaz W, Morita T, Tagami H, Inada T, Aiba H. 2004. Metabolic block at early stages of the glycolytic pathway activates the Rcs phosphorelay system via increased synthesis of dTDP-glucose in Escherichia coli. Mol. Microbiol. 51: 1117-28 39. Eppler T. 2001. Katabolitrepression durch Nicht-PTS Kohlenstoffquellen in

Escherichia coli am Beispiel des Glycerineffekts. Dissertation thesis. Universität-Konstanz, Konstanz

40. Eppler T, Boos W. 1999. Glycerol-3-phosphate-mediated repression of malT in Escherichia coli does not require metabolism, depends on enzyme IIAGlc and is mediated by cAMP levels. Mol. Microbiol. 33: 1221-31

41. Eppler T, Postma P, Schütz A, Völker U, Boos W. 2002. Glycerol-3-phosphate-induced catabolite repression in Escherichia coli. J. Bacteriol. 184: 3044-52

42. Erni B. 2001. Glucose Transport by the Bacterial Phosphotransferase System(PTS):

An Interface between Energy- and Signal Transduction. In Microbial Transport Systems, ed. G Winkelmann, pp. 115-38. Weinheim: Wiley-VCH Verlag GmbH, 43. Fairbanks G, Steck TLu, Wallach DF. 1971. Electrophoretic analysis of the major

polypeptides of the human erythrocyte membrane. Biochemistry 10: 2606-17 44. Feucht BU, Saier Jr., M. H., 1980. Fine control pf adenylate cyclase by the

phosphoenolpyruvate:sugar phosphotransferase systems in Escherichia coli and Salmonella typhimurium. J Bacteriol 141: 603-10

45. Fox DK, N.D. Meadow, S. Roseman. 1986. Phosphate transfer between acetate kinase and enzyme I of the bacterial phosphotransferase system. J Biol Chem 261:

13498-503

46. Geerse RH, Ruig CR, Schuitema ARJ, Postma PW. 1986. Relationship between pseudo-HPr and the PEP: fructose phosphotrasferase system in Salmonella

typhimurium and Escherichia coli. Mol. Gen. Genet. 203: 435-44

47. Gemmecker G, Eberstadt M, Buhr A, Lanz R, Grdadolnik SG, et al. 1997.

Glucose transporter of Escherichia coli: NMR characterization of the phosphocysteine form of the IIBGlc domain and its binding interface with the IIAGlc subunit.

Biochemistry 36: 7408-17

48. Gerber K, W. Boos, W. Welte and A. Schiefner. 2005. Crystallization and preliminary X-ray analysis of Mlc from Escherichia coli. Acta Cryst. F61: 183-5 49. Görke B, Rak B. 1999. Catabolite control of Escherichia coli regulatory protein BglG

activity by antagonistically acting phosphorylations. EMBO J. 18: 3370-9

50. Görke B, Rak B. 2001. Efficient transcriptional antitermination from the Escherichia coli cytoplasmic membrane. J. Mol. Biol. 308: 131-45

51. Gottesman S. 2004. The small Regulators of Escherichia coli: Roles and Mechanisms. Annu. Rev. Microbiol. 58: 303-28

52. Gottesman S, Stout V. 1991. Regulation of Capsular Polysaccharide Synthesis in Escherichia-Coli K12. Mol Microbiol 5: 1599-606

53. Grangeasse C, Brice Obadia , Ivan Mijakovic , Josef Deutscher , Alain J.

Cozzone and Patricia Doublet. 2003. Autophosphorylation of the Escherichia coli Protein Kinase Wzc Regulates Tyrosine Phosphorylation of Ugd, a UDP-glucose Dehydrogenase. J. Biol. Chem. 278: 39323-9

54. Guzman LM, Belin D, Carson MJ, Beckwith J. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J.

Bacteriol. 177: 4121-30

55. Haagmans W, Woude M. v. d. 2000. Phase variation of Ag43 in Escherichia coli:

Dam-dependent methylation abrogates OxyR binding and OxyR-mediated repression of transcription. Mol Microbiol 35: 877-87

56. Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J.

Mol. Biol. 166: 557-80

57. Hansen T, Reichstein B, Schmid R, Schonheit P. 2002. The first archaeal ATP-dependent glucokinase, from the hyperthermophilic crenarchaeon Aeropyrum pernix, represents a monomeric, extremely thermophilic ROK glucokinase with broad hexose specificity. J Bacteriol 184: 5955-65

58. Harwood JP, Peterkofsky, A., 1975. Glucose-sensitive adenylate cyclase in toluene-treated cells in Escherichia coli B. J Biol Chem 250: 4656-62

59. Hengge-Aronis R. 2000. The general stress response in Escherichia coli. In Bacterial Stress Responses, ed. G Storz, R Hengge-Aronis, pp. 161-78. Washington D.C.: ASM Press

60. Hoch JA. 2000. Two-component and phosphorelay signal transduction. Curr. Opin.

Microbiol. 3: 165-70

61. Hogema BM, Arents JC, Bader R, Eijkemans K, Yoshida H, et al. 1998. Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc. Mol Microbiol 30:

487-98

62. Hogema BM, Arents JC, Inada T, Aiba H, van Dam K, Postma PW. 1997.

Catabolite repression by glucose 6-phosphate, gluconate and lactose in Escherichia coli. Mol. Microbiol. 24: 857-67

63. Holland MM, T. K. Leib, J. A. Gerlt,. 1988. Isolation and characterization of a small catalytic domain released from the adenylate cyclase from Escherichia coli by

digestion with trypsin. J. Biol. Chem. 263: 14661-8

64. Holmes D, Quigley M. 1981. A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem 114: 193-7

65. Holtman CK, Pawlyk AC, Meadow ND, Pettigrew DW. 2001. Reverse genetics of Escherichia coli glycerol kinase allosteric regulation and glucose control of glycerol utilization in vivo. J. Bacteriol. 183: 3336-44

66. Hosono K, Kakuda H, Ichihara S. 1995. Decreasing accumulation of acetate in a rich medium by Escherichia coli on introduction of genes on a multicopy plasmid.

Biosci. Biotech. Biochem. 59: 256-61

67. Hurley JH, Faber HR, Worthylake D, Meadow ND, Roseman S, 1993. Structure of the regulatory complex of Escherichia coli IIIGlc with glycerol kinase. Science 259:

673-7

68. Inada T, Takahashi H, Mizuno T, Aiba H. 1996. Down regulation of cAMP production by cAMP receptor protein in Escherichia coli: an assessment of the contributions of transcriptional and posttranscriptional control of adenylate cyclase.

Mol. Gen. Genet. 253: 198-204

69. INGRAHAM JL, ALLEN G. M., 1996. Effect of Temperature, Pressure, pH, and Osmotic Stress on Growth. In Escherischia coli and Salmonella - Cellular and Molecular Biology (Second Edition), ed. FC NEIDHARDT, pp. 1570-8. Washington, DC 20005: ASM Press(American Society for Microbiology)

70. Jeong J-Y, Y.-J. Kim, N. Chos, D. Shin, T.-W. Nam, S. Ryu, Y.-J. Seok. 2004.

Expression of ptsG Encoding the Major Glucose Transporter Is Regulated by ArcA in Escherichia coli. J Biol Chem 279: 38513-18

71. Jiang GR, Nikolova S, Clark DP. 2001. Regulation of the ldhA gene, encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology 147: 2437-46 72. Johansson J, Dagberg B, Richet E, Uhlin BE. 1998. H-NS and StpA proteins

stimulate expression of the maltose regulon in Escherichia coli. J Bacteriol 180: 6117-25

73. Kawamoto H, T. Morita, A. Shimizu, T. Inada, H. Aiba. 2005. Implication of membrane localization of target mRNA in the action of a small RNA: mechanism of post-transcriptional regulation of glucose transporter in Escherichia coli. Genes &

Development: 1-11

74. Kim S-Y, Nam T-W, Shin D, Koo B-M, Seok Y-J, Ryu S. 1999. Purification of Mlc and analysis of its effects on the pts expression in Escherichia coli. J. Biol. Chem.

274: 25398-402

75. Kimata K, Inada T, Tagami H, Aiba H. 1998. A global repressor (Mlc) is involved in glucose induction of the ptsG gene encoding major glucose transporter in

Escherichia coli. Mol. Microbiol. 29: 1509-19

76. Kimata K, Tanaka Y, Inada T, Aiba H. 2001. Expression of the glucose transporter gene, ptsG, is regulated at the mRNA degradation step in response to glycolytic flux in Escherichia coli. EMBO J. 20: 3587-95

77. Kofoid EC, Parkinson, J. S., 1998. Transmitter and receiver modules in bacterial signalling proteins. Proc. Natl. Acad. Sci. USA 85: 4981-85

78. Kolb A, Busby S, Buc H, Garges S, Adhya S. 1993. Transcriptional regulation by cAMP and its receptor protein. Annu. Rev. Biochem. 62: 749-95

79. Koo B.-M. M-JY, C.-R. Lee, T.-W. Nam, Y.-J. Choe,H. Jaffe, A. Peterkofsky, and Y.-J. Seok. 2004. A Novel Fermentation/Respiration Switch Protein Regulated by Enzyme IIAGlc in Escherichia coli. J Biol Chem 279: 31613–21

80. Kornberg HL, Lambourne LTM, Sproul AA. 2000. Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli.

Proc. Natl. Acad. Sci. USA 97: 1808-12

81. Kühnau S, Reyes M, Sievertsen A, Shuman HA, Boos W. 1991. The activities of the Escherichia coli MalK protein in maltose transport, regulation and inducer exclusion can be separated by mutations. J. Bacteriol. 173: 2180-6

82. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-5

83. Lanz R, Erni B. 1998. The glucose transporter of the Escherichia coli

phosphotransferase system. Mutant analysis of the invariant arginines, histidines, and domain linker. J. Biol. Chem. 273: 12239-43

84. Lee S-J, Boos W, Bouché J-P, Plumbridge J. 2000. Signal transduction between a membrane bound transporter, PtsG, and a soluble transcription factor, Mlc, of Escherichia coli. EMBO J. 19: 5353-61

85. Lengeler JW, Jahreis K, Wehmeier UF. 1994. Enzymes II of the

phosphoenolpyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport. Biochim. Biophys. Acta 1188: 1-28

86. Lewis M, Chang G, Horton NC, Kercher MA, Pace HC, 1996. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271:

1247-54

87. Liberman E, D. Saffen, S. Roseman, and A. Peterkofsky. 1986. Inhibition of E. coli adenylate cyclase activity by inorganic orthophosphate is dependent on IIIGlc of the phosphoenolpyruvate:glucose phosphotransferase system. Biochem Biophys Res Commun 141: 1138-44

88. Lux R, Jahreis K, Bettenbrock K, Parkinson JS, Lengeler JW. 1995. Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. Proc. Natl. Acad. Sci. USA 92:

11583-7

89. Maniatis T, Fritsch EF, Sambrook J. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory

90. McKay DB, Steitz, T. A., 1981. Structure of catabolite gene activator protein at 2,9 A resolution suggests binding to left-handed B-DNA. Nature 290: 744-9

91. Meins M, Jeno P, Muller D, Richter WJ, Rosenbusch JP, Erni B. 1993. Cysteine Phosphorylation of the Glucose Transporter of Escherichia-Coli. J Biol Chem 268:

11604-9

92. Miller JH. 1972. Experiments in molecular genetics. Cold Spring Harbor, New York:

Cold Spring Harbor Laboratory Press

93. Miller JH. 1992. A short course in bacterial genetics. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press

94. Miller VL, Taylor, R. K., Mekalanos, J. J. 1987. Cholera toxin transcriptonal activator ToxR is a transmembrane DNA binding protein. Cell 48: 271-9

95. Mitchell WJ, Saffen, D. W., Roseman, S. 1987. Sugar transport by the bacterial phosphotransferase system : in vivo regulation of lactose transport in Escherichia coli by IIIGlc, a protein of the phosphoenolpyruvate: glucose phosphotransferase system. J.

Biol. Chem. 262: 16254-60

96. Morita THK, T. Mizota, T. Inada, H. Aiba,. 2004. Enolase in the RNA

degradosome plays a crucial role in the rapid decay of glucose transporter mRNA in the response to phosphosugar stress in Escherichia coli. Mol Microbiol 54: 1063-75

97. Muro-Pastor AM, Ostrovsky P, Maloy S. 1997. Regulation of gene expression by repressor localization: biochemical evidence that membrane and DNA binding by the PutA protein are mutually exclusive. J. Bacteriol. 179: 2788-91

98. Nam T-W, Cho S-H, Shin D, Kim J-H, Jeong J-Y,. 2001. The Escherichia coli glucose transporter enzyme IICBGlc recruits the global repressor Mlc. EMBO J. 20:

491-8

99. NEIDHARDT FC et. al. 1996. II Metabolism and General Physiology; III Utilization of Energy for Cell Activities; IV Regulation of Gene Expression,. In Escherischia coli and Salmonella - Cellular and Molecular Biology (Second Edition), ed. FC

NEIDHARDT, pp. 187-1539. Washington, DC 20005: ASM Press(American Society for Microbiology)

100. Nelson SO, Scholte, B. J., Postma, P. W., 1982. Phosphoenolpyruvate:sugar phosphotransferase system-mediated regulation of carbohydrate metabolism in Salmonella typhimurium. J Bacteriol 150: 604-15

101. Nelson SO, Wright, J. K., P. Postma,. 1983. The mechanism of inducer exclusion.

Direct interaction between purified IIIGlc of the phosphoenolpyruvate;sugar phosphotransferase system and the lactose carrier of E. coli. EMBO J. 2: 715-20 102. Nesper J, Chris M. D. Hill, Anne Paiment, George Harauz, Konstantinos Beis|,

James H. Naismith|, and Chris Whitfield. 2003. Translocation of Group 1 Capsular Polysaccharide in Escherichia coli Serotype K30 Structural And Functional Analysis Of The Outer Membrane Lipoprotein Wza. J. Biol. Chem. 278: 49763-72

103. Notley-McRobb L, Ferenci T. 2000. Experimental analysis of molecular events during mutational periodic selections in bacterial evolution. Genetics 156: 1493-501 104. Notley-McRobb L, Ferenci T. 2000. Substrate specificity and signal transduction

pathways in the glucose-specific enzyme II (EIIGlc) component of the Escherichia coli phosphotransferase system. J. Bacteriol. 182: 4437-42

105. Oh H, Park Y, Park C. 1999. A mutated PtsG, the glucose transporter, allows uptake of D-ribose. J. Biol. Chem. 274: 14006-11

106. Ostrovsky de Spicer P, Maloy S. 1993. PutA protein, a membrane-associated flavin dehydrogenase, acts as a redox-dependent transcriptional regulator. Proc. Natl. Acad.

Sci. USA 90: 4295-8

107. Osumi T, M. H., Saier Jr. 1982. Mechanism of regulation of the lactose permease by phosphotransferase system in Escherichia coli: evidence for protein - protein

interaction. Ann Microbiol (Paris) 133: 269-73

108. Osumi T, M. H., Saier Jr. 1982. Regulation of lactose permease activity by the phosphoenolpyruvate:sugar phosphotransferase system: evidence for direct binding of the glucose-specific enzyme III to lactose permease. Proc. Natl. Acad. Sci. USA 79:

1457-61

109. Ottemann KM, Dirita VJ, Mekalanos JJ. 1992. ToxR Proteins with Substitutions in Residues Conserved with OmpR Fail to Activate Transcription from the Cholera Toxin Promoter. J Bacteriol 174: 6807-14

110. Pabo CO, Sauer, R. T. 1992. Transcriptionfactors: Structural Families and Principles of DNA Recognition. Annu. Rev. Biochem. 61: 1053-95

111. Panagiotidis CH, Boos W, Shuman HA. 1998. The ATP-binding cassette subunit of the maltose transporter MalK antagonizes MalT, the activator of the Escherichia coli mal regulon. Mol. Microbiol. 30: 535-46

112. Peist R, Koch A, Bolek P, Sewitz S, Kolbus T, Boos W. 1997. Characterization of the aes gene of Escherichia coli encoding an enzyme with esterase activity. J.

Bacteriol. 179: 7679-86

113. Peterkofsky A, Svenson I, Amin N. 1989. Regulation of Escherichia coli adenylate cyclase activity by the phosphoenolpyruvate:sugar phosphotransferase system. FEMS Microbiol. Rev. 63: 103-8

114. Plumbridge J. 1998. Control of the expression of the manXYZ operon in Escherichia coli: Mlc is a negative regulator of the mannose PTS. Mol. Microbiol. 27: 369-80 115. Plumbridge J. 1998. Expression of ptsG, the gene for the major glucose PTS

transporter in Escherichia coli, is repressed by MIc and induced by growth on glucose.

Mol. Microbiol. 29: 1053-63

116. Plumbridge J. 1999. Expression of the phosphotransferase system both mediates and is mediated by Mlc regulation in Escherichia coli. Mol. Microbiol. 33: 260-73

117. Plumbridge J. 2000. A mutation which affects both the specificity of PtsG sugar transport and the regulation of ptsG expression by Mlc in Escherichia coli.

Microbiology 146: 2655-63

118. Plumbridge J. 2001. DNA binding sites for the Mlc and NagC proteins: regulation of nagE, encoding the N-acetylglucosamine-specific transporter in Escherichia coli.

Nucleic Acids Res. 29: 506-14

119. Plumbridge J. 2002. Regulation of gene expression in the PTS in Escherichia coli:

the role and interactions of Mlc. Curr. Opin. Microbiol. 5: 187-93

120. Plumbridge J, Kolb A. 1993. DNA loop formation between Nag repressor molecules bound to its two operator sites is necessary for repression of the nag regulon of

Escherichia coli in vivo. Mol. Microbiol. 10: 973-81

121. Plumbridge JA. 1991. Repression and induction of the nag regulon of Escherichia coli K-12: the roles of nagC and nagA in maintenance of the uninduced state. Mol.

Microbiol. 5: 2053-62

122. Pospiech A, Neumann. B. 1995. A versatile quick-prep of genomic DNA from grampositive

bacteria. Trends Genet. 11: 217-8

123. Postma PW, Epstein, W., Shuitema, A. R., Nelson, S. O., 1984. Interaction between IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system and glycerol kinase of Salmonella typhimurium. J. Bacteriol. 158: 351-3

124. Postma PW, Lengeler JW, Jacobson GR. 1993. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57: 543-94

125. Potter K, Chaloner-Larsson, G., Yamazaki, H., 1974. Abnormally high rate of cyclic AMP excretion from an Escherichia coli mutant deficient in cyclic AMP receptor protein. Biochem Biophys Res Commun 57: 379-85

126. Presper KA, C.-Y. Wong, Liu, N. D. Meadow, and S. Roseman. 1989. Site-directed mutagenesis of the phosphocarrier protein, IIIGlc, a major signal-transducing protein in Escherichia coli. Proc. Natl. Acad. Sci. USA 86: 4052-5

127. Prinz WA, Spiess C, Ehrmann M, Schierle C, Beckwith J. 1996. Targeting of signal sequenceless proteins for export in Escherichia coli with altered protein translocase. EMBO J. 15: 5209-17

128. Qiagen. 2002. QIAexpress® Detection and Assay Handbook Third Edition. Hilden:

Qiagen

129. Qiagen. 2003. The QiaexpressionistTM. Quiagen Hilden 5th edition

130. Reddy P, Kamireddi M. 1998. Modulation of Escherichia coli adenylyl cyclase activity by catalytic-site mutants of protein IIAGlc of the phosphoenolpyruvate:sugar phosphotransferase system. J. Bacteriol. 180: 732-6

131. Reddy P, Meadow N, Roseman S, Peterkofsky A. 1985. Reconstitution of regulatory properties of adenylate cyclase in Escherichia coli extracts. Proc. Natl.

Acad. Sci. USA 82: 8300-4

132. Reddy P, Peterkofsky, A., McKenney, K. 1989. Hyperexpression and purification of Escherichia coli adenylate cyclase using a vector designed for expression of lethal gene products. Nucl. Acids Res. 17: 10473-88

133. Reizer A, Pao GM, Saier MH. 1991. Evolutionary Relationships Among the Permease Proteins of the Bacterial Phosphoenolpyruvate - Sugar Phosphotransferase System - Construction of Phylogenetic Trees and Possible Relatedness to Proteins of Eukaryotic Mitochondria. J Mol Evol 33: 179-93

134. Roehl RA, Vinopal RT. 1980. Genetic locus, distant from ptsM, affecting enzyme IIA/IIB function in Escherichia coli K-12. J. Bacteriol. 142: 120-30

135. Roy A, Danchin, A., Joseph, E., Ullmann, A.,. 1983. Two functional domains in adenylate cyclase of Escherichia coli. J Mol Biol 165: 197-202

136. Saier MHJ. 2002. The Bacterial Phosphotransferase Systems. Norfolk, England:

Horizon Scientific Press

137. Saier MHJ, T. M., RAMSEIER, J. REIZER. 1996. Regulation of Carbon Utilization. In Escherischia coli and Salmonella - Cellular and Molecular Biology (Second Edition), ed. ea NEIDHARDT, pp. 1325-43. Washington, DC 20005: ASM Press(American Society for Microbiology)

138. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press 139. Schiefner A, Gerber, K., Seitz, S., Welte, W., Diederichs, K., and Boos, W. 2005.

The crystal structure of Mlc, a global regulator of sugar metabolism in Escherichia coli. J Biol Chem. 280: 29073-9

140. Schleif R. 1996. Two positively regulated systems, ara and mal. In Escherichia coli and Salmonella typhimurium; cellular and molecular biology, ed. FC Neidhardt, R Curtiss, JL Ingraham, ECC Lin, KB Low, et al, pp. 1300-9. Washington, DC:

140. Schleif R. 1996. Two positively regulated systems, ara and mal. In Escherichia coli and Salmonella typhimurium; cellular and molecular biology, ed. FC Neidhardt, R Curtiss, JL Ingraham, ECC Lin, KB Low, et al, pp. 1300-9. Washington, DC: