• Keine Ergebnisse gefunden

Aa

N/A
N/A
Protected

Academic year: 2021

Aktie "Aa"

Copied!
101
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Gamma Ray Burst observations with the MAGIC

Telesope and a proposal for further improvement

Diplomarbeit

zur Erlangung des akademishen Grades

Dipl. Ing. Phys. (FH)

vorgelegt von

Ralf Kosyra

Fahbereih 06 Physikalishe Tehnik der

Fahhohshule Münhen (Munih University of Applied Sienes)

Betreuer: Prof. Dr. Sotier

Zweitbetreuer: Prof. Dr. Wondrazek

17th May 2006

(2)
(3)

MAGICisa17m Cherenkov-Telesopefor ground-based Very HighEnergy(VHE) Gamma

Ray-Astronomy. One of MAGIC's tasks is to searh for the so alled "Gamma Ray-Bursts"

(GRB),whihareshort(hundred miliseondsup tohundred seonds) outburstsofgammarays

with very high uxes. As the loation of the outbursts are a priory unknown, the MAGIC

Telesope has to be positioned as fast as possible after alert signals from wide-angle satellite

detetors.

The urrent maximum slewing speed of the telesope is about 180

o

50s

, whih often is not

enough for eetively reording the diret signalfrom GRBs.

I presenthere a study fora newoptimization forthe aeleration,respetively deeleration

and veloity ofthe 63ton MAGICTelesope,toredueonsiderably the repositioningtime, as

wellas ananalysis of the safety limitsof fast movements.

(4)

1 Introdution 5

1.1 HighEnergyAstropartilePhysisand VeryHighEnergyGammaRayAstronomy 5

1.1.1 Cosmi -rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.2 Detetors for -rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Some information on the relevant Astrophysial Proesses 12 2.1 The Imaging Air-Cherenkov Tehnique . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Gamma-HadronSeparation . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Mehanisms for CosmiGammaRay Prodution. . . . . . . . . . . . . . . . . . 16

2.2.1 Inverse Compton Sattering . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Synhrotron SelfCompton Sattering . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Bremsstrahlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 0 -deay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Soures of Cosmi GammaRays . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Ative GalatiNulei (AGN) . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Miroquasars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 SupernovaRemnants(SNR) . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.4 Pulsars and Pulsar Nebulae . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.5 GammaRay Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Gamma Ray Bursts (GRB) 23 3.1 Afterglow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Detetors for GRBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

(5)

3.2.3 HETE 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.4 INTEGRAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Detetion of GRBs with MAGIC . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Denition of the Problem 32 4.1 Current Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 The MAGIC Telesope 36 5.1 Dierent types of telesopemounts . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Equatorial mounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.2 Alt-azimuth mounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Dynamial range of trakingveloity . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Neessary azimuthal slewingrange . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 The Azimuth Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.5 The Elevation Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 The Drive System 56 6.1 Components of the Drive System . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1.1 The Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1.2 The Drive Controllers(DKC) . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.3 Miroontrollers (MACS). . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 The Endswithes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7 Drive Tests 74 7.1 Tests onAeleration and Deeleration . . . . . . . . . . . . . . . . . . . . . . . 76

7.2 Endswith tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 Outlook 82

APPENDIX 86

List of Abbreviations 93

(6)

List of Tables 97

Bibliography 98

Aknowledgments 99

(7)

Introdution

1.1 High Energy Astropartile Physis and Very High En-

ergy Gamma Ray Astronomy

High energy astropartile physis (formerly alled Cosmi Ray Physis) is sine a few deades

a rapidly expanding eld of fundamental physis researh. It ombines partile physis with

astronomy and inawidersense withCosmology. Itdeals withrelativistiproessesinour uni-

verse(also alledthe "relativistiuniverse"orinthe languageofastronomersthe"non-thermal

universe"). One ofthe branhes of astropartilephysisdeals withthe observation ofenergeti

photons, ommonly alled gamma-rays (shortut ). Gamma-rays are eletromagneti parti-

les 1

with an energy of at least a few hundred keV. Of partiular interest are gammas of at

least a few 10 9

eV (GeV). These gammas are so-alled messengers of ultrarelativisti partile

proesses in the universe, mostly inor near stellarenvironments. The so-alledVery-High En-

ergy(VHE) -Astronomydeals withenergies of10GeVup to100TeVand allows onetolearn

therefore about stellar proesses atextreme onditions.

I would like to mention that the rst studies of the universe outside optial astronomy

started inthe year1911. Firstexperimentswerearriedout by ViktorFranzHess, who disov-

eredtheexisteneofahargedradiationomingfromouterspae. Thisradiationwasoriginally

1

Intheeletromagnetispetrumoneusesommonlythenamewaveforlowenergyarriersandpartilefor

high energyeletromagneti arriers

(8)

Atthat timeitwas unlearwhyharged eletrometerswere losingtheir hargeovertime, even

if they were isolatedfromthe Earth. It wasthoughtthat this eet was ausedby ions, but it

was not known by what kind ofradiation these ions were generated.

One theory laimedthat this ionizingradiationwasomingfromradioativesubstanes inthe

Earth. In the years 1911 through 1913 Hess did measurements with eletrometersduring high

altitude balloon ights, and found out that the ionizing rate was at rst dereasing with in-

reasing height, asexpeted, and onrmed the originaltheory.

However, Hessfound that thedishargespeed, respetivelythe ionizingrate wasagaininreas-

ing with inreasing altitude. He interpreted this phenomenon as a onsequene of ionizing

radiationomingfromouter spae,while this radiationispartiallyshieldedlose togroundby

the Earth'satmosphere.

Histheorywasonrmedinthefollowingyearsandtheionizingpartileshavebeenidentiedas

seondary produts of interations between highlyenergeti partileswith the nulei of atoms

of the Earth's atmosphere.

Initially osmi rays were identied as harged nulei. At energies above 1 TeV

nuleus , the

CR are omposed of Protons (41%), Helium nulei (27%), Carbon (4%), Oxygen (6%) and

Iron (7%). The remaining 15% are omposed of heavier elements up to Uranium as well as

Eletrons, Positronsand Antiprotons.

Above a few GeV the energy spetrum of the CRs is desribed by a steeply falling power

lawwith anaverage exponent of -2.7. CRs up to 310 20

eV have been observed up to now.

SomeCRsoriginatefromthe sun. Theenergyofpartilesanonlybemeasured diretlyup

toenergiesofabout100 TeV

nuleus

bysatelliteorballoonbornedetetors. Higherenergypartiles

an only be deteted indiretly by airshowers that are initializedby the partiles.

The trajetories of partiles with energies below 10 9

eV

nuleon

are strongly inuened by the

galati,respetivelyextragalati(iftheseenergetipartilesoriginatefromoutsideourGalaxy)

magneti elds while partilesat the lowerend of the spetrum,i.e. a few GeV are alsoinu-

(9)

bak totheir soures of origin. Therefore they annot be used asmessengers .

Besides the originally disovered harged CRs there exist also omponents of CR whih

have no eletrial harge: -rays, neutrinos and may be neutrons (whih, due to their limited

lifetime an only originate from rather lose stars). These neutral partiles are not deeted

and are therefore useful messengers of highenergy proesses inthe universe. While-rays will

bedisussed inthe next hapter, I willgivehere a briefsummary onneutrino astronomy.

Sineneutrinoshaveaverysmallross-setionforallkindsofinterations,andtheyarenotar-

ryinganeletrialharge,they are inprinipleveryuseful forlookingdeeperintothe universe.

However, to detet neutrinos, a detetor with a very high mass is needed, whih is impossible

to install on satellites. For ground based experiments at the Earth's surfae, the bakground

whih isaused by the CRis very high, so itis very diulttomeasure neutrinos.

1.1.1 Cosmi -rays

Sinephotonsdonotarryaneletrialharge,theirtrajetoriesarenotinuenedbymagneti

elds. WhenaphotonhitstheEarth'satmosphere,thediretionofitssoureanbedetermined

if the diretionof arrivalofthe photon isknown. This allows astronomialobservationsover a

large partof the eletromagneti spetrum.

As already mentioned, photons with energies above 100keV are alled -rays.

2

Only at energies above a few times 10 19

eV harged partiles are not anymore deeted by the gala-

ti, respetively extragalati magneti elds and an be traed bak to their origin and at as messengers

of partile proesses of at least their energy. Unfortunately the ux of these partiles is very low, below 1

partile/year/100km 2

area.

(10)

universe". Three dierent parameters an be measured diretly by experiments and thus an

giveinformationon the mehanismof -rayprodution:

1. The ux froma soure,whihis the numberof photons pertime and area that arriveat

the Earth's atmosphere.

2. The energy spetrum, whih is the ux depending onthe photonenergy.

3. The time dependane of the ux, alsooften referredto asthe so-alledlighturve.

In table 1.1 I show the onditional splitting of the energy bands for -rays. There is no

sharp border between the shown dierent energy bands,that iswhy it isalled onditional.

Low Energy LE 100keV -10MeV

Medium Energy ME 10MeV - 1GeV

HighEnergy HE 1GeV - 100GeV

VeryHigh Energy VHE 100GeV -100TeV

UltraHigh Energy UHE >100TeV

Table 1.1: Splittingof energy bandsof -radiation

Thereexist many dierent types of souresof osmi -rays aswellas dierent prodution

mehanisms. Iwillpresentashortintrodutionontheminhapter2. Onespeiphenomenon

of osmi -radiationare the so alled GammaRay Bursts(GRB), whih are haraterizedby

veryhigh outburstsof energyoveraveryshortperiodof time(afewhundred mse uptoafew

hundreds of se). These willbe presented in hapter 3.

(11)

VHE Gamma Sources (E > 100 GeV)

(Status August 2005)

= Radio galaxy = Undetermined

= AGN (BL Lac)

= Pulsar/Plerion

Galactic Coordinates

+180 -180

-90 +90

Vela Mkn 501

Galactic center

1ES 2344+514

SN 1006

Cen X-3 M87

Mkn 421

PSR 1706-44

Crab Nebula RXJ 1713

= Starburst galaxy = SNR

H1426+428

1ES1959+650 Cygnus OB2 CasA

NGC 253 PKS2155-304

PSR B1259-63 VHE J1303-63

= XRB

= OB association

3C66A BL Lacertae

TeV 2032

H2356 PKS2005 LS5039 SNRG0.9

1ES1218

HessJ1303 RXJ0852 1ES1101

Figure1.1: The VHE-Gamma sky (Courtesy: NadiaTonello)

In Figure1.1are presented the known ray souresand their types.

1.1.2 Detetors for -rays

Therearetwotypesofdetetorsforosmi-raysommonlyused: satelleite-basedandground-

based detetors.

Sine the ux of the gammas isdereasing steeply with energy, one needs detetors with very

large areas toobserve osmi -rays of very high energies. Satelliteswith suh large detetors

would beome too heavy and too expensive. That is the reason why satellite-based detetors

are onlyused to measure -rays up to10 12

eV.

(12)

instruments. WithdetetorsontheEarth'ssurfaeitisnotpossibletodetetprimaryphotons,

beause they interat with the atoms high up in the atmosphere and reate an avalanhe of

seondary partiles, mostlyeletrons positronsand -rays(this willbeexplainedinhapter2).

This avalanhe of seondary partiles isalled "airshower". The harged shower partiles,

provided that they move faster than the speed of light in the atmosphere, generate so-alled

Cherenkov light, whih an be measured by the above mentioned Cherenkov telesopes. One

of thesetelesopes,atually theworld'slargestone, isthereently installedMAGICTelesope.

MAGIC (Major AtmospheriGamma ImagingCherenkov Telesope)isanimagingatmo-

spheri Cherenkov Telesope (IACT), for Gamma astronomy between 30GeV and 30TeV.

The photograph below shows the 17m diameter MAGIC Telesope with its 238m 2

mirror

area.

MAGIC isloatedat the "Roquede losMuhahos" onthe Canarianisland LaPalma ata

geographial latitude of 28 o

north and a geographial longitude of 17 o

west, atapproximately

2200m above sea level.

(13)

OneoftheaimsofMAGICistodetetthepreviouslymentionedGammaRayBursts(GRB).

SineaGRBlastsonlyseveralseonds anditspositionisnot knownbeforehand,itisneessary

tomovethe telesopeveryfast tothe positionofthe GRB(goal: <20s). The aimof thiswork

wastodetermine thesafety limitsand theneessary driveparametersforthe fastmovementof

the MAGIC Telesope. Notethat MAGIChas amass of 63t and a mass momentum of inertia

of approximately4000tm 2

. Toprepare this, Idid several alulationsonaelerationand mass

momentum (hapter 5), haraterized the motors and the ontrol loop and nally performed

many driving tests (presented inhapter7).

(14)

Some information on the relevant

Astrophysial Proesses

The eletromagneti waves observable fromosmos range fromradio waves of less than 1meV

energyuptoultra-highenergygammaraysofseveral TeV.Astronomialobservationsatvisible

wavelengths have a history of enturies, while gammaastronomy using satellites (keV up toa

few GeV) and ground-based telesopes (above300GeV) ame up in the late 20 th

entury.

2.1 The Imaging Air-Cherenkov Tehnique

VHE -rays annot be observed diretly by ground-based instruments, beause they are ab-

sorbed in the atmosphere. In the initialabsorption proess (eletromagnetiinteration of the

with a nuleus of the moleules of the atmosphere) harged partiles are reated, usually

an eletron positron pair (pair prodution mehanism), eah arrying half of the -energy on

average. These seondary partiles have normally suh high energies, that they reate addi-

tionalenergeti-raysviaBremstrahlungwhiletheypropagatethroughtheatmosphere. These

-rays produe further eletron-positron pairs, againwith onaverage halfthe energy eah and

so on...

TheseproessesalternateandontinueuntiltheenergylossduetopairprodutionorBremsstrahlung

(15)

In summarythe primary initial-ray produes ashower ofhargedpartiles. Beause nor-

mallyonlyeletromagnetipartilesareinvolvedin-rayshowersonenamesthistypeofshower

"eletromagnetishower". Theshowerreahesitsmaximumsizeinnumberofhargedpartiles

at the pointwhenthe probability forenergy lossdue topair produtionperunit lengtheqauls

that due to the ionization loss per unit length (at 81MeV). The eletrons and positrons in

a shower have suh high energies that their veloity is higher than the speed of light in the

atmosphere. While propagating through the atmosphere, the eletrons and positrons polarize

moleules beauseof their eletriharge. Inthis proess the atmospherimoleules emit low-

energy photons (visible to near UV, wavelengths down to 300nm, the spetral ut-o due to

the Ozoneontentofthe atmosphere)inaharateristionewithanopeningangledependent

on the veloity of the partile and the refrative index of the atmosphere and is in the range

of 0.4 - 1.2 o

(analogous to asupersoni bang). This emissionis alled "Cherenkov Radiation"

after the Russian sientist Pavel Cherenkov, who disovered it in 1934 and was later honored

by the Nobel prie for this disovery.

In an IACT, the Cherenkov-Photons passing down to the ground are olleted by a large

mirror and foused onto a ne pixelized matrix of photomultipliers in the foal plane of the

telsope (for telesope details see later). It is ovious that as lower the energy of the initial

-rayis,aslowerthe lightintensity ongroundwillbe. Therefore telesopesforthe observation

of lower energy -rays need normally larger light olleting mirrors. MAGIC is urrently the

world'slargestIACTandonseutivelyithasthelowest energythreshold. TheCherenkov light

ash is extremelyshort intime, inthe orderof afew nse. Byusing ultrafastphotomultipliers

and readout eletronisone anreordanimage(with aomplexstruture)of theshowereven

in the presene of a sizeable night sky bakground. As an example I would like to mention

that a typial vertial inidene 100GeV -ray shower produes on average a light ux in the

wavelength rangeof 300-600nmof about100

photons

m 2

onthe groundwhenever theshoweraxis

is within 120m radius from the telesope. After taking reetivity losses and the quantum

eieny of the amera PMT's into aount, one reords normallyimages of 100GeV showers

of typially1000 photoeletons.

(16)

e+

e+

e- primary

e- e+

e+

e- e+

e- e-

e-

e-

e + e + +

π+ π

K , etc.+−

nucleons,

K , etc.+−

nucleons,

γ

π0

π+ π0

µ _ γ

γ

µ

γ γ νµ

νµ cosmic ray (p, alpha,...)

γ γ

γ γ

atmospheric nucleus atmospheric nucleus

EM cascades EM cascade

EM cascade

Figure 2.2: Examples of an eletromagneti and hadroni air Shower (Courtesy: Markus Gar-

Abbildung

Figure 1.1: The VHE-Gamma sky (Courtesy: Nadia Tonello)
Figure 2.2: Examples of an eletromagneti and hadroni air Shower (Courtesy: Markus Gar-
Figure 2.3: The predited and observed emission from the AGN Mkn 421 during its quiesent
Figure 3.2: The GRB skymap shows the distribution of GRBs deteted by BA TSE all over the
+7

Referenzen

ÄHNLICHE DOKUMENTE

Sofern noh niht vorhanden, füge das neue Element als Blatt. so ein, dass die Suhbaumeigenshaft erfüllt ist,

Kolmandas peatükis deneerime Caputo murrulist järku tuletise.. Neljandas peatükis esitame Caputo tuletisega diferentsiaalvõrrandi

In einer ganzen Klasse oder einer Fördergruppe könnte ein Wettbewerb veranstaltet werden, indem jedes Kind dasselbe Spielfeld und dieselbe Buchstabenanweisung erhält; Gewinner ist,

• Leicht, falls der Fehler eine nicht abgefangene exeption auslöste :-). • Schwer, falls das Programm stumm in eine Endlos-Schleife

• Für eine einzelne Klasse lohnt sih ein solhes Diagramm

alulating the root value of the tree using the value Y ϕ and the authentiation data stored in the MSS signature.. First Y ϕ is onatenated and hashed with Auth

Lösung: Es gibt keine solhe positive ganze Zahl. Beweis: Denn für jede positive ganze Zahl n beweist die Umfomung

Es gibt eine konkret berehenbare Zahl w , so dass gilt: Jede ungerade Zahl n ≥ w kann als eine Summe aus drei Primzahlen geshrieben werden. Winogradow selbst konnte keinen Wert für