• Keine Ergebnisse gefunden

eeai f daa f he a aic weahe ai Deche ad Fi

N/A
N/A
Protected

Academic year: 2022

Aktie "eeai f daa f he a aic weahe ai Deche ad Fi"

Copied!
44
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

weather stations Drescher and Filchner and

Comparison with European Centre for

Medium-Range Weather Forecasts (ECMWF)

Analysis model results

Markus Brüne

Septemb er 27, 2002

(2)

1 Abstract 4

2 Intro duction 4

3 DataAcquisitionandPro cessing 5

4 Datapresentation 6

5 ECMWF DataPro cessing 6

6 ClimatologicalFeaturesofthe StudyArea 7

7 Interpretationofthe MeasuredData 9

7.1 Temp erature . . . 9

7.2 AirPressure . . . 9

7.3 Wind. . . 9

7.4 RelativeHumidity . . . 11

8 ComparisonofmeasureddatawiththeECMWF-analysisdata 13 8.1 Temp erature . . . 13

8.2 AirPressure . . . 13

8.3 Wind. . . 14

9 Conclusions 16

A DatapresentationforDrescher 17

B DatapresentationforFilchner 25

C Comparisonwith theECMWF-analysis data 30

D Sensorsp ecications 40

E References 44

(3)

1 Lo cationoftheAWSDrescherandAWSFilchner . . . 5

2 Layoutofanautomaticweather station . . . 6

3 Missingdata oftheAWS DrescherandAWSFilchner . . . 7

4 Frequencywindroses fordierentstations . . . 10

5 Frequencywindroses accordingtothep ositionofobservation . . 11

6 Theoreticalisobars ofMSLP forsup er-geostrophic weather con- ditions . . . 12

7 FrequencywindrosesforDrescherandonlyforsup er-geostrophic weathersituations . . . 12

8 Deviationofwinddirectionb etweenobserveredandECMWFvalue 14 9 PositionoftheDrescherAWSandtheclosestECMWF-Gridp oints 15 10 Dierentinterp olationforthelo cationsofDrescherAWS,Halley andNeumayerstation . . . 15

11 Temp eraturein2mab ove surfacefortheDrescherAWS . . . 17

12 Temp eraturein5mab ove surfacefortheDrescherAWS . . . 18

13 Meansealevelpressure(MSLP)fortheDrescherAWS. . . 19

14 Windvelo cityfortheu-comp onentfortheDrescherAWS . . . . 20

15 Windvelo cityforthev-comp onentfortheDrescher AWS . . . . 21

16 Scalarwindvelo cityfortheDrescherAWS. . . 22

17 RelativeHumidityfortheDrescher AWS . . . 23

18 WindrosesforrelativefrequencyofwinddirectionfortheDrescher AWS . . . 24

19 Temp eraturein2mab ove surfacefortheFilchnerAWS . . . 25

20 Temp eraturein5mab ove surfacefortheFilchnerAWS . . . 26

21 MeansealevelpressurefortheFilchnerAWS . . . 27

22 Windvelo cityfortheu-comp onentandv-comp onenetfortheFilch- nerAWS. . . 28

23 RelativeHumidityfortheFilchnerAWS . . . 29

24 Correlationsb etweentheoriginalmeasureddataoftheDrescher AWSandECMWF-data . . . 30

25 Correlationsb etween theoriginalmeasureddataoftheFilchner AWSandECMWF-data . . . 31

26 Comparisonb etween theplotoftemp erature forDrescherAWS andtheinterp olatedECMWF-data. . . 32

27 Comparison b etween the plot of mean seal level pressure for DrescherAWSandtheinterp olatedECMWF-data . . . 33

28 Comparisonb etweentheplotofzonalwindcomp onentforDrescher AWSandtheinterp olatedECMWF-data . . . 34

29 Comparisonb etween the plotof meridonalwind comp onent for DrescherAWSandtheinterp olatedECMWF-data . . . 35

30 Comparisonb etween theplot of temp erature forFilchnerAWS andtheinterp olatedECMWF-data. . . 36

31 Comparisonb etweentheplotofmeansealevelpressureforFilch- nerAWSandtheinterp olatedECMWF-data . . . 37

32 FrequencywindroseforDrescher AWSandECMWF-data. . . . 38

33 Velo citywindroseforDrescherAWSandECMWF-data . . . 39

(4)

Automaticweather stations(AWS) aredue to theextreme coldconditionsan

attractive optiontoget moredense climaticdatafromAntarctica. These data

is needed for weather forecast mo delsor other climatic mo dels. Data sets of

theEurop eanCentreforMedium-RangeWeatherForecasts(ECMWF)analysis

mo del areused for comparisonwith AWS inthe Weddell Sea. This region is

ofparticular interest fortheBRIOS2 (Bremerhaven RegionalIce-Ocean Simu-

lations) mo del which pro duce results related to sea ice pro cesses, water mass

mo dicationsandcirculationpatterns,allleadingto ab etter understandingof

thethermohalineo ceancirculationintheSouthernOcean. Therefore,observa-

tionsatAWS'canb eusedasavalidationoftheECMWFmo delandcanreveal

sources forerrorsforclimatemo delsusingaECMWFforcing.

2 Introduction

The Antarctic continent is probably the most extraordinaryplace for climate

observationsonEarth.Formosttimeoftheyear,thecontinentissurroundedby

seaice. TheextremecoldmakesAntarcticatooneofthemostunrealplacesto

live. Duetotheinaccessibilityandtheroughclimate,runningmannedobserva-

toriesisveryexp ensiveandarduously. Therefore,veryfewstationsop eratethe

entire year, andthelo cations areclosetothe coastlineb ecauseof thedicult

supplysituation. Consequently,thelo cationsmayalwaysb enotappropriateto

collectmeaningfuldata. Butclimatologicaldataisneededformanyapplications

ranging from input data for weather forecasts mo dels to long timeglobalcli-

matemo dels. Hence,theinstallationofunmannedautomaticweather stations

(AWS)isveryattractive togetadensernetworkofmeasuredclimaticrecords.

Esp eciallyclimatemo delsrequiredense reliabledatafortheirvalidation.

Thisrep ortdescrib esthedatasetsoftwoautomaticweatherstations,which

have b een maintainedby the AlfredWegener Institute in Bremerhaven (Ger-

many)intheWeddellSearegion. TheDrescherStationsituatedatthewestern

edgeoftheRiiserLarseniceshelfat72 Æ

52'12S19 Æ

3'54Wstartedtransmitting

dataonthe02.02.1992,whiletheFilchnerAWSatthenorthern marginofthe

Ronneiceshelfat77 Æ

4'16S50 Æ

6'32Wtransmittedfrom01.01.1991untilitwas

dismantledon 30.01.1999(see Fig. 1). Thereason forthis was that due to a

big calvingevent aroundthe13Octob er, 1998 theFilchnerAWS was drifting

onatabulariceb erg.

Thisrep ortfo cusses rstlyonthequestion whetherautomaticweather sta-

tionspro duce usefuland reliabledata, secondlyon thepresentation andinter-

pretationofthedataoftheautomaticweather stationsDrescherandFilchner.

Inaddition,dothemeasuredandtransmitteddatatintothegeneralclimatic

characteristics of theWedellSea region? A comparisonof themeasured data

with the Europ ean Centre for Medium-Range Weather Forecasts (ECMWF)

analysisresultsisalsoconducted. Winddirectionandairpressureareofsp ecial

interests forthe coupled ice-o ceanBRIOS2 (Bremerhaven RegionalIce-Ocean

Simulations)mo del. Seasonal variations of the sea-ice cover in the Southern

Ocean represent oneof themostpronouncedsignalsintheannualcycle ofthe

globalclimatesystem(Timmermannetal.,2002).ButtheBRIOS-2resultswith

(5)

data, acomparisonb etween ECMWFand theobserveddata couldexclude or

verifytheECMWFdataas ap ossiblesource oferror.

180˚

210˚

240˚

270˚

300˚

330˚

30˚

60˚

90˚

120˚

180˚ 150˚

180˚

210˚

240˚

270˚

300˚

330˚

30˚

60˚

90˚

120˚

180˚ 150˚

AWS Drescher AWS Filchner

Figure1: Lo cationof theAWSDrescherandAWSFilchner

3 Data Acquisition and Processing

The stations were tted with sensors for temp erature, air pressure, relative

humidity(Filchnersince 06.02.1995,Drescher since 18.01.95),windsp eed and

wind direction(seeFig. 2). Additionally,the Drescher Stationmeasureduntil

05.03.1995thesnowheightbutthisdatawasneverrecorded(seeApp endixDfor

technicaldetails or Kottmeierand Lüdemann,1996). Thedata istransmitted

bytheARGOSsystemusingtwop olarorbitingNOAAsatellites. Eachsatellite

needs ab out102minutes for orbitingtheearth, so 20to 28 contacts with the

AWS'sarep ossiblep erdayforb oth. Thedataistransmittedevery200seconds

bya8-bitword.Inarststepthedataisseparatedintothedierentparameters,

outliersare eliminatedandshortgaps areinterp olated. Thereceiveddata sets

are also transformedinto a regular spaced timeseries with a resolution of 3

hours.

(6)

summerresearchstationFilchnerandattheDrescherinlet(UniversityofWis-

consin: http://uwamrc.ssec.wisc.edu/gifs/awstower.gif)

4 Data presentation

The fulldatapresentation is provided inApp endix A and B.Each parameter

is plotted witharesolution of3hours, monthlymeans, annualmeans,and an

averagemonthlymean. Therecorded airpressure isreduced tomean sealevel

pressure(MSLP).ThedataintegrityoftheFilchnerAWSforwindandhumidity

isnotappropriateenoughtocalculatemeans,and,therefore plotsforthoseare

needless. FrequencywindrosesoftheDrescherAWSarepresented,additionally

sub divided into meansfor theentire measurementp erio d,average winter and

average summermonths, and classied into windsp eeds exceeding morethan

10ms 1

. As the minimumtemp erature o ccurs in August the winter months

are July, August, and Septemb er while thesummer months, inaccordance to

theclassicaldivisionforthesouthern hemisphere,areDecemb er,January,and

February.

5 ECMWF Data Processing

The ECMWFanalysis datais provided inaregularspaced timeseries witha

resolutionof 6hoursonagridof 1.125degree inlongitudeandlatitude. Only

data forairpressure, temp erature, andthe twowindcomp onentsareused for

thecomparisonwiththemeasureddata. Tointerp olate theparametersforthe

exactp ositionoftheAWS',thefourcornerECMWFgridp ointsoftherevolving

square inwhich theAWSis lo catedare weightedaccording to itsdistance. In

ordertogetcomparabledatasetsonlyeverysixhoursameasuredvalueistaken

intoaccount.

(7)

Missing Data of Filchner AWS

1991 1992 1993 1994 1995 1996 1997 1998 1999 1991 1992 1993 1994 1995 1996 1997 1998 1999 1991 1992 1993 1994 1995 1996 1997 1998 1999 1991 1992 1993 1994 1995 1996 1997 1998 1999 1991 1992 1993 1994 1995 1996 1997 1998 1999

relative Humididity wind data

Temperature in 5 m Temperature in 2 m Air Pressure

Missing Data of Drescher AWS

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

relative Humididity wind data

Temperature in 5 m Temperature in 2 m Air Pressure

Figure3: MissingdataoftheAWSFilchnerandAWSDrescher. Thegreyarea

meansnodatahasb een provided.

6 Climatological Features of the Study Area

Antarcticadetached fromanyotherlandmassbytheSouthernOceans,iscov-

ered with 98% ice up to 4 km thick. This truncated p osition on the South

Pole of our glob e leads to sp ecial climate conditions. Unlike the Arctic, the

Antarctic p olarregionshowsastrongcircump olarlowpressure trougharound

the64 Æ

Slatitude. Northofthislatitudewesterly windsdominantesandtothe

southwindsfromtheeastprevail(König-Langloet al.,1998). Asthetemp era-

ture gradientb etween thesouthern midandhigh latitudesis strongestaround

theequinoxes,thelowpressuretroughshiftsfurthestsouthatthesetimes(van

Lo on, 1966). Theinteriorof theAntarcticcontinentwhichreachesanaltitude

(8)

or,inwinterabsentinsolation,theveryhighalb edo,andthemostlyunconned

outgoinglong-waveradiationleadto anegativeradiationbudget. Therefore,a

strongsurfaceinversiono ccursesp eciallyduringthewinter. Duetotheorogra-

phyandverysmo othsurface,katabaticwindstransp ortcoldairtothecoastlines

(Parish,1988,ParishandBro omwich,1991).

(9)

Generally,dataofautomaticweatherstationsislessreliablethendataofmanned

stations. Esp ecially recording wind data at AWS's, where over years nob o dy

lo oks after it, is unreliable. Dep osits of rimeice at the cup anemometers de-

nominatesthebiggestproblem(Stearnsetal. 1993). Windtunnelexp eriments

showedthaticingextremelyinuencesthemeasurements(Kimuraetal. 2001).

Particularlythe Filchnerdata set showsbig gapsof missingwinddataduring

theAntarcticwinterp erio ds (see Fig. 3). Another sourceoferrors istheaccu-

mulationofsnowwhichreducesthedistanceb etween thesensorsandthesnow

surfaces. Ifthelogarithmicwindproleisassumed,themeasuredwindvelo city

issmallerthantheoneinthedenedmeasurementheightab oveground. Allin

all,theairpressure sensorgive themostreliableresults, it canop erate evenif

thesensorissnow-covered.

7.1 Temperature

Thegeographicalp ositionoftheAWS's,highalb edovalues,andthenothinded

outgoinglong-wave radiation causes anegative radiationbalance. Due to the

strongerp olarfrontandtheAntarcticCircump olarOceanCurrentheattransfer

from mid latitudes is not p ossible like in the Arctic. Both stations showed

consistentlowtemp eratureswiththeminimaaroundAugust. Theannualmean

temp erature at Filchner is -21,1 Æ

C due to a more southern lo cation and the

inuenceof very coldkatabaticwinds,Drescherwithamorenorthern p osition

andmoreaectedbyrelativewarmerairmassesfromnorth-eastshowsahigher

meantemp eratureof-16.5 Æ

C(see App endix A,Figs. 11,12;App endix B,Figs.

19,20)

7.2 Air Pressure

The observed average annual mean sea level pressure at b oth stations varied

b etween 985 and 995 hPa. At Filchner AWS a slightly higher air pressure

is recorded which is due to the more southern lo cation resulting ina greater

distance to the circump olar low pressure trough than the Drescher AWS. In

addition, the Filchner AWS is closer to the thermal south p ole high pressure

area. Minimaofairpressure canb efoundaroundMarchandSeptemb er,esp e-

ciallyat Drescher AWS.As mentioned, theAntartic circump olarlowpressure

troughmovesinasemi-annualcyclewiththefurthestshifttothesoutharound

March and Septemb er (vanLo on,1967). This eectis notso wellrepresented

atFilchner,again,duetothemoresouthernlo cation(seeApp endixA,Fig. 13;

App endeixB,Fig. 21).

7.3 Wind

As mentioned,wind isthemost unreliableparameter. Detailedinterpretation

fortheFilchnerAWSisimp ossibleb ecauseoftheintermitteddatarecording. At

theDrescherAWS,abimo dalwindeldwith highfrequency ofwinddirection

inthe E toNE sector andlower frequency intheS to SWsector is observed.

Thesamekindof patternshows thedataofHalley research stationlo catedin

the same region(see Figs. 4and 5). The highersp eeds tend to b e relatedto

(10)

S

E W

N

S

E W

N

S

E W

N

S

0.02

E W

N

a) b)

c) d)

Figure 4: Frequencywindroses for dierent stations. Wind velo cities notex-

ceeding1ms 1

arenegelcted. a)DrescherAWS,b)FilchnerAWS,c) Halley,d)

Neumayer. ThewindroseforFilchnerAWSisbasedonvery fewdataonly(see

Chapter 7.3).

winds fromthe east only (see App endix A, Figs. 14-16,18). To the north of

Drescher AWS low pressure areas migrate circump olareastwards. Due to the

Coriolisforcewindisdivertedtotheleftforthesouthernhemisphereandhence

the resultant geostrophic wind at the southern margin of the cyclone blows

fromtheeast. Katabaticwinds increasethe frequencyof easterliesbut cannot

explainthesouth-western windeld comp onent(Connolley andCattle,1994).

Oneexplanationforthesouthwesterncomp onentcouldb ethatcyclonesmigrate

eastwardsinthesouthernWedellSea.Butownexaminationsab outthelo cation

of the center of low pressure corresp ondent with Jones and Simmonds(1993)

thatcyclonesdonottrackthatfarsouth. Somedepressionsmovefarsouthand

reachtheWeddellsea,butthedensityofcyclolysisisveryhighthere,sothelow

pressure areas do notreach the Antarctic continent (King and Turner 1997).

Another explanationis theso calledsup er-geostrophic wind(see Fig. 6). For

thissituationahighpressureridgeextendsfarsouthintotheWeddellSea. Due

to thecurvature of the isobars centrifugal force o ccur. Considering acyclone

northwestwardsoftheDrescherStationthecentrifugalforceacceleratesthewind

(11)

60˚W 60˚S

60˚S 50˚W

40˚W

30˚W 20˚W 10˚W

10˚E

80˚S

80˚S 70˚S

70˚S Neumayer

Drescher

Halley Filchner

Figure5: Frequencywindroses accordingtothep ositionofobservation. Wind

velo cities notexceeding 1m s 1

are negelcted. Thewind rosefor Filchner is

shown ingrey, b ecausethedatabaseisless reliable

matchrelatively go o dsup ergeostrophic weather conditions are considered the

frequencywindroseforDrescherStationshowsadominantwinddirectionfrom

theSouth-West(see Fig. 7). Thep eakofzonal windsp eed aroundSeptemb er

isremarkable,causedbytheshiftofthecircump olarcyclones tothesouth(see

App endix A,Fig. 14).

7.4 Relative Humidity

Data for relative humidity is either erroneous or missing. For example, an

instrumentchange attheDrescherAWSinJanuary1999caused atremendous

change in the observed values. Nearly 100 % humiditywas recorded for the

p erio dsince 1999.ThevaluesatFilchneraremorecredible,butthetimeseries

is to o short, and to many gaps make it more or less needless. Therefore no

(12)

70°W 60°W

50°W

30°W 20°W 10°W

0°E

10°E

20°E

80°S

80°S 70°S

70°S 60°S

60°S 40°W

Filchner

Drescher Halley

Neumayer

H L

L

Figure6:TheoreticalisobarsofMSLPforsup er-geostrophicweatherconditions

SOUTH 0.02

EAST WEST

NORTH

Figure 7: Frequency wind roses for Drescher and only for sup er-geostrophic

weathersituations. Wind velo citiesnotexceeding 1ms 1

areneglected.

(13)

analysis data

ForthecomparisonofmeasureddatawiththeECMWFanalysis datathedata

sets weretransformedinorder to makeb oth datasets comparable (see Chap-

ter 5). Wind data for Filchner is nottaken into account for the comparison,

b ecause of the already mentioned erroneous and missing data. Positions of

DrescherStationandthenext ECMWF-gridp ointsareshowninFigure9. For

ab etter interpretation,datasetsofthemannedstationsNeumayer(Germany)

andHalley(UnitedKingdom)arecomparedwiththeECMWFanalysisdataas

well. Generally,theb estcorrelationcanb efoundforairpressure. Highr-square

values canb e foundedforFilchner(0.89)andforDrescher(0.95). Due todata

gaps at Filchner, Drescher generallyshowsab etter correlation (see App endix

C, Figs. 24 and 25). Figure 10showsthe correlation co ecients for dierent

metho ds used to interp olate ECMWF data to the p osition of the stationsat

Drescher, HalleyandNeumayer. Itseems that theinuence of dierentinter-

p olation metho ds is very low. Esp ecially for the BRIOS ice-o cean mo del, it

should b eexaminedifremarkable,whetherdierences canb e foundfor theice

grid p ointclosest to the coast. However,it must b e also considered that the

observations areincorp orated intheECMWF-analysis.

8.1 Temperature

ItseemshattheECMWF-mo deloverestimatesthetemp eratures. Butwithcor-

relationco ecientsof0.76(Drescher)and0.66(Filchner)stillreasonablevalues

are reached. A notable temp erature missmatch for measurement p erio d until

1998 can b e foundat b oth AWS stations. Esp ecially thecold winter temp er-

ature can b e either not predicted by the ECMWF-mo del or the temp erature

sensors malfunctioned in very coldconditions. It is remarkablethat the val-

uesofthesamesensormatchquitego o dwiththeECMWFvaluessince winter

1998atDrescherAWS(see App endix C,Figs. 26and30). But includingdata

from Halleyand Neumayer, theECMWF analysis data tend to overestimates

thetemp erature, particular ifthe temp eraturesare very low. All slop esofre-

gressionsaregraterthan1. ThisECMWF"warming"wasdescrib ed byseveral

authors(Timmermannetal.,2002)andcanb eexplainedbyanunderestimation

ofwintersurface temp eratureofthefrozen WeddellSea.

8.2 Air Pressure

As mentioned,theairpressure isthemostreliablemeasuredparameterofthe

automaticweatherstations. Themeasuredvaluest very go o dwiththemo d-

elled values at Drescher(see App endix C,Fig. 27). AtFilchnertill1994,the

oldsensor seemed tomeasureaslightlyto ohigh airpressure. Causingtheav-

eragemonthlyvaluestodier byab out4hPa(see App endixC,Fig. 31). But

overall,theECMWF-valuestverygo o d(see gure19). Ago o dcoherence b e-

tweenECMWFandobserveddatastillexistsifdatafromNeumayerandHalley

stationsarealsocompared.

(14)

Measured wind data of automatic weather stations is accompanied by many

errors. It isdiculttodrawconclusionsfromthewinddatacomparisonofthe

FilchnerAWS.Itisnotablethatthemeridionalwindcomp onentdo esnotmatch

at all with the ECMWF database with avery small correlation co ecient of

r 2

=0.18. The zonal comp onent is reected b etter with ar 2

valueof 0.52 (see

App endixC,Fig. 24). Therelative lownumb erofrecords,duetoinstrumental

failureswhichcanb econsideredforthecorrelationmakesthisresultveryvague.

But even the Drescher data, where nearly ve times more data can b e used,

onlymediumcoherences ofr 2

=0.56(zonalcomp onent)andr 2

=0.58(meridional

comp onent),arenoted. Therelativelowregressionslop ecanb eb estexplained

byinstrumentalfailuresduetoicingandreduceddistancetothesurface. Figures

32and33showfrequency andwindsp eedroses fortheoriginalDrescher data,

theinterp olatedECMWFdata fortheDrescherp osition,fortheice-gridp oint

oftheBRIOS2mo del,andthefoursurroundingECMWF-gridp oints. Another

eectis,thattheaveragedeviationofwinddirectionisnotstableovertime.At

Drescher, tillJanuary1995,thedeviation isnegative, afterwards it isp ositive

(see Fig. 8). Together with the fact that exact at that timethe station was

replaced by a new one,it can b e assumedthat the Drescher Stationwas not

p ointednorthaccurately.

average deviation of wind direction ( o )

time -20

-10 0 10 20 30 40

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

Figure 8: Deviation(runningmean of50 days)of wind direction b etween ob-

servered and ECMWF value forDrescher (black), Neumayer(darkgrey), Hal-

ley(lightgrey).

(15)

339˚

339˚

340˚

340˚

341˚

341˚

342˚

342˚

-73˚ -73˚

-72˚ -72˚

339˚

339˚

340˚

340˚

341˚

341˚

342˚

342˚

-73˚ -73˚

-72˚ -72˚

AWS Drescher

ECMWF Gitterpunkte

Figure 9: PositionoftheDrescherAWSand theclosest ECMWF-Gridp oints.

Thediamondrepresent thenextice-gridp ointfortheBRIOS2mo del

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4 point int erpol.

nearest neighbour

SW SE grid point

NW grid point NE grid point

4 point int erpol.

nearest neighbour

NW NE grid point

SW grid point SE grid point

4 point int erpol.

nearest neighbour

SE SW grid point

NE grid point NW grid point

cor re la tion coeffi ci ent

-20 -10 0 10 20 30 40 50 60 70 80

aver age devi ati on of w in d di recti on P T

U

V

delta phi

Figure10: Dierentinterp olationforthelo cationsofDrescherAWS,Halleyand

Neumayerstation. Shownarethecorrelationco ecientformainseallevelpres-

sure(P),temp eraturein2mhigh(T),u-windandv-windcomp onent(U.V).The

rightaxesb elongs tothe averagedeviation ofwinddirection (delta phi). The

sequence of thenext ECMWFgridp ointsreects thedistance to thelo cations

ofobservation.

(16)

The quality ofdata sets fromautomaticweather stations is less reliable. The

extremecoldclimateinAntarcticalimitstheuseofthesedata. Itb ecomesclear

thatwithdecreasingdistancestotheSouthPoleicingcausesadeadlossofdata

during thewinter p erio d. Esp eciallywinddata mustused verycarefully. The

mostreliableparameteris airpressure. This rep ortcoversthat winddirection

showsabi-mo dalstructure withdominantwindsfromtheEtoNE.Themost

obviousexplanationforthesouthwestwinddirectionobservedbyDrescherand

Halleystationsisasup er-geostrophic weather situation. Thecomparisonwith

theECMWFanalysis revealedthat mo delledairpressure agreeswell withthe

observations incontrast to the temp erature which deviates moreduring very

cold p erio ds. If wind data is used for interpretation one must keep in mind

that maintenanceof the stationsdo es nothapp en foryearsand themeasured

height decreases due to further snow accumulation. The other result is that

ECMWF-dataforcertainp ositionshavetohandlewithcareb ecauseitmustb e

distinguishedb etween lo cationsoverseaorland.

(17)

temperature ( o C) -60 -50 -40 -30 -20 -10 0 10

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

-35 -30 -25 -20 -15 -10 -5 0

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 temperature ( o C)

monthly mean

-20 -18 -16 -14

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 temperature ( o C)

annual mean

-30 -20 -10 0 10

1 2 3 4 5 6 7 8 9 10 11 12

temperature ( o C)

1992-2002 average monthly mean d)

c) b) a)

Figure 11: Temp eraturein 2mab ove surface for theDrescher AWS. Data in-

terval 3hours. a): allrecorded values b)monthlymeansc): annualmeans d)

averagemonthlymeans

(18)

d) c) b) a)

temperature ( o C) -60 -50 -40 -30 -20 -10 0 10

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

-35 -30 -25 -20 -15 -10 -5 0

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 temperature ( o C)

monthly mean

-20 -18 -16 -14

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 temperature ( o C)

annual mean

-25 -20 -15 -10 -5 0

1 2 3 4 5 6 7 8 9 10 11 12

temperature ( o C)

1992-2002 average monthly mean temperature ( o C)

-60 -50 -40 -30 -20 -10 0 10

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

-35 -30 -25 -20 -15 -10 -5 0

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 temperature ( o C)

monthly mean

-20 -18 -16 -14

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 temperature ( o C)

annual mean

-25 -20 -15 -10 -5 0

1 2 3 4 5 6 7 8 9 10 11 12

temperature ( o C)

1992-2002 average monthly mean

Figure 12: Temp eraturein 5mab ove surface for theDrescher AWS. Data in-

terval 3hours. a): allrecorded values b)monthlymeansc): annualmeans d)

averagemonthlymeans

(19)

d) c) b) a)

MSLP (hPa)

925 950 975 1000 1025

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

975 980 985 990 995 1000 1005

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

MSLP (hPa)

monthly mean

980 985 990 995

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

MSLP (hPa)

annual mean

980 985 990 995

1 2 3 4 5 6 7 8 9 10 11 12

MSLP (hPa)

1995-2002 average monthly mean

MSLP (hPa)

925 950 975 1000 1025

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

975 980 985 990 995 1000 1005

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

MSLP (hPa)

monthly mean

980 985 990 995

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

MSLP (hPa)

annual mean

980 985 990 995

1 2 3 4 5 6 7 8 9 10 11 12

MSLP (hPa)

1995-2002 average monthly mean

Figure13: Meansealevelpressure(MSLP)fortheDrescherAWS.Datainterval

3hours. a): allrecordedvaluesb)monthlymeansc): annualmeansd)average

monthlymeans

(20)

wind velocity (m/s -1 )

1992-2002 u-wind component (+west/-east) -20

-10 0 10 20

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

-8 -6 -4 -2 0 2

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 -8

-6 -4 -2 0 2

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 wind velocity (m s -1 )

monthly mean

-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 wind velocity (m s -1 )

annual mean

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

1 2 3 4 5 6 7 8 9 10 11 12

wind velocity (m s -1 )

1992-2002 average monthly mean a)

d) c) b)

Figure 14: Windvelo cityforthe u-comp onentfor theDrescher AWS. Positive

values represent west wind, negative east wind resp ectively. Data interval 3

hours. a): allrecorded values b) monthlymeansc): annualmeansd) average

monthlymeans

(21)

a)

d) c) b)

d) b) wind velocity (m s -1 )

v-wind component (+south/-north) -20

-10 0 10 20

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

-6 -4 -2 0 2

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 -6

-4 -2 0 2

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 wind velocity (m s -1 )

monthly mean

-1.5 -1.0 -0.5 0.0 0.5

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 wind velocity (m s -1 )

annual mean

-1.5 -1.0 -0.5 0.0

1 2 3 4 5 6 7 8 9 10 11 12

wind velocity (m s -1 )

1992-2002 average monthly mean wind velocity (m s -1 )

v-wind component (+south/-north) -20

-10 0 10 20

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

-6 -4 -2 0 2

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 -6

-4 -2 0 2

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 wind velocity (m s -1 )

monthly mean

-1.5 -1.0 -0.5 0.0 0.5

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 wind velocity (m s -1 )

annual mean

-1.5 -1.0 -0.5 0.0

1 2 3 4 5 6 7 8 9 10 11 12

wind velocity (m s -1 )

1992-2002 average monthly mean

Figure 15: Wind velo cityfor thev-comp onentfor theDrescher AWS. Positive

values representnorthwind,negative southwindresp ectively. Dataintervall3

hours. a): allrecorded values b) monthlymeansc): annualmeansd) average

monthlymeans

(22)

a)

d) c) b)

wind velocity (m/s -1 ) 0 10 20 30 40

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

0 2 4 6 8 10

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 0

2 4 6 8 10

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 wind velocity (m s -1 )

monthly mean

1 2 3 4 5 6 7

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 wind velocity (m s -1 )

annual mean

3.0 3.5 4.0 4.5 5.0 5.5 6.0

1 2 3 4 5 6 7 8 9 10 11 12

wind velocity (m s -1 )

1992-2002 average monthly mean

Figure16: Scalarwindvelo cityfortheDrescher AWS.. Data interval3hours.

a): allrecordedvaluesb)monthlymeansc): annualmeansd)averagemonthly

means

(23)

rel. hummidity (%) 0 10 20 30 40 50 60 70 80 90 100

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

70 75 80 85 90 95 100

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

rel. hummidity (%)

1992-2002 monthly mean

75 80 85 90 95 100

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

rel. hummidity (%)

1992-2002 annual mean

80 85 90 95 100

1 2 3 4 5 6 7 8 9 10 11 12

rel. hummidity (%)

1992-2002 average monthly mean a)

d) c) b)

Figure 17: Relative Humidityfor the Drescher AWS. Data intervall 3 hours.

a): allrecordedvaluesb)monthlymeansc): annualmeansd)averagemonthly

means

(24)

S

E W

N

S

E W

N

S

E W

N

annual mean annual mean < 10 m/s annual mean >10 m/s

S

E W

N

S

E W

N

S

E W

N

S 2%

E W

N

S

E W

N

S

E W

N

summer mean summer mean < 10 m/s summer mean >10 m/s winter mean winter mean < 10 m/s winterl mean >10 m/s

calms : 15.6%

calms : 19.1%

calms : 13.3%

Figure18: Windroses forrelative frequency ofwinddirectionfortheDrescher

AWS.Windsp eedb elow1ms 1

isassumedascalms.

(25)

d) c) b) a)

temperature ( o C) -60 -50 -40 -30 -20 -10 0 10

1992 1993 1994 1995 1996 1997 1998 1999

-40 -35 -30 -25 -20 -15 -10 -5 0

1992 1993 1994 1995 1996 1997 1998 1999

-40 -35 -30 -25 -20 -15 -10 -5 0

1992 1993 1994 1995 1996 1997 1998 1999

-40 -35 -30 -25 -20 -15 -10 -5 0

1992 1993 1994 1995 1996 1997 1998 1999

temperature ( o C)

monthly mean

-30 -28 -26 -24 -22

1992 1993 1994 1995 1996 1997 1998 1999

temperature ( o C)

annual mean

-35 -30 -25 -20 -15 -10 -5 0

1 2 3 4 5 6 7 8 9 10 11 12

temperature ( o C)

1991-1999 average monthly mean temperature ( o C)

-60 -50 -40 -30 -20 -10 0 10

1992 1993 1994 1995 1996 1997 1998 1999

-40 -35 -30 -25 -20 -15 -10 -5 0

1992 1993 1994 1995 1996 1997 1998 1999

-40 -35 -30 -25 -20 -15 -10 -5 0

1992 1993 1994 1995 1996 1997 1998 1999

-40 -35 -30 -25 -20 -15 -10 -5 0

1992 1993 1994 1995 1996 1997 1998 1999

temperature ( o C)

monthly mean

-30 -28 -26 -24 -22

1992 1993 1994 1995 1996 1997 1998 1999

temperature ( o C)

annual mean

-35 -30 -25 -20 -15 -10 -5 0

1 2 3 4 5 6 7 8 9 10 11 12

temperature ( o C)

1991-1999 average monthly mean

Figure 19: Temp erature in2mab ove surface for the Filchner AWS. Data in-

tervall 3hours. a): allrecorded valuesb) monthlymeansc): annual meansd)

averagemonthlymeans

(26)

a)

d) c) b) temperature ( o C)

-60 -50 -40 -30 -20 -10 0 10

1992 1993 1994 1995 1996 1997 1998 1999

-40 -35 -30 -25 -20 -15 -10 -5 0

1992 1993 1994 1995 1996 1997 1998 1999

-40 -35 -30 -25 -20 -15 -10 -5 0

1992 1993 1994 1995 1996 1997 1998 1999

-40 -35 -30 -25 -20 -15 -10 -5 0

1992 1993 1994 1995 1996 1997 1998 1999

temperature ( o C)

monthly mean

-30 -28 -26 -24 -22

1992 1993 1994 1995 1996 1997 1998 1999

temperature ( o C)

annual mean

-35 -30 -25 -20 -15 -10 -5 0

1 2 3 4 5 6 7 8 9 10 11 12

temperature ( o C)

1991-1999 average monthly mean

Figure 20: Temp erature in5mab ove surface for the Filchner AWS. Data in-

tervall 3hours. a): allrecorded valuesb) monthlymeansc): annual meansd)

averagemonthlymeans

(27)

d) c) b) a)

MSLP (hPa)

925 950 975 1000 1025

1991 1992 1993 1994 1995 1996 1997 1998 1999

985 990 995 1000 1005 1010 1015

1991 1992 1993 1994 1995 1996 1997 1998 1999

985 990 995 1000 1005 1010 1015

1991 1992 1993 1994 1995 1996 1997 1998 1999

985 990 995 1000 1005 1010 1015

1991 1992 1993 1994 1995 1996 1997 1998 1999

MSLP (hPa)

monthly mean

985 990 995 1000

1991 1992 1993 1994 1995 1996 1997 1998 1999

MSLP (hPa)

annual mean

985 990 995 1000

1 2 3 4 5 6 7 8 9 10 11 12

MSLP (hPa)

1991-1998 average monthly mean

Figure21: Meansealevelpressure(MSLP)fortheFilchnerAWS.Dataintervall

3hours. a): allrecordedvaluesb)monthlymeansc): annualmeansd)average

monthlymeans

(28)

b) a)

wind velocity (m s

v-wind component (+south/-north) -20

-10 0 10 20

1991 1992 1993 1994 1995 1996 1997 1998 1999

-20 -10 0 10

1991 1992 1993 1994 1995 1996 1997 1998 1999

wind velocity (m s -1 )

u-wind component (+west/-east) wind velocity (m s -1 )

v-wind component (+south/-north) -20

-10 0 10 20

1991 1992 1993 1994 1995 1996 1997 1998 1999

-20 -10 0 10

1991 1992 1993 1994 1995 1996 1997 1998 1999

wind velocity (m s

u-wind component (+west/-east)

Figure 22: Windvelo city for the v-comp onent (a) and u-comp onenet (b) for

the Filchner AWS. Positive u-values represent west wind, negative east wind.

Positive v-values represent north wind, negative south wind resp ectively. No

meansarecalculateddue tothelackofdata. hours.

(29)

b) a)

rel. hummidity (%)

0 10 20 30 40 50 60 70 80 90 100

1992 1993 1994 1995 1996 1997 1998 1999

55 60 65 70 75 80 85 90

1992 1993 1994 1995 1996 1997 1998 1999

rel. hummidity (%)

1991-1999 monthly mean

Figure23: Relative HumidityfortheFilchnerAWS.Datainterval3hours. a):

all recorded values b) monthly means Other meansare calculateddue to the

lackofdata.

(30)

n = 14446

Air Pressure Temperature

U=wind componenet V-wind component r = 0.7569

y =1,0199x+2.1755

2

y =0.9982x+2.1633 r = 0.9518

n = 11028

2

y =0.6405x+0.8796 r = 0.5627

n = 8718

2

y =0.6599x+03536 r = 0.5832

n = 8129

2

AWS pressure (hPa)

ECMWF pressure (hPa) 950

975 1000 1025 1050

950 975 1000 1025 1050 AWS temp ( o C)

ECMWF temp ( o C) -50

-40 -30 -20 -10 0 10

-50 -40 -30 -20 -10 0 10

AWS zonal wind (m s -1 )

ECMWF zonal wind (m s -1 ) -20

-15 -10 -5 0 5 10 15 20

-20 -15 -10 -5 0 5 10 15 20 AWS merridional (m s -1 )

ECMWF meridional wind (m s -1 ) -20

-15 -10 -5 0 5 10 15 20

-20 -15 -10 -5 0 5 10 15 20

Figure 24: Correlations b etween the originalmeasured data of the Drescher

AWSand forthesamep ositioninterp olatedECMWF-data

(31)

n = 9263

Air Pressure Temperature

U=wind componenet V-wind component r = 0.6562

y =1.11691x+5.5015

2

y =1.017x+13.038 r = 0.8932 n = 9261

2

y =0.897x+0.5206 r = 0.5206 n = 1823

2

y =0.4924x+17.7312 r = 0.1806

n = 1632

2

AWS pressure (hPa)

ECMWF pressure (hPa) 950

975 1000 1025 1050

950 975 1000 1025 1050 AWS temp ( o C)

ECMWF temp ( o C) -50

-40 -30 -20 -10 0 10

-50 -40 -30 -20 -10 0 10

AWS zonal wind (m s -1 )

ECMWF zonal wind (m s -1 ) -20

-15 -10 -5 0 5 10 15 20

-20 -15 -10 -5 0 5 10 15 20 AWS merridional (m s -1 )

ECMWF meridional wind (m s -1 ) -20

-15 -10 -5 0 5 10 15 20

-20 -15 -10 -5 0 5 10 15 20

Figure25: Correlationsb etweentheoriginalmeasureddataoftheFilchnerAWS

andforthesamep ositioninterp olatedECMWF-data

(32)

temperature ( o C)

1992-2002 monthly mean -35

-30 -25 -20 -15 -10 -5 0

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

-35 -30 -25 -20 -15 -10 -5 0

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

temperature ( o C)

1992-2002 annual mean -20

-18 -16 -14 -12 -10

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

-20 -18 -16 -14 -12 -10

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

temperature ( o C)

1992-2002 average monthly mean -30

-20 -10 0

1 2 3 4 5 6 7 8 9 10 11 12

-30 -20 -10 0

1 2 3 4 5 6 7 8 9 10 11 12

Figure26: Comparisonb etween theplotoftemp eratureforDrescherAWSand

theinterp olatedECMWF-data(grew)

(33)

air Pressure (hPa)

1992-2002 monthly mean 975

980 985 990 995 1000 1005

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

975 980 985 990 995 1000 1005

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

air Pressure (hPa)

1992-2002 annual mean 980

985 990 995

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

980 985 990 995

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

air Pressure (hPa)

1992-2002 average monthly mean 980

985 990 995

1 2 3 4 5 6 7 8 9 10 11 12

980 985 990 995

1 2 3 4 5 6 7 8 9 10 11 12

Figure27: Comparisonb etweentheplotofmeanseallevelpressureforDrescher

AWSand theinterp olatedECMWF-data(grew)

(34)

wind velocity (m s -1 )

1992-2002 monthly mean -6

-4 -2 0 2

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

-6 -4 -2 0 2

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

wind velocity (m s -1 )

1992-2002 annual mean -5

-4 -3 -2 -1 0

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

-5 -4 -3 -2 -1 0

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

wind velocity (m s -1 )

1992-2002 average monthly mean -5

-4 -3 -2 -1 0

1 2 3 4 5 6 7 8 9 10 11 12

-5 -4 -3 -2 -1 0

1 2 3 4 5 6 7 8 9 10 11 12

Figure28: Comparisonb etween theplotofzonalwindcomp onentforDrescher

AWSand theinterp olatedECMWF-data(grew)

(35)

wind velocity (m s -1 )

1992-2002 monthly mean -6

-4 -2 0 2 4

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

-6 -4 -2 0 2 4

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

wind velocity (m s -1 )

1992-2002 annual mean -2

-1 0 1 2

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

-2 -1 0 1 2

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

wind velocity (m s -1 )

1992-2002 average monthly mean -2

-1 0 1 2

1 2 3 4 5 6 7 8 9 10 11 12

-2 -1 0 1 2

1 2 3 4 5 6 7 8 9 10 11 12

Figure 29: Comparison b etween the plot of meridonal wind comp onent for

DrescherAWSandtheinterp olatedECMWF-data(grew)

(36)

temperature ( o C)

1991-1999 monthly mean -40

-35 -30 -25 -20 -15 -10 -5 0

1991 1992 1993 1994 1995 1996 1997 1998 1999

-40 -35 -30 -25 -20 -15 -10 -5 0

1991 1992 1993 1994 1995 1996 1997 1998 1999

temperature ( o C)

19921-1999 annual mean -30

-28 -26 -24 -22 -20 -18 -16 -14 -12 -10

1991 1992 1993 1994 1995 1996 1997 1998 1999

-30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10

1991 1992 1993 1994 1995 1996 1997 1998 1999

temperature ( o C)

1991-1999 average monthly mean -40

-30 -20 -10 0

1 2 3 4 5 6 7 8 9 10 11 12

-40 -30 -20 -10 0

1 2 3 4 5 6 7 8 9 10 11 12

Figure30: Comparisonb etween theplotoftemp eratureforFilchnerAWSand

theinterp olatedECMWF-data(grew)

(37)

air Pressure (hPa)

1991-1999 monthly mean 985

990 995 1000 1005 1010 1015

1991 1992 1993 1994 1995 1996 1997 1998 1999

985 990 995 1000 1005 1010 1015

1991 1992 1993 1994 1995 1996 1997 1998 1999

air Pressure (hPa)

1991-1999 annual mean 985

990 995 1000 1005

1991 1992 1993 1994 1995 1996 1997 1998 1999

985 990 995 1000 1005

1991 1992 1993 1994 1995 1996 1997 1998 1999

air Pressure (hPa)

1991-1999 average monthly mean 985

990 995 1000

1 2 3 4 5 6 7 8 9 10 11 12

985 990 995 1000

1 2 3 4 5 6 7 8 9 10 11 12

Figure31: Comparisonb etweentheplotofmeansealevelpressureforFilchner

AWSand theinterp olatedECMWF-data(grew)

(38)

SOUTH 0.02 EAST WEST

NORTH ECMWF Gitterpunkt 18.000 W 72.000S

SOUTH 0.02 EAST WEST

NORTH ECMWF Gitterpunkt 19.125 W 72.000S

SOUTH 0.02 EAST WEST

NORTH ECMWF Gitterpunkt makeroses.gmt*

S

SOUTH 0.02 EAST WEST

NORTH ECMWF Gitterpunkt 19.125 W 73.125S

SOUTH 0.02 EAST WEST

NORTH ECMWF Eisgitter interpoliert 19.05 W 72.73S

SOUTH 0.02 EAST WEST

NORTH Drescher AWS Daten interpoliert :19.044 W 72.87S

SOUTH 0.02 EAST WEST

NORTH ECMWF AWS Drescher interpoliert :19.044 W 72.87S

Figure 32: Frequency windroseforDrescherAWS,theinterp olatedECMWF-

data for the lo cation of Drescher AWS and the next ice-gird p oint of the

BRIOS2-mo delandsep eratlyforthefoursourundingECMWF-gridp oints

(39)

ECMWF Gitterpunkt 18.000 W 72.000S ECMWF Gitterpunkt

19.125 W 72.000S

ECMWF Gitterpunkt 18.000 W 73.125 S ECMWF Gitterpunkt

19.125 W 73.125S

ECMWF Eisgitter interpoliert 19.05 W 72.73S Drescher AWS Daten

interpoliert :19.044 W 72.87S

ECMWF AWS Drescher interpoliert :19.044 W 72.87S

SOUTH 2 EAST WEST

NORTH

SOUTH 2 EAST WEST

NORTH

SOUTH 2 EAST WEST

NORTH SOUTH 2

EAST WEST

NORTH

SOUTH 2 EAST WEST

NORTH

SOUTH 2 EAST WEST

NORTH

SOUTH 2 EAST WEST

NORTH

Figure33: Velo citywindroseforDrescherAWS,theinterp olatedECMWF-data

for thelo cation of Drescher AWSand the next ice-gird p ointof theBRIOS2-

mo deland separatelyforthefoursurrounding ECMWF-gridp oints

(40)

AWSFilchner3315

op eratingtime: Jan1990-22.05.94

lo cation: 77.087S50.214WElevationa.s.l.40m

manufacturer: DefenseSystemsInc.,USA,

UniversityHanover,Germany

sensors

Air PressureCompany: Paroscientic, Inc.

Sensor: Digiquartztransducer 215

Accuracy +/-0.2hPa

Resolution: 10bit->15hPa

Range: 900-1053.5hPa

Sensor lo cation: approx. 3mab ove icesurface

Air Temp erature

Company: Yellowsprings

Sensor: 44020

Accuracy +/-0:2

Æ

C

Resolution: 8bit ->0:2 Æ

C

Range: -44

Æ

C-+6 Æ

C

Sensor lo cation: 1. Sensorapprox. 5mab ove icesurface

2. Sensorapprox. 3mab ove icesurface

Wind

Company: R.M.Young

Sensor: WindMonitor-RE

Accuracy Sp eed: +/-0.2kn

Direction: +/-5 Æ

Resulution: Sp eed: 8bit->+/- 0.5kn

Direction: 8bit ->+/-1.5 Æ

Range: Sp eed: 0-127.5ms 1

Direction: 0-360 Æ

Sensor lo cation: approx. 5mab ove icesurface

(41)

op eratingtime: 06.02.95-30.03.96

lo cation: 77.071S50.109WElevation a.s.l.40m

AWSFilchner3313

op eratingtime: 11.02.97-30.01.99

lo cation: 77.071S50.109WElevation a.s.l.40m

AWSDrescher 3310

op eratingtime: 18.01.95-24.01.99

lo cation: 72.870S19.048WElevation a.s.l.34m

manufacturer: DefenseSystemsInc.,USA,

UniversityHanover,Germany

sensors

AirPressure

Company: Paroscientic,Inc.

Sensor: Digiquartztransducer 215A-102

Accuracy +/-0.2hPa

Resolution: 16bit->0.05hPa

DataSampling Interval10min

Sensorlo cation: approx. ice surface

AirTemp eratureDierence

Resolution: 12bit->0:125 Æ

C

Range: -100

Æ

C-+412 Æ

C

DataSampling Interval10min

Sensorlo cation: approx. 3mab ove icesurface

VerticalDierence

Resolution: 8bit ->0:0625 Æ

C

Range: -5.125

Æ

C-+10.8125 Æ

C

DataSampling Interval10min

Sensorlo cation: approx. 3mand1mab ove icesurface

Humidity

Company: Vaisala

Sensor: HMP35A

Accuracy 2%relhumidityintherangeof0-90%

3%relhumidityintherangeof90-100%

Resolution: 8bit ->0.4%

Range: 0-102%

DataSampling Interval20min

Sensorlo cation: approx. 3mab ove icesurface

Wind

Company: Belfort

Sensor: Mo del123aerovane

Accuracy Sp eed: +/-0.2kn

Direction: +/-5 Æ

Resolution: Sp eed: 8bit->+/-0.25ms 1

Direction: 8bit->+/-1.4 Æ

Range: Sp eed: 0-64ms

1

Direction: 0-356 Æ

Sensorlo cation: approx. 3mab ove icesurface

(42)

op eratingtime: 02.02.92- 05.03.95

lo cation: 72.879S19.021WElevationa.s.l. 35m

manufacturer: Defense SystemsInc.,USA

sensors

AirPressure

Company: Paroscientic,Inc.

Sensor: Digiquartz transducer215AT-073

Accuracy +/-0.2hPa

Resolution: 10bit ->0.1hPa

Range: 920-1022.3hPa

DataSampling: Cycle: 4s,Average12min

Interval12min

Sensorlo cation: approx. 1.5mab oveicesurface

AirTemp erature

Company: Yellowsprings

Sensor: 44020

Accuracy +/-0:2

Æ

C

Resolution: 8bit->0:2 Æ

C

Range: -44

Æ

C-+6 Æ

C

DataSampling: Cycle: 4s,Average12min

Interval12min

Sensorlo cation: 1. Sensor approx. 5mab oveicesurface

2. Sensor approx. 3mab oveicesurface

Wind

Company: R.M.Young

Sensor: Wind Monitor-RE

Accuracy Sp eed: +/-0.2kn

Direction: +/-5 Æ

Resolution: Sp eed: 8bit->+/-0.5kn

Direction: 8bit->+/-1.406 Æ

Range: Sp eed: 0-127.5ms 1

Direction: 0-360 Æ

DataSampling: Cycle: 4s,Average12min

Interval12min

Sensorlo cation: approx. 5mab oveice surface

Snow Height

Company: Campb ellScienticCorp.

Sensor: UltrasonicDepth Gauge,UDG01

Accuracy +/-1cm

Resolution: 15bit ->0.125cm

Range: 0-265cm

DataSampling: Cycle: 15s,Average12min

Interval12min

(43)

op eratingtime: 24.01.99-

lo cation: 72.864S19.065WElevationa.

s.l. 35m

manufacturer: Sellmann&Kruse GbR,Germany

sensors

Air Pressure

Company: Paroscientic, Inc.

Sensor: Digiquartztransducer 216B

Accuracy +/-0.2hPa

Resolution: 10bit->0.1hPa

Range: 920-1022.3hPa

DataSampling: Interval200s

Sensor lo cation: approx. icesurface

Air Temp erature

Company: R.M.Young

Sensor: Mo del41342(PTA1000)

Resolution: 10bit->0:1 Æ

C

Range: -50

Æ

C-+50 Æ

C

DataSampling: Interval200s

Sensor lo cation: 1. Sensor approx. 5mab oveice surface

2. Sensor approx. 2mab oveice surface

Humidity

Company: Vaisala

Sensor: HMP35A

Accuracy 2%relhumidityintherangeof0-90%

3%relhumidityintherangeof90-100%

Resolution: 8bit ->0.4%

Range: 0-102%

DataSampling Interval200s

Sensor lo cation: approx. 5mab ove icesurface

Wind

Company: R.M.Young

Sensor: WindMonitor-RE

Resolution: Sp eed: 8bit->+/-0.16ms 1

Direction: 8bit->+/-1.406 Æ

Range: Sp eed: 0-40.8ms 1

Direction: 0-358.33 Æ

DataSampling: Cycle: 4s,Average12min

Interval200s

Sensor lo cation: approx. 5mab ove icesurface

(44)

Connolley,W. M.and H. Cattel, The Antarticclimate ofthe UKMO Unied

Mo del,Antarctic Sciences,6,115-122,1994.

Jones, D. A. and I.Simmonds, Aclimatologyof southern Hemisphere extrat-

ropicalcyclones,ClimatDynamics, 9,131-145,1993.

Kimura, S., K. Ab e, K. Tsub oi, B. Tammelin and K. Suzuki, Aero dynamic

charachteristics of an iced cup-shap ed b o dy, Cold Regions Sciences and

Technology,33,45-58,2001.

King,J.C.andJ.Turner,AntarcticMeteorologyandClimatology,Cambridge

Atmosphericand SpaceSciences Series,Cambridge1997.

Kottmeier,Ch. andJ.Lüdemann,Meeresb ojen 1986-1995/Technische Doku-

mentation,Berichte ausdemFachbereich Physik,69,AlfredWegenerIn-

stitut,1996.

Lo onvan,H.,Thehalfyearlyoscillationsinmiddleanhigh southernlatitudes

andthecorelesswinter,JournaloftheAtmosphericSciences,24,472-486,

1967.

Parish,T.R.,SurfacewindsovertheAntarcticcontinent: Areview,Reviewof

Geophysics,26(1),169-180,1988.

Parish,T.R. andD.H.Bromwich,Continent-scalesimulationofthekatabatic

windregime,Journal ofClimate,4,135-146,1991.

Stearns, C. R., L.M.Keller, G.A.Weidner and M.Sievers, Monthly mean cli-

matic data for Antarctic weather station, in Antarctic Meteorology and

Climatology: StudiesbasedonAutomaticWeather Stations,AntarcticRe-

search Series,61,1-21,1993.

Timmermann,R.,A. Beckmannand H.H. Hellmer,Therole of seaice inthe

fresh-waterbudgetof theWeddellSea,Antarctica, Annals of Glaciology,

33,419-424,2001.

Timmermann, R.,A. Beckmann and H. H. Hellmer, Simulationsof ice-o cean

dynamics in the Weddell Sea. 1. Mo del conguration and validation,

Journal of GeophysicalSciences,107, C3,10.1029/2000JC000741,2002.

UniversityofWisconsin: http://uwamrc.ssec.wisc.edu/gifs/awstower.gif

Referenzen

ÄHNLICHE DOKUMENTE

ta Mining) eingeteilt wird, welche hier erst kurz vorgestellt werden, um dann auf die.. drei T eile F ull-Text, Spatial und Still Image

[r]

Sofern noh niht vorhanden, füge das neue Element als Blatt. so ein, dass die Suhbaumeigenshaft erfüllt ist,

• Für eine einzelne Klasse lohnt sih ein solhes Diagramm

alulating the root value of the tree using the value Y ϕ and the authentiation data stored in the MSS signature.. First Y ϕ is onatenated and hashed with Auth

Gefragt ist nach Vierecken mit ganzzahligen Seitenlängen, bei denen auch beide Diago- nalen ganzzahlige Längen haben.. Bei Quadraten ist das nicht möglich, da 2

Lösung: Es gibt keine solhe positive ganze Zahl. Beweis: Denn für jede positive ganze Zahl n beweist die Umfomung

Es gibt eine konkret berehenbare Zahl w , so dass gilt: Jede ungerade Zahl n ≥ w kann als eine Summe aus drei Primzahlen geshrieben werden. Winogradow selbst konnte keinen Wert für