• Keine Ergebnisse gefunden

Während eines Forschungsprojektes tauchen oft Fragen auf, deren Beantwortung den Rahmen der jeweiligen Fragestellung übersteigen würde. Einige werden im Rahmen dieses Ausblicks diskutiert.

In dieser Arbeit wurde die Diffusion von Farbstoffsonden während der radikalischen Polymerisation von Styrol und MMA untersucht. Beide Monomere sind oft verwendete Modellsysteme, nicht zuletzt auf Grund ihrer großen wirtschaftlichen Bedeutung. Es wäre interessant zu untersuchen, in wie weit die beobachteten Heterogenitäten auch in anderen Polymerisationssystemen auftreten. Dafür bieten sich besonders Systeme an, die bekannter Maßen eine starke Selbstbeschleunigung bei der radikalischen Polymerisation zeigen, z.B. Acrylate wie Methylacrylat oder Methacrylate oder auch Vinylacetat. Dabei sollte auch genauer untersucht werden, welchen Einfluss mögliche Kettenverschlaufungen und Löslichkeitsunterschiede auf die Bildung von Heterogenitäten haben.

Bei den eingesetzten Farbstoffen handelte es sich um Perylendiimid-Derivate, welche mit Dendrimer-Seitengruppen der Generation G0 und G3 modifiziert waren. Bei der MMA-Polymerisation wurde aber nur für PDI-G0 eine heterogene Verteilung des Diffusionskoeffizienten beobachtet. Wenn die Diffusion von weiteren Farbstoffderivaten während der MMA-Polymerisation untersucht wird, könnte eventuell geklärt werden in wie weit diese Beobachtung mit der Größe des Farbstoffs zusammenhängt. Dabei ist auch die Diffusion kleinerer Farbstoffe interessant. So

zeigten Fluoreszenzlebenszeit-Untersuchungen während MMA-Polymerisation schon bei einem Umsatz von 10% zwei Komponenten mit unterschiedlich langer Lebenszeit, was als Hinweis auf Bildung von Heterogenitäten gewertet wurde.[228]

Das in Kapitel 5.9.2 beschriebene Nanokomposit-Hydrogel befindet sich nach DLS-Studien an der Konzentrationsgrenze zwischen Sol und Gel. Weitere temperaturabhängige Untersuchungen an Systemen die eindeutig als Sol bzw. Gel einzuordnen sind, könnten klären ob und wie sich das Diffusionsverhalten während des Volumenphasenübergangs in Sol und Gel unterscheidet. Die Konzentration der Proben muss dabei so gewählt werden, dass sich die Diffusion der markierten Tonpartikel in einem für die Einzelmolekülfluoreszenz-Weitfeldmikroskopie geeigneten Bereich befindet. Wird zusätzlich die makroskopische Viskosität, z.B. mit DLS und Scherrheologie analysiert, könnten die Ergebnisse auch im Kontext bereits dazu veröffentlichter Studien beurteilt werden.

Das Diffusionsverhalten einer freien Sonde im Nanokomposit-Hydrogel ist im Hinblick auf einen Vergleich mit chemisch vernetzten, herkömmlichen Polymernetzwerken.

ebenfalls von Interesse. Wie von Wöll et al.[17] bereits gezeigt wurde, ist die Diffusion in solchen Systemen sehr heterogen. In Nanokomposit-Hydrogelen lässt sich die Vernetzerdichte und der Abstand der Verknüpfungspunkte dagegen gezielt steuern.[177]

Die Einzelmolekülfluoreszenz-Weitfeldmikroskopie könnte dazu eingesetzt werden, die Struktur dieses Netzwerks genauer aufzuklären. Denkbar ist z.B. ein Zweifarben-Experiment mit markierten Tonpartikel einerseits und einer freien Farbstoffsonde andererseits. So könnten beide Spezies direkt verglichen werden.

10 Abkürzungsverzeichnis

Chemische Verbindungen

AIBN Azoisobutyronitril

APES Aminopropyldimethylethoxysilan

MMA Methylmethacrylat

PDI Perylendiimid

PE Polyethylen

PMMA Polymethylmethacrylat PNIPAM Poly(N-isopropylacrylamid)

PS Polystyrol

PVA Polyvinylalkohol

Rh6G Rhodamin 6G

SDS Natriumdodecylsulfat

Geräte und Methoden

AFM Rasterkraftmikroskopie (engl.: Atomic Force Microscopy) CCD Charge-coupled device

DSC Dynamische Differenzkalorimetrie (engl.: Differential Scanning Calorimetry)

EM-CCD Electron multiplying CCD

EMWFM Einzelmolekül-Weitfeldmikroskopie ESR Elektronenspinresonanz

FCS Fluoreszenzkorrelationsspektroskopie (engl.: Fluorescence Correlation Spectroscopy)

GPC Größenausschlusschromatographie (engl.: Gel Permeation Chromatography)

NMR Kernspinresonanz (engl.: Nuclear Magnetic Resonance)

TIRF Interne Totalreflexionsfluoreszenz (engl.: Total Internal Reflection Fluorescence)

Sonstige

c Konzentration

c* Überlappkonzentration

D Diffusionskoeffizient

Gew% Gewichtsprozent

I Intensität

kb Boltzmann-Konstante

ki Geschwindigkeitskonstante der Initiierung kp Geschwindigkeitskonstante der Polymerisation kt Geschwindigkeitskonstante der Terminierung Kα Allgemeiner Diffusionskoeffizient

λ Wellenlänge

LCST Untere kritische Lösungstemperatur (engl.: Lower Critical Solution Temperature)

MSD Mittleres Verschiebungsquadrat (engl.: Mean Squared Displacement) Mw Gewichtsmittleres Molekulargewicht

n Brechungsindex

NA Avogadrozahl

NA Numerische Apertur

PSF Optische Transferfunktion (engl.: Point Spread Function) Rel. D Relativer Diffusionskoeffizient

Rg Gyrationsradius

rh Hydrodynamischer Radius

RT Trajektorienradius

SRV Signal-zu-Rausch-Verhältnis

t Zeit

T Temperatur

VPÜ Volumenphasenübergang

α Anomalieparameter

ν Wellenzahl

ξb Segmentgröße

τ Korrelationszeit

Φ Azimutwinkel

χli Anteil langsamer Moleküle

11 Literatur

[1]. Davidson, M. W.; Abramowitz, M., Optical Microscopy. In Encyclopedia of Imaging Science and Technology, John Wiley & Sons, Inc.: 2002.

[2]. Orrit, M., Towards a Molecular View of Glass Heterogeneity. Angew. Chem., Int. Ed. 2013, 52 (1), 163.

[3]. Wöll, D.; Braeken, E.; Deres, A.; De Schryver, F.; Uji-i, H.; Hofkens, J., Polymers and single molecule fluorescence spectroscopy, what can we learn? Chem. Soc. Rev. 2009, 38, 313.

[4]. Kubitscheck, U., Fluorescence Microscopy. 1 ed.; Wiley-VCH: Weinheim, 2013.

[5]. Gell, C.; Brockwell, D.; Smith, A., Handbook of Single Molecule Fluorescence Spectroscopy.

Oxford University Press, USA: 2006.

[6]. Deres, A.; Floudas, G. A.; Müllen, K.; Van der Auweraer, M.; De Schryver, F.; Enderlein, J.;

Uji-i, H.; Hofkens, J., The Origin of Heterogeneity of Polymer Dynamics near the Glass Temperature As Probed by Defocused Imaging. Macromolecules 2011, 44 (24), 9703.

[7]. Flier, B. M. I. Einzelmoleküluntersuchungen an dünnen Polymerfilmen. Dissertation, Universität Konstanz, Konstanz, 2012.

[8]. Uji-i, H.; Melnikov, S. M.; Deres, A.; Bergamini, G.; De Schryver, F.; Herrmann, A.; Müllen, K.; Enderlein, J.; Hofkens, J., Visualizing spatial and temporal heterogeneity of single molecule rotational diffusion in a glassy polymer by defocused wide-field imaging. Polymer 2006, 47 (7), 2511.

[9]. Habuchi, S.; Satoh, N.; Yamamoto, T.; Tezuka, Y.; Vacha, M., Multimode Diffusion of Ring Polymer Molecules Revealed by a Single-Molecule Study. Angew. Chem. 2010, 9999 (9999), NA.

[10]. Habuchi, S.; Fujiwara, S.; Yamamoto, T.; Vacha, M.; Tezuka, Y., Single-Molecule Study on Polymer Diffusion in a Melt State: Effect of Chain Topology. Anal. Chem. 2013, 85 (15), 7369.

[11]. Perkins, T.; Smith, D.; Chu, S., Direct observation of tube-like motion of a single polymer chain. Science 1994, 264 (5160), 819.

[12]. Vogelsang, J.; Brazard, J.; Adachi, T.; Bolinger, J. C.; Barbara, P. F., Watching the Annealing Process One Polymer Chain at a Time. Angew. Chem., Int. Ed. 2011, 50 (10), 2257.

[13]. Kirkeminde, A. W.; Torres, T.; Ito, T.; Higgins, D. A., Multiple Diffusion Pathways in Pluronic F127 Mesophases Revealed by Single Molecule Tracking and Fluorescence Correlation Spectroscopy. J. Phys. Chem. B 2011, 115 (44), 12736.

[14]. Higgins, D. A.; Tran-Ba, K.-H.; Ito, T., Following Single Molecules to a Better Understanding of Self-Assembled One-Dimensional Nanostructures. J. Phys. Chem. Lett 2013, 4 (18), 3095.

[15]. Tran-Ba, K.-H.; Finley, J. J.; Higgins, D. A.; Ito, T., Single-Molecule Tracking Studies of Millimeter-Scale Cylindrical Domain Alignment in Polystyrene–Poly(ethylene oxide) Diblock Copolymer Films Induced by Solvent Vapor Penetration. J. Phys. Chem. Lett 2012, 3 (15), 1968.

[16]. Tada, T.; Katsumoto, Y.; Goossens, K.; Uji-i, H.; Hofkens, J.; Shoji, T.; Kitamura, N.; Tsuboi, Y., Accelerating the Phase Separation in Aqueous Poly(N-isopropylacrylamide) Solutions by Slight Modification of the Polymer Stereoregularity: A Single Molecule Fluorescence Study. J.

Phys. Chem. C 2013, 117 (20), 10818.

[17]. Wöll, D.; Uji-i, H.; Schnitzler, T.; Hotta, J.; Dedecker, P.; Herrmann, A.; De Schryver, F. C.;

Müllen, K.; Hofkens, J., Radical Polymerization tracked by Single Molecule Spectroscopy. Angew.

Chem., Int. Ed. 2008, 47, 783.

[18]. Bräuchle, C.; Lamb, D. C.; Michaelis, J., Single Particle Tracking and Single Molecule Energy Transfer. Wiley-VCH Verlag: Weinheim, 2010; Vol. 1, p 352.

[21]. Hecht, E., Optik. Oldenbourg Wissenschaftsverlag: Berlin, Boston, 2001; Vol. 978-3-486-24917-0.

[22]. Demtröder, W., Elektrizität und Optik. Springer: Berlin ; Heidelberg, 2009; Vol. 2.

[23]. Sase, I.; Miyata, H.; Corrie, J. E.; Craik, J. S.; Kinosita Jr, K., Real time imaging of single fluorophores on moving actin with an epifluorescence microscope. Biophys. J. 1995, 69 (2), 323.

[24]. Bausinger, R. Fluoreszenzmikroskopische Lebendzell-Untersuchungen der dynamischen Wechselwirkung von Polyethylenimin-basierten Gentransferpartikeln mit dem Cytoskelett und dem endocytotischen Vesikelsystem. Dissertation, Universität Konstanz, Konstanz, 2009.

[25]. Messler, P.; Harz, H.; Uhl, R., Instrumentation for multiwavelengths excitation imaging. J.

Neurosci. Methods 1996, 69 (2), 137.

[26]. Lakowicz, J. R., Principles of Fluorescence Spectroscopy. 3rd ed.; Springer: 2006.

[27]. Moerner, W. E.; Kador, L., Finding a Single Molecule in a Haystack. Anal. Chem. 1989, 61 (21), 1217A.

[28]. Moerner, W. E.; Kador, L., Optical detection and spectroscopy of single molecules in a solid. Physical Review Letters 1989, 62 (21), 2535.

[29]. Orrit, M.; Bernard, J., Single Pentacene Molecules Detected by Fluorescence Excitation in a Para-Terphenyl Crystal. Phys. Rev. Lett. 1990, 65 (21), 2716.

[30]. Brooks, S. E.; Seitzinger, N. K.; Davis, L. M.; Keller, R. A.; Soper, S. A., Detection of single fluorescent molecules. Chem. Phys. Lett. 1990, 174 (6), 553.

[31]. Betzig, E.; Chichester, R. J., Single Molecules Observed by Near-Field Scanning Optical Microscopy. Science 1993, 262 (5138), 1422.

[32]. Eigen, M.; Rigler, R., Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. U. S. A. 1994, 91 (13), 5740.

[33]. Mets, Ü.; Rigler, R., Submillisecond detection of single rhodamine molecules in water. J.

Fluoresc. 1994, 4 (3), 259.

[34]. Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E., Imaging and Time-Resolved Spectroscopy of Single Molecules at an Interface. Science 1996, 272 (5259), 255.

[35]. Funatsu, T.; Harada, Y.; Tokunaga, M.; Saito, K.; Yanagida, T., Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 1995, 374 (6522), 555.

[36]. Dickson, R. M.; Norris, D. J.; Tzeng, Y.-L.; Moerner, W. E., Three-Dimensional Imaging of Single Molecules Solvated in Pores of Poly(acrylamide) Gels. Science 1996, 274 (5289), 966.

[37]. Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.;

Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F., Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 2006, 313 (5793), 1642.

[38]. Hess, S. T.; Girirajan, T. P. K.; Mason, M. D., Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy. Biophys. J. 2006, 91 (11), 4258.

[39]. Rust, M. J.; Bates, M.; Zhuang, X., Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Meth 2006, 3 (10), 793.

[40]. Hell, S. W., Far-Field Optical Nanoscopy. Science 2007, 316 (5828), 1153.

[41]. Hell, S. W.; Wichmann, J., Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19 (11), 780.

[42]. Rust, M. J.; Bates, M.; Zhuang, X. W., Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3 (10), 793.

[43]. Moerner, W. E.; Orrit, M., Illuminating Single Molecules in Condensed Matter. Science 1999, 283 (5408), 1670.

[44]. Ambrose, W. P.; Th. Basche, T.; Moerner, W. E., Detection and spectroscopy of single pentacene molecules in a p-terphenyl crystal by means of fluorescence excitation. J. Chem. Phys.

1991, 95 (10), 7150.

[45]. Vallee, R. A. L.; Baruah, M.; Hofkens, J.; De Schryver, F.; Boens, N.; Van der Auweraer, M.;

Beljonne, D., Fluorescence lifetime fluctuations of single molecules probe the local environment of oligomers around the glass transition temperature. J. Chem. Phys. 2007, 126 (18), 184902.

[46]. Stryer, L., Fluorescence Energy Transfer as a Spectroscopic Ruler. Annu. Rev. Biochem.

1978, 47 (1), 819.

[47]. Weiss, S., Fluorescence spectroscopy of single biomolecules. Science 1999, 283 (5408), 1676.

[48]. Sun, Y.; Wallrabe, H.; Seo, S.-A.; Periasamy, A., FRET Microscopy in 2010: The Legacy of Theodor Förster on the 100th Anniversary of his Birth. ChemPhysChem 2011, 12 (3), 462.

[49]. Schob, A.; Cichos, F.; Schuster, J.; von Borczyskowski, C., Reorientation and translation of individual dye molecules in a polymer matrix. Eur. Polym. J. 2004, 40 (5), 1019.

[50]. Zondervan, R.; Kulzer, F.; Berkhout, G. C. G.; Orrit, M., Local viscosity of supercooled glycerol near T-g probed by rotational diffusion of ensembles and single dye molecules. Proc.

Natl. Acad. Sci. U. S. A. 2007, 104 (31), 12628.

[51]. Moerner, W. E., A Dozen Years of Single-Molecule Spectroscopy in Physics, Chemistry, and Biophysics. J. Phys. Chem. B 2002, 106 (5), 910.

[52]. Weil, T.; Vosch, T.; Hofkens, J.; Peneva, K.; Müllen, K., The Rylene Colorant Family-Tailored Nanoemitters for Photonics Research and Applications. Angew. Chem., Int. Ed. 2010, 49 (48), 9068.

[53]. Qu, J. Q.; Zhang, J. Y.; Grimsdale, A. C.; Müllen, K.; Jaiser, F.; Yang, X. H.; Neher, D., Dendronized perylene diimide emitters: Synthesis, luminescence, and electron and energy transfer studies. Macromolecules 2004, 37 (22), 8297.

[54]. Huang, M.; Schilde, U.; Kumke, M.; Antonietti, M.; Colfen, H., Polymer-induced self-assembly of small organic molecules into ultralong microbelts with electronic conductivity. J.

Am. Chem. Soc. 2010, 132 (11), 3700.

[55]. Kohl, C.; Weil, T.; Qu, J.; Müllen, K., Towards Highly Fluorescent and Water-Soluble Perylene Dyes. Chem. - Eur. J. 2004, 10 (21), 5297.

[56]. Davies, M.; Jung, C.; Wallis, P.; Schnitzler, T.; Li, C.; Müllen, K.; Bräuchle, C., Photophysics of New Photostable Rylene Derivatives: Applications in Single-Molecule Studies and Membrane Labelling. ChemPhysChem 2011, 12 (8), 1588.

[57]. Jung, C.; Müller, B. K.; Lamb, D. C.; Nolde, F.; Müllen, K.; Bräuchle, C., A New Photostable Terrylene Diimide Dye for Applications in Single Molecule Studies and Membrane Labeling. J.

Am. Chem. Soc. 2006, 128 (15), 5283.

[58]. Jung, C.; Ruthardt, N.; Lewis, R.; Michaelis, J.; Sodeik, B.; Nolde, F.; Peneva, K.; Müllen, K.;

Bräuchle, C., Photophysics of New Water-Soluble Terrylenediimide Derivatives and Applications in Biology. ChemPhysChem 2009, 10 (1), 180.

[59]. Herrmann, A.; Weil, T.; Sinigersky, V.; Wiesler, U. M.; Vosch, T.; Hofkens, J.; De Schryver, F. C.; Müllen, K., Polyphenylene dendrimers with perylene diimide as a luminescent core. Chem. - Eur. J. 2001, 7 (22), 4844.

[60]. Nolde, F.; Qu, J.; Kohl, C.; Pschirer, N. G.; Reuther, E.; Müllen, K., Synthesis and Modification of Terrylenediimides as High-Performance Fluorescent Dyes. Chem. - Eur. J. 2005, 11 (13), 3959.

[61]. Hofkens, J.; Vosch, T.; Maus, M.; Köhn, F.; Cotlet, M.; Weil, T.; Herrmann, A.; Müllen, K.; De Schryver, F. C., Conformational rearrangements in and twisting of a single molecule. Chem. Phys.

Lett. 2001, 333 (3–4), 255.

[62]. Moerner, W. E.; Fromm, D. P., Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 2003, 74 (8), 3597.

[63]. Muller, R.; Zander, C.; Sauer, M.; Deimel, M.; Ko, D. S.; Siebert, S.; ArdenJacob, J.; Deltau, G.; Marx, N. J.; Drexhage, K. H.; Wolfrum, J., Time-resolved identification of single molecules in solution with a pulsed semiconductor diode laser. Chem. Phys. Lett. 1996, 262 (6), 716.

[64]. Yildiz, A.; Selvin, P. R., Fluorescence Imaging with One Nanometer Accuracy:  Application to Molecular Motors. Acc. Chem. Res. 2005, 38 (7), 574.

[68]. Basche, T.; Kummer, S.; Bräuchle, C., Direct spectroscopic observation of quantum jumps of a single molecule. Nature 1995, 373 (6510).

[69]. Kubitscheck, U.; Kückmann, O.; Kues, T.; Peters, R., Imaging and Tracking of Single GFP Molecules in Solution. Biophys. J. 2000, 78 (4), 2170.

[70]. Paige, M. F.; Bjerneld, E. J.; Moerner, W. E., A Comparison of Through-the-Objective Total Internal Reflection Microscopy and Epifluorescence Microscopy for Single-Molecule Fluorescence Imaging. Single Mol. 2001, 2 (3), 191.

[71]. Axelrod, D.; Burghardt, T. P.; Thompson, N. L., Total Internal Reflection Fluorescence.

Annu. Rev. Biophys. Bioeng. 1984, 13 (1), 247.

[72]. Stout, A. L.; Axelrod, D., Evanescent field excitation of fluorescence by epi-illumination microscopy. Appl. Opt. 1989, 28 (24), 5237.

[73]. Magde, D.; Elson, E.; Webb, W. W., Thermodynamic Fluctuations in a Reacting System—

Measurement by Fluorescence Correlation Spectroscopy. Phys. Rev. Lett. 1972, 29 (11), 705.

[74]. Magde, D.; Elson, E. L.; Webb, W. W., Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 1974, 13 (1), 29.

[75]. Rigler, R.; Pramanik, A.; Jonasson, P.; Kratz, G.; Jansson, O. T.; Nygren, P.-Å.; Ståhl, S.;

Ekberg, K.; Johansson, B.-L.; Uhlén, S.; Uhlén, M.; Jörnvall, H.; Wahren, J., Specific binding of proinsulin C-peptide to human cell membranes. Proc. Natl. Acad. Sci. U. S. A. 1999, 96 (23), 13318.

[76]. Felekyan, S.; Kühnemuth, R.; Kudryavtsev, V.; Sandhagen, C.; Becker, W.; Seidel, C. A. M., Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection. Rev. Sci. Instrum. 2005, 76 (8).

[77]. Wahl, M.; Rahn, H.-J.; Gregor, I.; Erdmann, R.; Enderlein, J., Dead-time optimized time-correlated photon counting instrument with synchronized, independent timing channels. Rev.

Sci. Instrum. 2007, 78 (3).

[78]. Schwille, P.; Haustein, E. Fluorescence Correlation Spectroscopy - An introduction to its Concepts and Applications Biophysics Textbook online [Online], 2001, p. 33. (accessed 08.06.2014).

[79]. Dorfschmid, M.; Mu llen, K.; Zumbusch, A.; Wo ll, D., Translational and Rotational Diffusion during Radical Bulk Polymerization: A Comparative Investigation by Full Correlation Fluorescence Correlation Spectroscopy (fcFCS). Macromolecules 2010, 43 (14), 6174.

[80]. Cherdhirankorn, T.; Floudas, G.; Butt, H. J.; Koynov, K., Effects of Chain Topology on the Tracer Diffusion in Star Polyisoprenes. Macromolecules 2009, 42 (22), 9183.

[81]. Zettl, U.; Hoffmann, S. T.; Koberling, F.; Krausch, G.; Enderlein, J. r.; Harnau, L.; Ballauff, M., Self-Diffusion and Cooperative Diffusion in Semidilute Polymer Solutions As Measured by Fluorescence Correlation Spectroscopy. Macromolecules 2009.

[82]. Dedecker, P.; Muls, B.; Deres, A.; Uji-i, H.; Hotta, J.-i.; Sliwa, M.; Soumillion, J.-P.; Müllen, K.; Enderlein, J.; Hofkens, J., Defocused Wide-field Imaging Unravels Structural and Temporal Heterogeneity in Complex Systems. Adv. Mater. 2009, 21 (10-11), 1079.

[83]. Kulzer, F.; Xia, T.; Orrit, M., Single Molecules as Optical Nanoprobes for Soft and Complex Matter. Angew. Chem., Int. Ed. 2010, 122 (5), 1521.

[84]. Elliott, L. C. C.; Barhoum, M.; Harris, J. M.; Bohn, P. W., Single Molecule Tracking Studies of Lower Critical Solution Temperature Transition Behavior in Poly(N-isopropylacrylamide).

Langmuir 2011, 27 (17), 11037.

[85]. Yorulmaz, M.; Kiraz, A.; Demirel, A. L., Motion of Single Terrylene Molecules in Confined Channels of Poly(butadiene)−Poly(ethylene oxide) Diblock Copolymer. J. Phys. Chem. B 2009, 113 (29), 9640.

[86]. Fukunaga, K.; Elbs, H.; Magerle, R.; Krausch, G., Large-Scale Alignment of ABC Block Copolymer Microdomains via Solvent Vapor Treatment. Macromolecules 2000, 33 (3), 947.

[87]. Ba, K. H. T.; Everett, T. A.; Ito, T.; Higgins, D. A., Trajectory angle determination in one dimensional single molecule tracking data by orthogonal regression analysis. Phys. Chem. Chem.

Phys. 2011, 13 (5), 1827.

[88]. Tran-Ba, K. H.; Higgins, D. A.; Ito, T., Single-Molecule Tracking Studies of Flow-Induced Microdomain Alignment in Cylinder-Forming Polystyrene-Poly(ethylene oxide) Diblock Copolymer Films. J. Phys. Chem. B 2014, 118 (38), 11406.

[89]. Aoki, H.; Takahashi, T.; Tamai, Y.; Sekine, R.; Aoki, S.; Tani, K.; Ito, S., Poly(methacrylate)s Labeled by Perylene Diimide: Synthesis and Applications in Single Chain Detection Studies.

Polym. J. 2009, 41 (9), 778.

[90]. Chen, R.; Li, L.; Zhao, J., Single Chain Diffusion of Poly(ethylene oxide) in Its Monolayers before and after Crystallization. Langmuir 2010, 26 (8), 5951.

[91]. Skaug, M. J.; Mabry, J. N.; Schwartz, D. K., Single-Molecule Tracking of Polymer Surface Diffusion. J. Am. Chem. Soc. 2013, 136 (4), 1327.

[92]. Habuchi, S.; Oba, T.; Vacha, M., Multi-beam single-molecule defocused fluorescence imaging reveals local anisotropic nature of polymer thin films. Phys. Chem. Chem. Phys. 2011, 13 (15), 7001.

[93]. Zheng, Z. L.; Li, D. S.; Yang, J. F.; Zhao, J., Segmental dynamics near the chain end of polystyrene in its ultrathin films: A study by single-molecule fluorescence de-focus microscopy.

Science China: Chemistry 2014, 57 (3), 389.

[94]. Flier, B. M. I.; Baier, M.; Huber, J.; Müllen, K.; Mecking, S.; Zumbusch, A.; Wöll, D., Single molecule fluorescence microscopy investigations on heterogeneity of translational diffusion in thin polymer films. Phys. Chem. Chem. Phys. 2011, 13 (5), 1770.

[95]. Flier, B. M. I.; Baier, M. C.; Huber, J.; Müllen, K.; Mecking, S.; Zumbusch, A.; Wöll, D., Heterogeneous Diffusion in Thin Polymer Films As Observed by High-Temperature Single-Molecule Fluorescence Microscopy. J. Am. Chem. Soc. 2011, 134 (1), 480.

[96]. Oba, T.; Vacha, M., Relaxation in Thin Polymer Films Mapped across the Film Thickness by Astigmatic Single-Molecule Imaging. ACS Macro Lett. 2012, 1 (6), 784.

[97]. Hooley, E. N.; Tilley, A. J.; White, J. M.; Ghiggino, K. P.; Bell, T. D. M., Energy transfer in PPV-based conjugated polymers: a defocused widefield fluorescence microscopy study. Phys.

Chem. Chem. Phys. 2014, 16 (15), 7108.

[98]. Tauber, D.; von Borczyskowski, C., Single Molecule Studies on Dynamics in Liquid Crystals. Int. J. Mol. Sci. 2013, 14 (10), 19506.

[99]. Hensle, E. M.; Blum, S. A., Phase Separation Polymerization of Dicyclopentadiene Characterized by In Operando Fluorescence Microscopy. J. Am. Chem. Soc. 2013, 135 (33), 12324.

[100]. Bergmann, L.; Schaefer, C., Lehrbuch der Experimentalphysik - Optik. de Gruyter: Berlin, 2004; Vol. 10.

[101]. Telle, H. H.; Ureña, A. G.; Donovan, R. J., Laser Chemistry. Wiley: Chichester, 2007; p 516.

[102]. Hesse, M.; Meier, H.; Zeeh, B., Spektroskopische Methoden in der organischen Chemie.

Thieme: Stuttgart, 2005; Vol. 7., p 456.

[103]. Böhm, S. Weitfeldfluoreszenzmikroskopische Untersuchungen an Polymernetzwerken.

Diplomarbeit, University of Konstanz, Konstanz, 2009.

[104]. Wöll, D.; Kölbl, C.; Stempfle, B.; Karrenbauer, A., A novel method for automatic single molecule tracking of blinking molecules at low intensities. Phys. Chem. Chem. Phys. 2013, 15 (17), 6196.

[105]. Cheezum, M. K.; Walker, W. F.; Guilford, W. H., Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles. Biophys. J. 2001, 81 (4), 2378.

[106]. Mortensen, K. I.; Churchman, L. S.; Spudich, J. A.; Flyvbjerg, H., Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods 2010, 7 (5), 377.

[110]. Wieser, S.; Schutz, G. J., Tracking single molecules in the live cell plasma membrane-Do's and Don't's. Methods 2008, 46 (2), 131.

[111]. Jaqaman, K.; Loerke, D.; Mettlen, M.; Kuwata, H.; Grinstein, S.; Schmid, S. L.; Danuser, G., Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 2008, 5 (4), 695.

[112]. Sergé, A.; Bertaux, N.; Rigneault, H.; Marguet, D., Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat. Methods 2008, 5, 687.

[113]. Atkins, P. W., Physikalische Chemie. Wiley: Weinheim, 2001; Vol. 3.

[114]. Anderson, C. M.; Georgiou, G. N.; Morrison, I. E. G.; Stevenson, G. V. W.; Cherry, R. J., Tracking of Cell-Surface Receptors by Fluorescence Digital Imaging Microscopy Using a Charge-Coupled Device Camera - Low-Density-Lipoprotein and Influenza-Virus Receptor Mobility at 4-Degrees-C. J. Cell Sci. 1992, 101, 415.

[115]. Saxton, M. J., Single-particle tracking: the distribution of diffusion coefficients. Biophys. J.

1997, 72 (4), 1744.

[116]. Berglund, A. J., Statistics of camera-based single-particle tracking. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2010, 82 (1), 011917.

[117]. Michalet, X.; Berglund, A. J., Optimal diffusion coefficient estimation in single-particle tracking. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2012, 85 (6), 061916.

[118]. Kues, T.; Peters, R.; Kubitscheck, U., Visualization and tracking of single protein molecules in the cell nucleus. Biophys. J. 2001, 80 (6), 2954.

[119]. Saxton, M. J., Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys. J.

1994, 66 (2), 394.

[120]. Ernst, D.; Kohler, J.; Weiss, M., Probing the type of anomalous diffusion with single-particle tracking. Phys. Chem. Chem. Phys. 2014, 16 (17), 7686.

[121]. Saxton, M. J., Anomalous diffusion due to binding: A Monte Carlo study. Biophys. J. 1996, 70 (3), 1250.

[122]. Weber, S. C.; Spakowitz, A. J.; Theriot, J. A., Bacterial Chromosomal Loci Move Subdiffusively through a Viscoelastic Cytoplasm. Phys. Rev. Lett. 2010, 104 (23), 238102.

[123]. De Santo, I.; Causa, F.; Netti, P. A., Subdiffusive Molecular Motion in Nanochannels Observed by Fluorescence Correlation Spectroscopy. Anal. Chem. 2010, 82 (3), 997.

[124]. Wong, I. Y.; Gardel, M. L.; Reichman, D. R.; Weeks, E. R.; Valentine, M. T.; Bausch, A. R.;

Weitz, D. A., Anomalous Diffusion Probes Microstructure Dynamics of Entangled F-Actin Networks. Phys. Rev. Lett. 2004, 92 (17), 178101.

[125]. Höfling, F.; Franosch, T., Anomalous transport in the crowded world of biological cells.

Rep. Prog. Phys. 2013, 76 (4), 046602.

[126]. Saxton, M. J., Lateral Diffusion in an Archipelago - Single Particle Diffusion. Biophys. J.

1993, 64 (6), 1766.

[127]. Montiel, D.; Cang, H.; Yang, H., Quantitative Characterization of Changes in Dynamical Behavior for Single-Particle Tracking Studies†. J. Phys. Chem. B 2006, 110 (40), 19763.

[128]. Shuang, B.; Byers, C. P.; Kisley, L.; Wang, L.-Y.; Zhao, J.; Morimura, H.; Link, S.; Landes, C.

F., Improved Analysis for Determining Diffusion Coefficients from Short, Single-Molecule Trajectories with Photoblinking. Langmuir 2012, 29 (1), 228.

[129]. Rudnick, J.; Gaspari, G., The Shapes of Random Walks. Science 1987, 237 (4813), 384.

[130]. Elliott, L. C. C.; Barhoum, M.; Harris, J. M.; Bohn, P. W., Trajectory analysis of single molecules exhibiting non-Brownian motion. Phys. Chem. Chem. Phys. 2011, 13 (10), 4326.

[131]. Stempfle, B.; Dill, M.; Winterhalder, M. J.; Müllen, K.; Wöll, D., Single Molecule Diffusion and its Heterogeneity during the Bulk Radical Polymerization of Styrene and Methyl Methacrylate. Polym. Chem. 2012, (3), 2456.

[132]. Baekeland, L. H., The Synthesis, Constitution, and Uses of Bakelite. J. Ind. Eng. Chem.

1909, 1 (3), 149.

[133]. Tieke, B., Makromolekulare Chemie. Wiley-VCH: Weinheim, 2005; Vol. 2, p 368.

[134]. Mayo, F. R., Chain Transfer in the Polymerization of Styrene. VIII. Chain Transfer with Bromobenzene and Mechanism of Thermal Initiation1. J. Am. Chem. Soc. 1953, 75 (24), 6133.

[135]. Achilias, D. S., A Review of Modeling of Diffusion Controlled Polymerization Reactions.

Macromol. Theory Simul. 2007, 16 (4), 319.

[136]. Trommsdorff, V. E.; Köhle, H.; Lagally, P., Zur Polymerisation des Methacrylsäuremethylesters. Makromol. Chem. 1948, 1 (3), 169.

[137]. Norrish, R. G. W.; Smith, R. R., Catalysed polymerization of methyl methacrylate in the liquid phase. Nature 1942, 150, 336.

[138]. Tulig, T. J.; Tirrell, M., Molecular theory of the Trommsdorff effect. Macromolecules 1981, 14 (5), 1501.

[139]. O'Neil, G. A.; Wisnudel, M. B.; Torkelson, J. M., A Critical Experimental Examination of the Gel Effect in Free Radical Polymerization:  Do Entanglements Cause Autoacceleration?

Macromolecules 1996, 29 (23), 7477.

[140]. O'Neil, G. A.; Torkelson, J. M., Modeling Insight into the Diffusion-Limited Cause of the Gel Effect in Free Radical Polymerization. Macromolecules 1999, 32 (2), 411.

[141]. O'Neil, G. A.; Wisnudel, M. B.; Torkelson, J. M., An Evaluation of Free Volume Approaches to Describe the Gel Effect in Free Radical Polymerization. Macromolecules 1998, 31 (14), 4537.

[142]. Buback, M.; Egorov, M.; Gilbert, R. G.; Kaminsky, V.; Olaj, O. F.; Russell, G. T.; Vana, P.;

Zifferer, G., Critically Evaluated Termination Rate Coefficients for Free-Radical Polymerization, 1. The Current Situation. Macromol. Chem. Phys. 2002, 203 (18), 2570.

[143]. Benson, S. W.; North, A. M., The Kinetics of Free Radical Polymerization under Conditions of Diffusion-controlled Termination. J. Am. Chem. Soc. 1962, 84 (6), 935.

[144]. Barner-Kowollik, C.; Russell, G. T., Chain-length-dependent termination in radical polymerization: Subtle revolution in tackling a long-standing challenge. Prog. Polym. Sci. 2009, 34 (11), 1211.

[145]. Russell, G. T., The kinetics of free-radical polymerization: Fundamental aspects. Aust. J.

Chem. 2002, 55 (6-7), 399.

[146]. O'Shaughnessy, B.; Yu, J., Autoacceleration in Free Radical Polymerization. 2. Molecular Weight Distributions. Macromolecules 1994, 27 (18), 5079.

[147]. O'Shaughnessy, B.; Yu, J., Autoacceleration in Free Radical Polymerization. 1. Conversion.

Macromolecules 1994, 27 (18), 5067.

[148]. O'Shaughnessy, B.; Yu, J., Non-Steady State Free Radical Polymerization Kinetics at High Conversions:  Entangled Regimes. Macromolecules 1998, 31 (16), 5240.

[149]. Zhu, S.; Tian, Y.; Hamielec, A. E.; Eaton, D. R., Radical trapping and termination in free-radical polymerization of methyl methacrylate. Macromolecules 1990, 23 (4), 1144.

[150]. Krzeminski, M.; Molinari, M.; Troyon, M.; Coqueret, X., Characterization by Atomic Force Microscopy of the Nanoheterogeneities Produced by the Radiation-Induced Cross-Linking Polymerization of Aromatic Diacrylates. Macromolecules 2010, 43 (19), 8121.

[151]. Maitland, C. F.; Buckley, C. E.; O'Connor, B. H.; Butler, P. D.; Hart, R. D., Characterization of the pore structure of metakaolin-derived geopolymers by neutron scattering and electron microscopy. J. Appl. Crystallogr. 2011, 44 (4), 697.

[152]. Dorfschmid, M. Fluoreszenzkorrelationsspektroskopie über große Zeitbereiche.

Diplomarbeit, Universität Konstanz, Konstanz, 2009.

[153]. Noda, L. K.; Sala, O., A resonance Raman investigation on the interaction of styrene and 4-methyl styrene oligomers on sulphated titanium oxide. Spectrochim. Acta, Part A 2000, 56 (1), 145.

[154]. Gulari, E.; McKeigue, K.; Ng, K. Y. S., Raman and FTIR spectroscopy of polymerization:

bulk polymerization of methyl methacrylate and styrene. Macromolecules 1984, 17 (9), 1822.

[155]. Dywan, F.; Hartmann, B.; Klauer, S.; Lechner, M. D.; Rupp, R. A.; Wöhlecke, M., Non-destructive determination of the residual monomer content in polymers by Raman spectroscopy. Makromol. Chem. 1993, 194 (6), 1527.

[159]. Yang, J.; Ding, S.; Radosz, M.; Shen, Y., Reversible Catalyst Supporting via Hydrogen-Bonding-Mediated Self-Assembly for Atom Transfer Radical Polymerization of MMA.

Macromolecules 2004, 37 (5), 1728.

[160]. Chu, B.; Fytas, G.; Zalczer, G., Study of thermal polymerization of styrene by Raman

[160]. Chu, B.; Fytas, G.; Zalczer, G., Study of thermal polymerization of styrene by Raman