• Keine Ergebnisse gefunden

Aminosäurevergleich X.l.p170/ „Heavy Chain Myosin fast skeletal muscle,

3 Material und Methoden

7.6 Aminosäurevergleich X.l.p170/ „Heavy Chain Myosin fast skeletal muscle,

Das Alignment wurde wie in 7.5 beschrieben durchgeführt. „Heavy Chain Myosin, Chicken“ (accession number: sp|P02565) besteht aus 1940 Aminosäuren, wobei 20%

identisch und 43% ähnlich zu X.l.p170 sind

X.l.p170 ---MELNMPTYNDQIEEPTDGLLL Myosin MSTDAEMAVYGKAAIYLRKPERERIEAQSKPFDAKAACYVADVKELYLKALITKKDGAKV * . .**

X.l.p170 MGKLMQG--EWSIEHED---EKRD---HSSEHSLS---RVPLGLTLEDL Myosin TVKVLDTEEERTVKEDDVTPMNPPKFDKIEDMAMMTHLNEASVLYNLKERYAAWMIYTYS * * . * * * * .* * * . X.l.p170 EQSCKSR---E--NLLRS--RN---TVSQN--- Myosin GLFCATVNPYKWLPVYDSEVVNAYRGKKRMEAPPHIFSVSDNAFQFMLIDRENQSVLITG * * * *. * ** * X.l.p170 ---AG---NSLRAFKDKPTNSQSGSLIRNT---EQQ----NRQLKEKLN--FLQEQNA Myosin ESGAGKTVNTKRVIQYFATISVGGEKKRDTSKGSLEDQIIAANPLLEAYGNAKTVRNDNS ** * *. .* * .*. * * * * * * * * X.l.p170 S---LVSQNHSLMN-KID--CVQTELT-KSRS---R---IRY---VE-S Myosin SRFGKFIRVHFGATGKLASADIETYLLEKSRVTFQLPDERGYHIFYQMMTNHKPELIEMS * . * . * * * *** * * * * * X.l.p170 AIGARAMRLPDLEERILTLEAKAD---AQENALRT---TEDQ---LEHSR Myosin LITTNPYDFPMCSMGQITVASIDDKVELEATDNAIDILGFTSDEKMSIYKMTGAVLHHGS * .. * . * * * ** *.* *.*.

X.l.p170 HILAEKERILQMFKDEMK-ALKEELFASCR---LC-KR---TEKQRNEALF Myosin MKFKQKQREEQAEPDGTEDADKVAYLLGLNSADMLKALCYPRVKVGNEYVTKGQTVPQVN * * * * * * . . ** * * * X.l.p170 N-AEELTKALQQYK---NKMTEKMEKVQ---EEG-ELLK-N---KFS Myosin NSVTALAKSIYEKMFLWMVIRINEMLDTKQARQFFIGVLDIAGFEIFDFNTLEQLCINFT * . * * * * . * * * . * * X.l.p170 NCEKEQ--D----ALQQKCVMLDTELEKSRDALRNLQSEN-IIRQER---HQCVEA Myosin NEKLQQFFNHTMFVLEQEEYKKEGIVWEFIDFGMDLAACIELIEKPMGIFSILEEECMFP * * .* * * * *. . * . X.l.p170 KNAEL---ISLLTQ---SNQRILR---LES--ELEHKEKALQENI----DENK-AM Myosin KATDTSFKNKLYDQHLGKNKAFEKPKPAKGKAEAHFSLVHYAGTVDYNIAGWLDKNKDPL * .* * .* * .* * ** * ** . X.l.p170 KDCFAKSKQSETISDQPKEQP---ADSASD---GS---GKLIADLRA- Myosin NESVVQLYQKSSVKLLPVLYPPVVEETGGKKGKKKGGSMQTVSAAFRENLGKLMTNLRST ... *.. . * * ... ** *** **

X.l.p170 -KLLIR-EAENKELQAELVNGKLLTNRYR-N-SLEKN--CLDALEA-EPVK---L Myosin HPHFVRCLIPNESKTPGLMENFLVIHQLRCNGVLEGIRICRKGFPSRIPYADFKQRYKVL * * . . * . * * * ** * .. * * X.l.p170 N---LQN-TAEEKYL-QLELLCKQIQMD---KERLTDCVKELQGKLGKAQI Myosin NASVIPDGQFMDNKKASEKLLGSIDVDHDQYRFGHTKVFFKAGLLGTLEEMRDEKLAALV * * .*.** * . .* . * * . * . *

7 Anhang 136

X.l.p170 ELTNTKLS---MEQR--TSQLQLIQQEL---LEKASKTTKL Myosin TMTQALCRGYVMRKEFVKMMERREAIYTIQYNVRSFTNVKNWPWMKVYYKIKPMLKSAET * ** * * . * X.l.p170 EQELVKK---RMK---ISALQK---LVEEKS--QVYSAAEARNAG-LEEKL Myosin EKELANMKENYEKMKTDLATALAKKKELEEKMVSIVQEKNDLQLQVASESENLSDAEERC * **. ** ** * * **. * * * .* . **

X.l.p170 KNYKDQIVNLEDNINK---EHAEVLLALERSKDIHQDQQKELMKQIEHLQLQLEM-- Myosin EGLIKSKIQMEAKLKETSERLEDEEEINAELTAKKRKLEDECSELKKDIDDLELTLAKVE . .. * . * * .* * .** * * .* * * X.l.p170 KNLHAGE---QKHTITILQQE--TLW--HEQ---QLES--VNHLLTQAR Myosin KEKHATENKVKNLTEEMASQDDSLAKLTKEKKALQEAHQQTLDDLQAEEDKVN-TLTKAK * ** * *.. * * * * * * *. ** ** * X.l.p170 KELEIQTKNTSAAMKSLQN-QVEVESAKVSQLESALTVCKEELALYLHELE--DN---RE Myosin TKLEQQVDDLEGSLEQEKKLRMDLERAKR-KLEGDLKLAQESIMDLENDKQQTDEKLKKK . ** *.. .. . * ** **. *. . *. * X.l.p170 QFEN-QIKTKSE-E--LW-CLQNEIK---LRTQSLQETSEENVRLQQTLQQQQHMLQQGT Myosin DFEISQLLSKIEDEQSLGAQLQKKIKELQARIEELEEEIEAERAARAKVEKQRADLSREL ** * * * * * ** ** * .* * * . * *.

X.l.p170 GRIGE-LEDHHTELEKQVS---KLEFELEK-QRSMSEDMLQR--TKDSLH--AAN--KEL Myosin EEISERLEEAGGATASQIEMNKKREAEFQKLRRDLEESTLQHEATAAALRKKQADSVAEL .*.* ** .* . * * * * *. .*. ** * * * **

X.l.p170 GLKTEEVQELCSTLNQVKLELKHTNVTLLQMEEELVSLKNKEEKNASMLKLLQMDMQKTQ Myosin GEQIDNLQRVKQKLEKEKSEYKMEIDDLSSNMEAVAKAKGNLEKMCRTLED-QLSELKTK * *. ..* * * * * . * .. *. ** . * * . **

X.l.p170 VELDKKACAVLELEEKLHIAEKD--SKRTEEMETQLSGMQKELDGYTKQVEEL---QE Myosin NDENVRQINDMSGQRARLLTENGEFTRQVEEKEALVSQLTRGKQAFTQQIEELKRQIEEE . . * . .** * * . * * *** * X.l.p170 TLTK---TH---LSVEEKQ---VIIQ-GLTEK---LRS-YK----Q- Myosin VKAKNALAHGVQSARHDCDLLREQFEEEQEAKAELQRGMSKANSEVAQWRSKYETDAIQR . * * ..** * . * * ** * * X.l.p170 --ELEERD----HEVLDMDQLLKDRN---WELKQ---RAAQLTQ-L Myosin TEELEEAKKKLAQRLQDAEEQIEAVNSKCASLEKTKQRLQSEVEDLMIDVERANGLAANL **** . . * * ** ** * * X.l.p170 DMSIRGHK---GEMEQKIIRLESALEKAELEARDHIKEISSLDERLQQARDQLCEKEFDL Myosin DKKQRNFDKVLAEWKQKYEEGQAELEGAQKEARSLGTELFKMKNSYEESLDQLETMKREN * . *... .* ** . ** * ***. .* . . ***

X.l.p170 MQKDQIINQLKKDIERSHQTVTDMEKTLK---VQ----ERRISEKHQDGVDLSKQ Myosin KNLQQEISDLTEQIGETGKSIHELEKAKKQVETEKSEIQTALEEAEGTLEHEESKILRVQ * *. *. * . ** * * * . * . * * X.l.p170 VCLAQ---ERMQL--THQELLETRQQ--LAEAQKESD--RLAQKLEGMD Myosin LELNQVKGEVDRKLAEKDEEMEQIKRNSQRVIDSMQSTLDSEVRSRNDALRIKKKMEG-D * * * * . *. *. *. ...* * * ** * X.l.p170 LISKE-KIQHLKQKLEET---N---DTVCNLKTELQARNEVIKATNEV---LI Myosin LNEMEIQLSHANRQAAESQKQLRNVQAQLKDAQLHLDDAVRAQDDFKEQAAMVERRNGLM * . * .* * * * *. * . * * X.l.p170 LKESELTRLKARISSYERTLGLKQLSDTTA-LPSISFTDPHPLDSSKHPEASDFKMW-HI Myosin MAEIEELRVALEQTERSRKVAEQELVDASERVGLLHSQNTSLMNTKKKLEADLVQIQGEV * * * . . .*. . * * . .* **. . . X.l.p170 SPSISAS-N---LSLTD--MSSLELPK---SMLEDLR-NL--APPDSPPMKDTSE Myosin DDTVQEARNAEEKAKKAITDAAMMAEELKKEQDTSSHLERMKKNLEVAVKDLQHRLDEAE . . * ** * ** * * ** ** * * * *

7 Anhang 137

X.l.p170 ---G---V----SCVSS---DSLNNS---SFNPLTYALDENS-DF Myosin NLAMKGGKKQLQKLESRVRELEAEVEAEQRRGGDAVKGVRKYERRVKELTYQTEEDKKNV * * *. * . . *** * . . X.l.p170 TDCPDLTT-LTGMLKYIKKEMRLSEYPQ---EHSPSKAAG-IDGGSLG--- Myosin ARLQDLVDKLQLKVKGYKRQAEEAEEQANVHLSKCRKIQHELEEAEERADIAETQVNKLR **. * * * . * *. . * * ..

X.l.p170 --- Myosin VKSRDIGKGKDAAE

139

8 Literaturverzeichnis

Alber, T. (1992). Structure of the leucine zipper. Curr Opin Genet Dev 2, 205-10.

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-402.

Agatep et al, (1998); Technical Tips online (http://tto.trends.com)

Amaya, E., Offield, M. F., and Grainger, R. M. (1998). Frog genetics: Xenopus tropicalis jumps into the future. Trends Genet 14, 253-5.

Aparicio, O. M., Weinstein, D. M., and Bell, S. P. (1997). Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91, 59-69.

Aronheim, A. (1997). Improved efficiency sos recruitment system: expression of the mammalian GAP reduces isolation of Ras GTPase false positives. Nucleic Acids Res 25, 3373-4.

Bell, S. P., and Stillman, B. (1992). ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex [see comments]. Nature 357, 128-34.

Berger, B. (1995). Algorithms for protein structural motif recognition. J Comput Biol 2, 125-38.

Berger, B., Wilson, D. B., Wolf, E., Tonchev, T., Milla, M., and Kim, P. S. (1995).

Predicting Coiled Coils by use of pairwise residue correlations. Proc Natl Acad Sci U S A 92, 8259-63.

8 Literaturverzeichnis 140

Birnboim, H. C. (1983). A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol 100, 243-55.

Blackshear, P. J., Lai, W.S., Thorn, J.M., Kennington, E.A., Staffa, N.G. Jr., Moore, D.T., Bouffard, G.G., Beckstrom-Sternberg, S.M., Touchman, J.W., Bonaldo, M.F., Soares, M.B.. (2000). The NIEHS Xenopus Maternal EST Project. unpublished.

Bootsma, D., and Humphrey, R. M. (1968). The progression of mammalian cells through the division cycle following ultraviolet irradiation. Mutat Res 5, 289-98.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-54.

Bramhall, S., Noack, N., Wu, M., and Loewenberg, J. R. (1969). A simple colorimetric method for determination of protein. Anal Biochem 31, 146-8.

Brett et al. (1997) Hum Mol Genetics, 6(9), 1556-64

Burkhart, R. (1995), Untersuchungen über das menschliche Kernprotein P1Mcm3, Dissertation, Universität Konstanz

Burkhart, R., Schulte, D. Hu, B., Musahl, C., Göhring, F. & Knippers, R. (1995), Interactions of human nuclear proteins P1Mcm3& P1Cdc46. Eur. J. Biochem. 228; 431-438

Chen, Z., and Han, M. (2000). Building a protein interaction map: research in the post-genome era. Bioessays 22, 503-6.

Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Rutter, W. J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease.

Biochemistry 18, 5294-9.

Cocker, J. H., Piatti, S., Santocanale, C., Nasmyth, K., and Diffley, J. F. (1996). An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature 379, 180-2.

Cockerill, P. N., and Garrard, W. T. (1986). Chromosomal loop anchorage sites appear to be evolutionarily conserved. FEBS Lett 204, 5-7.

8 Literaturverzeichnis 141

Coleman, T. R., Carpenter, P. B., and Dunphy, W. G. (1996). The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts. Cell 87, 53-63.

Dascal, N. (1987). The use of Xenopus oocytes for the study of ion channels. CRC Crit Rev Biochem 22, 317-87.

DePamphilis, M. L. (1993). Eukaryotic DNA replication: anatomy of an origin. Annu Rev Biochem 62, 29-63.

DePamphilis, M. L. (1993). Origins of DNA replication in metazoan chromosomes. J Biol Chem 268, 1-4.

DePamphilis, M. L. (1993). Origins of DNA replication that function in eukaryotic cells. Curr Opin Cell Biol 5, 434-41.

Dedhar S., and Hannigan G.E. (1996). Integrin cytoplasmatic interactions and bidirectional transmembrane signalling. Curr Opin Cell Biol 8, 657-69

Diffley, J. F. (1994). Eukaryotic DNA replication. Curr Opin Cell Biol 6, 368-72.

Diffley, J. F., and Cocker, J. H. (1992). Protein-DNA interactions at a yeast replication origin. Nature 357, 169-72.

Diffley, J. F., Cocker, J. H., Dowell, S. J., and Rowley, A. (1994). Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78, 303-16.

Diffley, J. F., and Stillman, B. (1992). DNA binding properties of an HMG1-related protein from yeast mitochondria. J Biol Chem 267, 3368-74.

Dijinovic-Carugo K., Y. P., Gautel M., and Saraste M. (1999). Structure of alpha-actinin rod: molecular basis for coss-linking of actin filaments. Cell 98, 537-46.

Dutta, A., and Bell, S. P. (1997). Initiation of DNA replication in eukaryotic cells. Annu Rev Cell Dev Biol 13, 293-332.

Elsasser, S., Lou, F., Wang, B., Campbell, J. L., and Jong, A. (1996). Interaction between yeast Cdc6 protein and B-type cyclin/Cdc28 kinases. Mol Biol Cell 7, 1723-35.

8 Literaturverzeichnis 142

Fackelmayer, F. O., Dahm, K., Renz, A., Ramsperger, U., and Richter, A. (1994).

Nucleic-acid-binding properties of hnRNP-U/SAF-A, a nuclear-matrix protein which binds DNA and RNA in vivo and in vitro. Eur J Biochem 221, 749-57.

Fackelmayer, F. O., and Richter, A. (1994). Purification of two isoforms of hnRNP-U and characterization of their nucleic acid binding activity. Biochemistry 33, 10416-22.

Fashena, S. J., Serebriiskii, I., and Golemis, E. A. (2000). The continued evolution of two-hybrid screening approaches in yeast: how to outwit different preys with different baits. Gene 250, 1-14.

Ferrell, J. E., Jr. (1999). Building a cellular switch: more lessons from a good egg.

Bioessays 21, 866-70.

Fey, E. G., and Penman, S. (1988). Nuclear matrix proteins reflect cell type of origin in cultured human cells. Proc Natl Acad Sci U S A 85, 121-5.

Findeisen, M. (1999). Molekularbiologische und biochemische Untersuchungen über die Phosphorylierung von DNA-Replikationsfaktoren durch Cyclinabhängige Kinasen aus Xenopus laevis. Dissertation, Universität Konstanz.

Frohman, M. A. (1994). On beyond classic RACE (rapid amplification of cDNA ends).

PCR Methods Appl 4, S40-58.

Garnier, J., Gibrat, J. F., and Robson, B. (1996). GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 266, 540-53.

Garnier, J., Osguthorpe, D. J., and Robson, B. (1978). Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120, 97-120.

Gautier, J., Minshull, J., Lohka, M., Glotzer, M., Hunt, T., and Maller, J. L. (1990).

Cyclin is a component of maturation-promoting factor from Xenopus. Cell 60, 487-94.

Gill et al (1994), Proc Natl Acad Sci USA , 91(1), 192-6

Golemis, E. A., and Khazak, V. (1997). Alternative yeast two-hybrid systems. The interaction trap and interaction mating. Methods Mol Biol 63, 197-218.

Golemis et al (1997); Current Protocols in Molecular Biology, 20.1

8 Literaturverzeichnis 143

Griffiths, G., Ericsson, M., Krijnse-Locker, J., Nilsson, T., Goud, B., Soling, H. D., Tang, B. L., Wong, S. H., and Hong, W. (1994). Localization of the Lys, Asp, Glu, Leu tetrapeptide receptor to the Golgi complex and the intermediate compartment in mammalian cells. J Cell Biol 127, 1557-74.

Hagerman, P. J. (1996). Do basic region-leucine zipper proteins bend their DNA targets ... does it matter? [comment]. Proc Natl Acad Sci U S A 93, 9993-6.

Hahn, S. (1993). Structure(?) and function of acidic transcription activators [comment].

Cell 72, 481-3.

Hancock, R. (1974). Interphase chromosomal deoxyribonucleoprotein isolated as a discrete structure from cultured cells. J Mol Biol 86, 649-63.

Harlow, E. a. L., D.P. (1988). Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press.

Harrison-Lavoie, K. J., Lewis, V. A., Hynes, G. M., Collison, K. S., Nutland, E., and Willison, K. R. (1993). A 102 kDa subunit of a Golgi-associated particle has homology to beta subunits of trimeric G proteins. Embo J 12, 2847-53.

Hartwell, L. H. (1976). Sequential function of gene products relative to DNA synthesis in the yeast cell cycle. J Mol Biol 104, 803-17.

Hartwell, L. H. (1973). Three additional genes required for deoxyribonucleic acid synthesis in Saccharomyces cerevisiae. J Bacteriol 115, 966-74.

Hawkes, T. R., Thomas, P. G., Edwards, L. S., Rayner, S. J., Wilkinson, K. W., and Rice, D. W. (1995). Purification and characterization of the imidazoleglycerol-phosphate dehydratase of Saccharomyces cerevisiae from recombinant Escherichia coli.

Biochem J 306, 385-97.

Hogan, E., and Koshland, D. (1992). Addition of extra origins of replication to a minichromosome suppresses its mitotic loss in cdc6 and cdc14 mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 89, 3098-102.

Jang, W., Chen, H. C., Sicotte, H., and Schuler, G. D. (1999). Making effective use of human genomic sequence data. Trends Genet 15, 284-6.

Johnston, L. H., Masai, H., and Sugino, A. (1999). First the CDKs, now the DDKs.

Trends Cell Biol 9, 249-52.

8 Literaturverzeichnis 144

Jones, D. T. (1999). GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J Mol Biol 287, 797-815.

Jones, D. T., Taylor, W. R., and Thornton, J. M. (1992). The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8, 275-82.

Karimova, G., Pidoux, J., Ullmann, A., and Ladant, D. (1998). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95, 5752-6.

Kellogg, D. E., Rybalkin, I., Chen, S., Mukhamedova, N., Vlasik, T., Siebert, P. D., and Chenchik, A. (1994). TagStart Antibody: "hot start" PCR facilitated by a neutralizing monoclonal antibody directed against Tag DNA polymerase. J Clin Microbiol 32, 1497-502.

Kelly, T. J., Martin, G. S., Forsburg, S. L., Stephen, R. J., Russo, A., and Nurse, P.

(1993). The fission yeast cdc18+ gene product couples S phase to START and mitosis [see comments]. Cell 74, 371-82.

Kozak, M. (1991). Effects of long 5' leader sequences on initiation by eukaryotic ribosomes in vitro. Gene Expr 1, 117-25.

Kozak, M. (1991). A short leader sequence impairs the fidelity of initiation by eukaryotic ribosomes. Gene Expr 1, 111-5.

Kyte, J., and Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105-32.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-5.

Lantz, V. A., and Miller, K. G. (1998). A class VI unconventional myosin is associated with a homologue of a microtubule-binding protein, cytoplasmic linker protein-170, in neurons and at the posterior pole of Drosophila embryos. J Cell Biol 140, 897-910.

Leatherwood, J., Lopez-Girona, A., and Russell, P. (1996). Interaction of Cdc2 and Cdc18 with a fission yeast ORC2-like protein. Nature 379, 360-3.

Liang, C., Weinreich, M., and Stillman, B. (1995). ORC and Cdc6p interact and determine the frequency of initiation of DNA replication in the genome. Cell 81, 667-76.

8 Literaturverzeichnis 145

Lupas, A., Van Dyke, M., and Stock, J. (1991). Predicting Coiled Coils from protein sequences. Science 252, 1162-4.

Maiorano, D., Moreau, J., and Mechali, M. (2000). XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis [see comments]. Nature 404, 622-5.

Mechali, M., Mechali, F., and Laskey, R. A. (1983). Tumor promoter TPA increases initiation of replication on DNA injected into Xenopus eggs. Cell 35, 63-9.

Mercurio, F., DiDonato, J. A., Rosette, C., and Karin, M. (1993). p105 and p98 precursor proteins play an active role in NF-kappa B- mediated signal transduction.

Genes Dev 7, 705-18.

Nakajima, H., Hirata, A., Ogawa, Y., Yonehara, T., Yoda, K., and Yamasaki, M.

(1991). A cytoskeleton-related gene, uso1, is required for intracellular protein transport in Saccharomyces cerevisiae. J Cell Biol 113, 245-60.

Newport, J., and Kirschner, M. (1982). A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30, 687-96.

Nigg, E. A. (1995). Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays 17, 471-80.

Nishitani, H., and Nurse, P. (1995). p65cdc18 plays a major role controlling the initiation of DNA replication in fission yeast. Cell 83, 397-405.

Ouellette, F. (1999). Internet resources for the clinical geneticist. Clin Genet 56, 179-85.

Perkins, G., and Diffley, J. F. (1998). Nucleotide-dependent prereplicative complex assembly by Cdc6p, a homolog of eukaryotic and prokaryotic clamp-loaders. Mol Cell 2, 23-32.

Piatti, S., Bohm, T., Cocker, J. H., Diffley, J. F., and Nasmyth, K. (1996). Activation of S-phase-promoting CDKs in late G1 defines a "point of no return" after which Cdc6 synthesis cannot promote DNA replication in yeast. Genes Dev 10, 1516-31.

Pierre, P., Scheel, J., Rickard, J. E., and Kreis, T. E. (1992). CLIP-170 links endocytic vesicles to microtubules. Cell 70, 887-900.

Prigent, C. (1999). Introduction to Xenopus laevis as a molecular and histological model for genetic studies. Microsc Res Tech 44, 387.

8 Literaturverzeichnis 146

Reynolds, N., Watt, A., Fantes, P. A., and MacNeill, S. A. (1998). Cdm1, the smallest subunit of DNA polymerase d in the fission yeast Schizosaccharomyces pombe, is non-essential for growth and division. Curr Genet 34, 250-8.

Reynolds et al (1997) Current protocols in Molecular Biology, 13.6

Ritzi, M., Baack, M., Musahl, C., Romanowski, P., Laskey, R. A., and Knippers, R.

(1998). Human minichromosome maintenance proteins and human origin recognition complex 2 protein on chromatin. J Biol Chem 273, 24543-9.

Romanowski, P., Madine, M. A., Rowles, A., Blow, J. J., and Laskey, R. A. (1996). The Xenopus origin recognition complex is essential for DNA replication and MCM binding to chromatin. Curr Biol 6, 1416-25.

Romig, H., Fackelmayer, F. O., Renz, A., Ramsperger, U., and Richter, A. (1992).

Characterization of SAF-A, a novel nuclear DNA binding protein from HeLa cells with high affinity for nuclear matrix/scaffold attachment DNA elements. Embo J 11, 3431-40.

Rowles, A., Chong, J. P., Brown, L., Howell, M., Evan, G. I., and Blow, J. J. (1996).

Interaction between the origin recognition complex and the replication licensing system in Xenopus. Cell 87, 287-96.

Rubie, C., Schulze-Bahr, E., Wedekind, H., Borggrefe, M., Haverkamp, W., and Breithardt, G. (1999). Multistep-touchdown vectorette-PCR--a rapid technique for the identification of IVS in genes. Biotechniques 27, 414-6, 418.

Russo, M. W., Matheny, C., and Milbrandt, J. (1993). Transcriptional activity of the zinc finger protein NGFI-A is influenced by its interaction with a cellular factor. Mol Cell Biol 13, 6858-65.

Sambrook J., M., T. and Fritzsch, E.F. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press second edition.

Sadowski, I., Bell, B., Broad, P., and Hollis, M., (1992), GAL4 fusion vectors for expression in yeast or mammalian cells. Gene 118, 137-141

Santocanale, C., and Diffley, J. F. (1996). ORC- and Cdc6-dependent complexes at active and inactive chromosomal replication origins in Saccharomyces cerevisiae. Embo J 15, 6671-9.

8 Literaturverzeichnis 147

Schaefer, B. C. (1995). Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends. Anal Biochem 227, 255-73.

Schagger, H., Aquila, H., and Von Jagow, G. (1988). Coomassie blue-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for direct visualization of polypeptides during electrophoresis. Anal Biochem 173, 201-5.

Sellers, J. R. (2000). Myosins: a diverse superfamily. Biochim Biophys Acta 1496, 3-22.

Seog, D. H., Kito, M., Igarashi, K., Yoda, K., and Yamasaki, M. (1994). Molecular characterization of the USO1 gene product which is essential for vesicular transport in Saccharomyces cerevisiae. Biochem Biophys Res Commun 200, 647-53.

Seog, D. H., Kito, M., Yoda, K., and Yamasaki, M. (1994). Uso1 protein contains a coiled-coil rod region essential for protein transport from the ER to the Golgi apparatus in Saccharomyces cerevisiae. J Biochem (Tokyo) 116, 1341-5.

Sible, J. C., Erikson, E., Hendrickson, M., Maller, J. L., and Gautier, J. (1998).

Developmental regulation of MCM replication factors in Xenopus laevis. Curr Biol 8, 347-50.

Smythe, C., and Newport, J. W. (1991). Systems for the study of nuclear assembly, DNA replication, and nuclear breakdown in Xenopus laevis egg extracts. Methods Cell Biol 35, 449-68.

Stillman, B., Bell, S. P., Dutta, A., and Marahrens, Y. (1992). DNA replication and the cell cycle. Ciba Found Symp 170, 147-56.

Strausfeld, U. P., Howell, M., Rempel, R., Maller, J. L., Hunt, T., and Blow, J. J.

(1994). Cip1 blocks the initiation of DNA replication in Xenopus extracts by inhibition of cyclin-dependent kinases. Curr Biol 4, 876-83.

Tang, B. L., Wong, S. H., Qi, X. L., Low, S. H., and Hong, W. (1993). Molecular cloning, characterization, subcellular localization and dynamics of p23, the mammalian KDEL receptor. J Cell Biol 120, 325-8.

Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.

Proc Natl Acad Sci U S A 76, 4350-4.

8 Literaturverzeichnis 148

Tsukita, S. (1996). [ERM (ezrin/radixin/moesin) as crosslinkers between actin filaments and plasma membranes]. Tanpakushitsu Kakusan Koso 41, 1899-905.

Tsukita, S., and Yonemura, S. (1997). ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Curr Opin Cell Biol 9, 70-5.

Tsukita, S., and Yonemura, S. (1997). ERM proteins: head-to-tail regulation of actin-plasma membrane interaction. Trends Biochem Sci 22, 53-8.

Walhout, A. J., Boulton, S. J., and Vidal, M. (2000). Yeast two-hybrid systems and protein interaction mapping projects for yeast and worm. Yeast 17, 88-94.

Weinreich, M., Liang, C., and Stillman, B. (1999). The Cdc6p nucleotide-binding motif is required for loading mcm proteins onto chromatin. Proc Natl Acad Sci U S A 96, 441-6.

Weinreich, M., Liang, C., and Stillman, B. (1998). The Cdc6p nucleotide-binding motif is required for loading mcm proteins onto chromatin. J Biol Chem 273, 23176-82.

Wessel, D., and Flugge, U. I. (1984). A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138, 141-3.

Wittmann, T., Boleti, H., Antony, C., Karsenti, E., and Vernos, I. (1998). Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J Cell Biol 143, 673-85.

Wobbe, (1997). Current Protocols in Molecular Biology, 13.13.5

Wolf, D. A., McKeon, F., and Jackson, P. K. (1999). Budding yeast Cdc6p induces re-replication in fission yeast by inhibition of SCF(Pop)-mediated proteolysis. Mol Gen Genet 262, 473-80.

Wray, W., Boulikas, T., Wray, V. P., and Hancock, R. (1981). Silver staining of proteins in polyacrylamide gels. Anal Biochem 118, 197-203.

Wuarin, J., and Nurse, P. (1996). Regulating S phase: CDKs, licensing and proteolysis.

Cell 85, 785-7.

Xiao, H., and Jeang, K. T. (1998). Glutamine-rich domains activate transcription in yeast Saccharomyces cerevisiae. J Biol Chem 273, 22873-6.

8 Literaturverzeichnis 149

Yamakawa, H., Seog, D. H., Yoda, K., Yamasaki, M., and Wakabayashi, T. (1996).

Uso1 protein is a dimer with two globular heads and a long coiled-coil tail. J Struct Biol 116, 356-65.