• Keine Ergebnisse gefunden

De ada

N/A
N/A
Protected

Academic year: 2022

Aktie "De ada"

Copied!
79
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

El Niño / Southern Osillation

in the GFDL-ESM2M

pre-industrial ontrol simulation

Master Thesis written by

Goratz Beobide Arsuaga

Supervised and examined by

Prof. Dr. Mojib Latif

Dr. Tobias Bayr

MATHEMATISCH -NATURWISSENSCHAFTLICHE FAKULTÄTDER

CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL

GEOMARHELMHOLTZ - ZENTRUM FÜROZEANFORSCHUNG KIEL

- MARITIME METEOROLOGIE -

(2)
(3)

Abstrat III

Zusammenfassung IV

Abbreviations VI

1 Introdution 1

1.1 Overviewand motivation . . . 1

1.2 TropialPaimean state . . . 3

1.3 El Niño /Southern Osillation(ENSO) . . . 4

1.3.1 ENSO domains . . . 6

1.3.2 ENSO metris. . . 7

1.3.3 Atmospherifeedbaks . . . 8

2 Data and Methodology 10 2.1 Data . . . 10

2.1.1 GFDL-ESM2M . . . 10

2.1.2 ERA-20C . . . 12

2.2 Methodology . . . 13

2.2.1 Modelmeanstate bias . . . 13

2.2.2 ENSO denition . . . 13

2.2.3 ENSO metris. . . 14

2.2.4 Atmospherifeedbaks . . . 15

2.2.5 DeadalENSO amplitude modulation . . . 16

3 Results 18 3.1 ENSO simulationskills . . . 18

3.1.1 Modelbias inthemeanstate . . . 18

3.1.2 ENSO metris. . . 20

3.1.3 Atmospherifeedbaks . . . 24

3.2 DeadalENSO amplitude . . . 27

3.3 High /LowENSO amplitudeperiods . . . 33

3.3.1 TropialPaimean state . . . 33

3.3.2 TropialPaivariability . . . 36

3.3.3 ENSO metris. . . 38

3.3.4 Atmospherifeedbaks . . . 42

3.4 DeadalENSO amplitude modulation . . . 44

(4)

4.2 Disussion . . . 53

4.3 Conlusion. . . 56

List of gures 58

Bibliography 63

Aknowledgement 70

Delaration of andidate 71

(5)

The deadal variability of El Niño / Southern Osillation (ENSO) is investigated in the pre-

industrial ontrol runof theGFDL-ESM2M fullyoupled limate model. Overall,the limate

modelhasquite a realisti representation of relevant ENSOproperties: theprobability distri-

bution of Niño3.4 sea surfae temperature (SST) anomalies is positively skewed, the highest

equatorial Pai SSTvariabilityisobservedinborealwinterwiththeorrespondingderease

in variability during spring, and the deadal limate variability shows a shift of the ENSO

spatial pattern. Nevertheless, ompared to the ERA-20Creanalysis produt,themodelshows

problemsmostlimatemodelshave: theanomalousoldequatorialPaiSSTwiththelargest

bias loatedon the eastern side, strong easterlywinds over thewestern equatorial region, the

rising branh of the Walker Cirulation loated too far west and the too strong subsidene

regime east ofthe dateline.

Twomainperiodsofabout60yearswithhighandlowENSOamplitudesareobserved,ran-

gingbetween1.5

Cand0.7

C.Hereitisshown,thattheHighandLowepohshaveremarkably

dierent mean states, whih an explain the dierenes in simulated ENSO amplitudes. The

High epoh is haraterized by a weaker zonal equatorial SST gradient and a warmer Niño3

SST. The less intense Walker Cirulation redues the subsidene branh, and the negative

shortwave (SW) feedbak during El Niño events is extended over the Niño3 domain. The

stronger onvetive response overthe eastern equatorial Pai enhanes the SST variability,

inreasing onsiderably during boreal winter, and the strong non-linearities in atmospheri

feedbaks are kiked forming strong East Pai-like (EP)El Niño events. Hene, theENSO

asymmetry isremarkably inremented.

During the Low epoh, the zonal equatorial SST gradient is inreased with ooler Niño3

SST. The Walker Cirulation is intensied and the subsidene branh over the Niño3 region

is strengthened. The Niño3 domain also oinides with the redution of the negative SW

feedbakduring El Niño events, as well asthe inapability of theatmospheri regime to turn

into a onvetive state, when SST anomalies are turned positive. In addition, the Niño3.4

SST variabilityandthe wind feedbakareonsiderablydereased duringborealwinter. There

are indiationsthat the redued SSTvariability of theLow epoh isaused by thetoo strong

subsidene branh over theNiño3 region, whih restrits theseasonal southward migration of

the Intertropial Convergene Zone (ITCZ), and hampers theevolution of strong EP El Niño

events. However, the onvetive response is maintained over the western equatorial Pai,

outsideofthestrongestmeansubsideneregion,asshownbythehighestnegativeSWfeedbak.

Therefore, during this time period the frequeny of Central Pai-like (CP) El Niño events

is inreased, shifting the ENSOspatial pattern,and reduing SSTvariability inlakof strong

EP El Niños. Correspondingly,the non-linearities between thepositive and negative phasesof

ENSO are redued, diminishing the ENSO asymmetry. In summary, these results show how

important the mean state isfor theENSOamplitude and asymmetry.

(6)

IndieserArbeitwurdediedekadisheVariabilitätvonElNiño/SouthernOsillation (ENSO)

mithilfeeinesvorindustriellenKontrolllaufsdesgekoppeltenGFDL-ESM2MKlimamodellsunt-

ersuht.Insgesamt simuliert das Klimamodell die relevanten ENSO-Eigenshaften realistish:

dieMeeresoberähentemperatur (SST) inderNiño3.4-Regionhat eine positive Skewness,die

maximale SST-Variabilität des äquatorialen Paziks ist während des borealen Winters, das

Minimums im Frühling, und in der dekadishen Klimavariabilität zeigt es eine Verlagerung

desräumlihenENSO-MusterszwishenöstlihemundzentralemäquatorialenPazik. Nihts-

destotrotz weist das Modell im Vergleih zur ERA-20C Reanalyse Probleme auf, die viele

Klimamodelle haben: ungewöhnlih kalte SSTs im östlihen äquatorialen Pazik, zu starke

Ostwinde über der westlihen Äquatorregion, ein zu weit im Westen liegender aufsteigender

AstderWalkerZirkulation, und einzu starker,absinkenderAstim östlihen Pazik.

EswurdenzweiZeiträumevonjeweils60JahrenmithohrundniedrigerENSO-Amplituden

identiziert, dieungefähr bei1.5C und 0.7C liegen. Die Epohen hoher und niedriger ENSO-

Amplitud weisen bemerkenswerte Untershiede im mittleren Zustand auf, die erklären kön-

nen,warumdie ENSO-Amplitudsountershiedlih simuliertweird. DieEpohe hoherENSO-

Amplitude ist durh einen verringerten zonalen SST-Gradienten entlang des Äquators und

wärmere SSTs in der Niño3-Region harakterisiert. Die Walker-Zirkulation ist shwäher,

wodurh vor allem der absinkende Ast shwäher ist und dasFeedbak derkurzwelligen Ein-

strahlungsihaufdieNiño3-Regionausweitet. DiestärkereKonvektionüber demäquatorialen

Pazik im Osten verstärkt die SST Variabilität, insbesondere während des borealen Winters,

unddieatmosphärishen Feedbaksweisen starkNihtlinearitäten auf,sodasssihstarkeEast

Pai (EP) El Niño-Ereignisse ausbilden. Entsprehend ist die Asymmetrie zwishen den

ENSOPhasendeutlih verstärkt.

WährendderEpoheniedrigerENSO-Amplitude dagegenistderzonaleSST-Gradient ent-

lang des Äquators verstärkt und weist eine kältere SST in der Niño3-Region auf. Die At-

mosphäre reagiert darauf mit einer Intensivierung der Walker-Zirkulation, insbesondere des

absinkenden Astesüber derNiño3-Region. In dieser Region ist während El Niño-Ereignissen

das negativ kurzwellige Strahlungsfeedbak shwäher, und die vertikalen Wind in 500 hPa

HöhereagierenshwäheraufSST-Anomalien,Dieshatzur Folge,dassdieAtmosphärekeinen

konvektivenZustanderreihenkann,wennSST-Anomalienpositivwerden. Hinzukommt,dass

dieVariabilität derSSTsinderNiño3.4-Region sowiedasWindfeedbakwährenddesborealen

Winters deutlih verringert sind. Es gibt Anhaltspunkte, dass die reduzierte Variabilität der

SSTwährendderEpoheniedrigerENSO-Amplitude durheinenübermäÿigstarkensinkenden

Zweig der Walker-Zirkulation über der Niño3-Region verursaht wird, wodurh die saisonale

südwärtige Migration der Innertropishen Konvergenzzone eingeshränkt wird, was wiederum

dieAusbildungstarkerEPElNiño-Ereignissebehindert. Nihtsdestotrotzwirdeinkonvektiver

ZustandderAtmosphäreüberdemäquatorialenPazikimWestenauÿerhalbderRegionmitder

(7)

bak. Aus diesem Grund kommen während der Epohe niedriger ENSO-Amplitude Central-

Pai (CP) EL Niño-Ereignisse wesentlih häuger vor, was das ENSO-Muster in den zen-

tralen Pazik vershiebt und die höhste Variabilität der SST aus Mangel an starken EP El

Niño- Ereignissen verringert. Damit zusammenhängend sind die Nihtlinearität zwishen der

positiven und dernegativen ENSO-Phase reduziert,sodass die Asymmetrievon ENSO gering

ist. Zusammenfassend zeigen diese Ergebnisse, wie wihtig der mittlere Zustand für ENSO-

Amplitude und ENSO-Asymmetrie ist.

(8)

SST(A) Sea Surfae Temperature (Anomaly)

T

Oean Subsurfae Temperature

U10(A)

Surfae ZonalWind (Anomaly)

W500(A)

Vertial Windsat 500 hPa height (Anomaly)

NHFS(A)

NetHeat Flux(Anomaly)

LHFS(A)

Latent HeatFlux(Anomaly)

SW(A)

Shortwave (Anomaly)

CLT

TotalCloud Cover

PR

Preipitation

ENSO

El Niño /Southern Osillation

EP

East Pai

CP

Central Pai

TNI

Trans-NiñoIndex

PDF

Probability DensityFuntion

ITCZ

IntertropialConvergene Zone

CMIP5

Coupled ModelInteromparison ProjetPhase5

GCM

General Cirulation Model

ESM

Earth SystemModel

(9)

Introdution

1.1 Overview and motivation

It isan obviousfatthat ourhumanivilization dependsonthe limate onditions. Although

the soietal, tehnologial and eonomial systems have strongly developed insome ountries,

insulatingagainsttheimpatsoflimatevariability,manyotherdevelopingandunderdeveloped

ountries fae serious vulnerabilitiesrelated to a hanging limate (Handmeret al.,1999). In

fat, while temperate ountries have onverged towardshigh levels of inomeassistedbytheir

limate, tropial ountries inome per apita is saled in muh lower values (Masters and

MMillan, 2001). The inapability of underdeveloped ountries to mitigate limate hazards

ould resultinlarge sale migrationsandonsequentviolent onits,aeting theapparently

safe developed ountries (Reuveny, 2007). Hene, the study of limate variability should be

highly demanded byboth theapparently insulated andvulnerable soieties.

In order to understand and predit global limate variations, the tropial Pai region

playsakeyrole(Wittenbergetal.,2006). Beauseofitslargegeographialextensionandheavy

preipitation, the variability of the tropial Pai limate diretly and indiretly aets the

weather,eosystems,agriulture andhumanpopulationworldwide (Diazand Markgraf,2000;

Hsu and Moura, 2001; Wittenberg et al., 2006). Asa solid example, the El Niño / Southern

Osillation (ENSO) isonsidered to be themost dominant interannuallimate utuation.

ENSO an generally be addressed by old (La Niña) and warm (El Niño) events, whih

aet theeastern-entral equatorial Pai sea surfae temperatures (SST) with negative and

positive anomalies respetively (Philander, 1985). The ENSO phenomenon ontains an irre-

gularperiodiityrangingfrom2to7years,restritingthehighestSSTvariabilitytotheboreal

winter(RasmussonandCarpenter,1982;Bellenger etal.,2014). Itseetsarefeltgloballyvia

atmospheri teleonnetions (Trenberth et al., 1998; Alexander et al., 2002). The 1997-98 El

Niño event in partiular aused billionsof dollars indamages and thousand of livesto be lost

(Kerr,1999; Mphaden, 1999).

ENSO has suered interdeadal modulations in the past, varying its behavior inluding

the frequeny,amplitudeandspatialpattern (Fedorov andPhilander,2000;YehandKirtman,

2005;SunandYu,2009;MPhadenetal.,2011). Infat,apturedbythepaleoreordsweknow

thatthepositiveand negativephasesofENSOhavebeenexitedfor atleastthelast

10 5

years

(10)

and its variability is believed to have hanged onsiderably during the Holoene (Cole, 2001;

Tudhopeetal.,2001;Koutavasetal.,2006;Cobbetal.,2013;MGregoretal.,2013). Similarly,

in thereent past we have been able to observe a deadal shift of the ENSO harateristis.

Forinstane, ainterdeadal shiftofthelate1970slengthenedtheENSOperiodfrom2-4years

to4-6yearswhenomparingthetimeperiods1962-1975 and1980-1993(An andWang,2000).

Nevertheless, due to the short observational reords of tropial Pai limate variability,

longunforedsimulationsofoupledGeneralCirulation Models(GCM)areneessaryinorder

to investigate the natural variability of ENSO on deadal and longer timesales (Wittenberg,

2009;Russonetal.,2014). Forinstane,theGFDLCM2.1pre-industrialontrolrunhasgained

theattentionofmanyauthors,showinglargeunforedmulti-deadalENSOvariabilityhanges

(Wittenberg,2009; Kug et al.,2010; Wittenberg,2015). Themain downside ofthedependene

onoupledGCMsisthatENSOrepresentation suersfrombiasesinthemeanstateaswell as

inthe ENSOdynamis.

AlthoughoupledGCMshaveimprovedsomeoftheENSOharateristisfromtheCMIP3

to the CMIP5 multi-model ensemble reduing by a fator of two the diversity of the ENSO

amplitude,thewind(U10)feedbakandshortwave(SW)feedbakaregenerallyunderestimated

(Bellengeretal.,2014). Hene,theapparentimprovementsoftheENSOamplituderesultfrom

theerror ompensation of ENSO atmospheri feedbaks (Bayr et al., 2018). In addition, the

mainsoureofunrealistiatmospherifeedbaks andhenetheENSOrepresentation hasbeen

attributed to the tropial Pai mean state biases (Dommenget et al., 2014), whih we must

take into onsideration.

The bakground tropial Pai mean state and ENSO harateristi are in fat losely

linked, also indeadal timesales. Whetherthe hanges inthe bakground limatology aet

thedeadal variabilityof ENSO or thehangesin ENSOharateristis aet themean state

ontinues to be ontroversial. Studies using model experiments have proved that the ENSO

amplitudeissensitivetothemeanthermolinedepth(ZebiakandCane,1987;Latifetal.,1993),

to thethermoline tilt(Hu et al.,2013), and tothe mean zonalSST gradient (Knutson et al.,

1997). On theother hand,the interdeadal shift ofthe ENSOasymmetryand spatial pattern

an lead to the modiation of thelimatologial state of thetropial Pai as a residual of

theENSOyle(Ogata etal.,2013). Furthermore,thenon-linearitiesofatmospherifeedbaks

are believed to play a entral role in mean state hanges and the deadal ENSO amplitude

modulation(Atwood et al.,2017;Chen et al.,2017).

Thepresent studyinvestigates thenaturaldeadal variabilityof themainENSO harate-

ristisusinga500yearpre-industrialontrolrunfromthefullyoupledGFDL-ESM2Mlimate

model. AfterexploringthemeanstateandENSObiases,thefousissetontherelationbetween

thedeadal shift of the ENSO statistisand the bakground limatology. Inaddition, speial

attentionhasbeengiventothenon-linearbehavioroftheatmospherifeedbaksduringepohs

ofhighand lowENSO amplitudes.

Throughoutthis work we wouldlike to addressthefollowing questions: Howwell doesthe

modelsimulate ENSO events? Is there any deadal ENSO variability inthe unfored ontrol

run? And ifso, what isits relationshipto thebakground meanstate?

In thesubsequent setions one an readthe desription of the tropial Pai mean state

andENSO. Chapter2 ontains thedataand methodology usedto obtain theresultsshown in

Chapter3. Finally,thesummary,disussion andmain ndings areonluded inChapter4.

(11)

1.2 Tropial Pai mean state

Theatmospheriirulationisgenerallyforedbytheinomingsolarradiationandreshapedby

the Earth'srotation. Thedierene inlatitude ofthe inomingsolar radiationisompensated

byasetofdierentirulationells. Inthetropis, thezonallyaveragedmeridionalirulation

between 30

N- 30

S isalledthe HadleyCell(Quan etal., 2004). TheHadley Cellhasapair

ofellularpatternsasendingneartheequatoranddesendingoverthesubtropial area,whih

produes a poleward mass transport in the upper troposphere and equatorward in the lower

troposphere (Bjerknes, 1966). Due to the Earth's rotation, and hene the oriolis eet, the

equatorward owisrediretedwestformingtheeasterlies,ormoreommonlynamed,thetrade

winds (NationalOeani andAtmospheri Administration,2018).

Sinethetropialurrentsrespondto thewind system(Wyrtki,1974), theequatorialeast-

erly winds advet the tropial Pai Oean's surfae westward, piling up the waters on the

westernequatorialsetionandausingathermoline tiltandazonalSSTgradient(Philander,

1981). Theresultleadstoaharaterization ofthewesternPaiequatorialregionbyawarm

pool(i.e. theWestern PaiWarmPool),whose eastward advetion isrestritedbythetrade

winds, and a deep thermoline. On the other hand, the eastern side, enhaned by a shallow

thermoline and anupwelling systemsforedbythe Ekman upwelling, ontains relativelyold

waters forminga old tongue (Jin, 1996). Therefore, although the equatorial inoming solar

radiationiszonallyuniform,theoean-atmospheriproessesleadtoaprodutwhihiszonally

asymmetri (Figure 1.1).

ThezonalasymmetryoftheequatorialPaiisdiretlyrelatedtotheseondell,generally

known as the Walker Cirulation (Figure 1.1). Similarly to the Hadley Cell it is a thermally

diretirulation, onstituted byrisingmotion overthewarmwestern Paiandsinking over

the old waters of the eastern Pai. Its zonal ow is desribed by the westerly winds in

the upper troposphere and the low level winds blowing from the east as part of the trade

winds (Bjerknes, 1969). The prevailing subsidene over the eastern equatorial Pai limits

the formation of deep louds and preipitation. Therefore, the mentioned area is observed

as a highly stable, high pressure zone. In ontrast, unstable atmopsheri onditions with

deep onvetive louds andheavy preipitationarethemain harateristis ofthewestern low

pressure region (Lau K.; Yang S.,2002).

The ollision of the trade winds produes the Intertropial Convergene Zone (ITCZ), a

narrowbandofrisingairandintense preipitation. Thesoureof preipitationisthemoisture

onvergene brought on by the northern and southern hemisphere trade winds towards the

equator (Byrne et al., 2018). As a rst-order approximation, its annual mean positioning

follows thewarm SST and we ould highlight three main regions: a few degrees north of the

equator and hene north of the equatorial old tongue at the entral-eastern Pai, over the

western Pai warm pool, and over thesouth western Pai region, mainly knownas South

Pai Convergene Zone (Yu andZhang,2018).

Nevertheless, the positioning of the ITCZ is not onstant during the year. It follows the

seasonal solaryle, displaingits positionsouthduringborealwinterandnorthduringboreal

summer(Byrneetal.,2018). RelatedtothesouthwarddisplaementoftheITCZ,theequatorial

easterly winds are relaxed and the the eastern equatorial Pai SST are inremented during

(12)

Figure1.1: ShematirepresentationofthetropialPai'soeaniandatmospherimeanstates.

Redandblue shadingorrespondtowarmandoldSSTs,respetively. TheWalkerCirulationis

representedbytheblakdashedline, thediretion pointedoutbytheblakarrows. Thewhitearrows

showtheequatorialeasterlywinds,thebluearrowtheupwellingsystemandthesolidredlinethe

depthofthethermoline. Soure: Collinset al.(2010)

1.3 El Niño / Southern Osillation (ENSO)

The El Niño Southern Osillation is a naturally ourring limate variability in the tropial

Pai that warms (ools) the entral-east equatorial region during El Niño (La Niña) events

withafrequenyof2to7years(Bellengeretal.,2014;Capotondietal.,2015). Theatmospheri

manifestationoftheanomalousSSTwarmingandoolingonditionsisthelarge-saleeast-west

sealevelpressureseesawnamed the SouthernOsillation (MPhaden etal., 2006).

A traditional view of an El Niño event starts with the tropial weather noise in boreal

spring, that is, with a set of westerly wind events. It triggers a downwelling oeani Kelvin

wave, deepens the thermoline, redues the upwelling of the old subsurfae waters in the

eastern equatorial Pai and hene, warms the entral-eastern Pai region (Timmermann

etal.,2018). Inautumn, theanomalouswarmSSTdisplaes theupward branh oftheWalker

Cirulation eastward from the Western Pai Warm Pool, leading to the growth of ENSO

(Philander,1983). Theresultisaweakeningofthetradewindsalongtheequatorasthepressure

falls in the eastern Pai and rises in the west. The onseutive eastward transport of the

westPai warm watersensues further positive SSTanomalies (MPhadenetal., 2006). The

peak of the ENSO event ours during boreal winter, oiniding withthe seasonal southward

displaement of the ITCZ (Philander, 1981). The warm waters assoiated with an El Niño

(13)

terminating the positive phaseof ENSOand sometimesleading to thetransitionto a LaNiña

state (Bellenger et al.,2014;Timmermann etal., 2018).

Ingeneral,LaNiñaeventsouldbedesribedastheoppositephaseofElNiño,inwhihthe

entral-easternPaiobtainsnegativeSSTanomaliesandthetradewindsandthethermoline

tilt are further inreased. The result is an intensiation of the Walker Cirulation, with an

inreaseofonvetion(subsidene)overthewestern(eastern-entral)Pai(Philander,1985).

The shemati representation ofEl Niño andLa Niña events isshown inFigure 1.2.

Figure 1.2: El NiñoandLaNiñaonditions: duringanElNiño(LaNiña)eventthethermolineis

attened (tilted),deepening(shoaling)in theeastequatorialPai, warming(ooling)the

entral-easternregions,displaingtheupperbranhoftheWalkerCirulationeastward(westward)

and weakening(strengthening)thetradewinds. Soure: NationalOeani andAtmospheri

Administration(2019)

Although we havealready explained the evolution andharateristis oftheENSO phases

in broadterms, we mustrealize that eah event is singular and no two eventsare alike (Tim-

mermann et al., 2018). ENSO events an dierin amplitude, temporal evolution and spatial

pattern, resulting in a high diversity of episodes with dierent dynamis (Capotondi et al.,

2015). In order to dene a lassiation and luster the large diversity of ENSO events, a

dierentiationbetween theEastPai(EP)or anonialandCentralPai(CP) orModoki

eventshasbeenmade(TrenberthandStepaniak,2001;LarkinandHarrison,2005;Ashoketal.,

2007;Lietal.,2010;KimandYu,2012). EPElNiñoevents,havingtheirpositiveSSTanoma-

lies loatednext totheAmerian ontinent, tendto be ofhigher intensitythan theCPevents

with their anomalousSST visibleoverthe entral equatorial Pai. Inontrast, CPLa Niña

events are usually of larger amplitude than EP La Niña events (Capotondi et al., 2015). In

Figure 1.3the SSTpattern for bothtypesof El Niñoand La Niñaeventsis visible.

Multiple indies have been dened with the objetive to apture spatially varying ENSO

events. Inthe next subsetionswe will introdue thedierent ENSOdomains thathave been

used, and explain some of themetris that aregenerally applied for ENSO researh. Finally,

wewill explainthe fundamentalfeedbaks thatexistwithin theinterationbetween theoean

(14)

Figure1.3: Spatialpatternoftheseasurfaetemperatureanomalies(SSTA)forspeiwarmand

oldevents: a)East Pai (EP)ElNiñoeventduring 1997-1998,b)EastPai(EP)LaNiñaevent

during2007-2008,)CentralPai(CP)ElNiñoeventduring2004-2005andd)CentralPai(CP)

LaNiñaeventduring1988-1989. Soure: Capotondietal.(2015)

1.3.1 ENSO domains

Severalindiesbasedon SSTanomalies averaged overspei domainshave been employed to

desribe and monitor the SST anomalies as part of the ENSO phenomenon. Those domains

where initially loated over four "Niño" regions by the Climate Analysis Center in the early

1980s(Bamston et al., 1997): Niño1 (90

W eastward, 5

S- 10

S),Niño2 (90

W eastward, 0

-

5

S),Niño3(150

W-90

W,5

N-5

S)andNiño4(160

E-150

W,5

N-5

S).However, sine

theNiño3regionisnotapable todetetthesignalofthe CPEl Niñoeventsverywell(Hanley

et al., 2003; Li et al., 2010), a new domain was needed: theNiño3.4 region (170

W- 120

W

and5

N - 5

S).

Figure1.4: Niñoindex regions: Niño1+2inred(90

W-80

W,0

-10

S), Niño3in blue(150

W-

90

W, 5

N-5

S),Niño3.4(170

W- 120

W,5

N-5

S)dottedandNiño4(160

E-150

W, 5

N -

(15)

The updated Niño domains (Trenberth, 2019), as shown in Figure 1.4, are listed in the

following:

Niño1+2: The smallest and easternmost of all Niño regionsis a ombinationof initially dierentiatedNiño1andNiño2domains. ItorrespondstotheSouthAmerianoastline,

aregion inwhih ENSOwasreognized fortherst time. It extendsfrom90

W- 80

W

and0

- 10

S.

Niño3: The most frequently used geographial loation for ENSO monitoring and re- searhing in the past. However, when the omplexity of ENSO ame to light, it was

disovered that CPENSO events arenot well aptured by theNiño3 region. It extends

from150

W- 90

Wand 5

N- 5

S.

Niño3.4:The most sensitive and representative domain to dierent ENSO event avors.

It is apable of apturing thesignal of both EP and CP ENSO events. It extends from

170

W- 120

W and5

N - 5

S.

Niño4: The westernmost Niño domain. It aptures the SST anomalies in the entral equatorialPai, andextendsfrom 160

E - 150

Wand 5

N - 5

S.

1.3.2 ENSO metris

AlthoughENSOisharaterizedbyinterannualtropialPaiSSTanomalyutuations, with

warmEl NiñoandoldLaNiñaevents, thediversityoftheintensity,SSTanomalypatternand

temporal evolution ofindividual episodes leave the produt of a highomplexity phenomenon

(Timmermann et al., 2018). Furthermore, ENSO harateristis suer great modiations on

deadal timesales, altering theENSO regime(An and Wang,2000; Trenberth andStepaniak,

2001;MPhaden etal.,2011;Huetal.,2013,2017). Inthepresentsubsetionwewillintrodue

some of theommonlyusedENSOmetris to understand thetimeevolutionof thementioned

diversity.

InthereentyearswehavebeenabletoobserveashiftintheENSOregime: ompared with

the time period of 2000-2011, tropial Pai interannual variability was onsiderably higher

during1979-1999(Huetal.,2013). Theinreaseinvariabilityisobservedaslargerutuations

from the mean state, that is, pronouned osillations with a larger amplitude, whih an be

alulatedwiththestandarddeviationofaspeivariableoveratimeperiod(Bellenger etal.,

2014;Kimetal.,2014;Wengel etal.,2017). Similarly,beausetheENSOeventsarereferredto

asSSTanomalies,theENSOamplitudemustbeunderstoodastheintensityofSSTvariations

during a speitime frame.

Nevertheless, due to thenon-linear behavior ofENSO, itspositiveand negative phasesare

not symmetri: the amplitude of El Niño events are larger in omparison to La Niña (Tim-

mermann et al., 2018). Hene, the ENSO asymmetry, ommonly omputed as the skewness,

expresses the dierene between El Niño and La Niña event amplitude (Timmermann et al.,

2018).

Temporal hange of the ENSO asymmetry is losely linked to the SST anomaly pattern:

EP ElNiñoeventstendto bestrongerthanCPEl Niñoepisodes, whileEPLaNiñaeventsare

(16)

informationaboutthe geographialloation ofthemost anomalousSST,andhene, about the

ourreneof EPor CP events.

Thelast metriisrelatedtotheloserelationbetweentheseasonalyleandENSOevents.

As desribed at the beginning of this hapter, the strongest seasonal equatorial Pai SST

variabilityisrestrited to theboreal wintermonths, beingtheseason during whih theENSO

events tend to peak. The onsequene is thatthe El Niño eventswill grow during theboreal

summerandautumnduetotheinreaseinoean-atmospherioupling(ZebiakandCane,1987;

Wengel etal.,2017)andtheSSTanomalieswillbedampedduringborealspring,aompanied

bytheshoalingofthe easternequatorialthermoline(Harrison andVehi,1999). Thespei

favorable season for the ENSOevent ourreneiswhat we all theENSOphaseloking.

1.3.3 Atmospheri feedbaks

Aswehaveseen,oean-atmosphereouplingandonsequentproessesleadtoENSOevents. In

addition,theENSOdiversitypartlyarisesfrompositiveandnegativeoupledatmosphere-oean

feedbaks(Jinet al.,2006). Thus,thepresentsubsetion willbe dediatedtotheintrodution

ofthemost fundamental interations between the oeanandtheatmosphere.

Apositive(negative)feedbakinvolvesaset ofdierent proessesthatenhane(damp) an

initial perturbation. Present theories usetwo feedbaks to desribethe atmospheriproesses

thatare involved inENSO: thewind (U10) feedbak and the net heat ux(NHFS) feedbak

(Zebiakand Cane,1987;Jinet al., 2006).

The Bjerknes feedbak is the most dominant positive feedbak: the zonal SST gradient

generated by the easterly winds is infat inreased by stronger trade winds, whih in return

will intensify the Walker Cirulation, produing a hain reation. The U10 feedbak, the

atmospheriomponentoftheBjerknesfeedbak,relatestheremotezonalwindsensitivitytoa

given entral-easternequatorial Pai anomalousSSTand itisresponsible forthegeneration

of ENSO events (Bjerknes, 1969; Lin, 2007; Lloyd et al., 2012). As an example, if the zonal

windsarereduedasaresponseofaweakerequatorialSSTgradient,theequatorialKelvinwave

generated bythe wind perturbationwill deepen thethermoline, enhaningfurther heating of

theentral-east SSTand strengthening theinitial redutionof thezonalwinds.

Onthe other hand,a negative NHFS feedbakats asa damping ontheinrementedSST

anomalies and therefore terminates ENSO events (Zebiak and Cane, 1987; Jin et al., 2006).

Inaddition, thenegative NHFSfeedbak an be deomposedinto four individual omponents

(shortwave radiation, longwave radiation, sensible and latent heat uxes), of whih thelatent

heatux(LHFS)andtheshortwave(SW)feedbakdominate(Lloydetal.,2009). Followingthe

previous example, an inrement of the SST over the entral-eastern equatorial Pai will be

followed byathermaldamping,thatis, byaninrementoftheNHFStowardstheatmosphere.

Furthermore,ifstrongpositiveSSTanomaliesswiththeonvetiveresponseoftheatmosphere,

theinrement of the total loud over will redue the inoming SW radiation, reinforing the

dampingof theperturbed SSTand endingthe ENSO event.

Nevertheless, theSWradiationanalsoatasapositive feedbakwhentheSSTanomalies

obtainnegativevalues,thatis,duringLaNiñaevents. Inasubsidenestate,whentheSSTsare

inremented, the destabilization of the atmospheri boundary layerprevents the formation of

(17)

an enhanement of the initial perturbed SST (Philander et al., 1996; Xie, 2004). Hene, the

study of theSWfeedbakisnot only relevant for the ENSOphaseloking ortheENSO event

termination, but alsogivesrelevant information about theapability ofthemodelto simulate

the atmospheri swith from subsidene (positive SW feedbak) to onvetive (negative SW

feedbak)state (Bellenger etal., 2014).

(18)

Data and Methodology

Inthis hapter we will introdue thedataand the methodology usedin thepresent thesis.

2.1 Data

2.1.1 GFDL-ESM2M

The ore of the present thesis will study a 500 year-long pre-industrial ontrol run simulated

by the oupled arbon-limate Earth System Model from the Geophysial Fluid Dynamis

Laboratory GFDL-ESM2M. The monthly dataused is available on the CoupledModelInter-

omparison Projet Phase 5 (CMIP5) panel and the omplete model desription an be read

inDunne et al. (2012)and Dunneet al. (2013).

Within the CMIP5 model ensemble the pre-industrial ontrol run, often abbreviated as

piControl,isreferredto asthe initialstageofthelongmodelsimulations,aontinuation ofthe

spin-upproess,inwhihtheforing ofgreenhousegases(

CO 2

)ismaintainedtopre-industrial times. Therefore, the unfored simulation will provide us with information about the natural

variabilityofthe system(European Network for Earth SystemModelling,2019).

The Earth System Models (ESMs) inorporate the interations between the atmosphere,

oean, land, ie and biosphere, inluding proesses, impats and omplete feedbak yles

(Heavens and Mahowald, 2013). The GFDL-ESM2M model has been developed from the

previousClimateModelversion2.1(GFDL-CM2.1),inorporating arbondynamis. Thenew

GFDLgenerationonsistsoftwonewglobaloupledarbon-limateESMs,thepresentESM2M

and the ESM2G, diering exlusively in the oean omponent. Although neither model has

bettergenerisimulationskills,theESM2MmodelisadvisedtobeusedforthetropialPai

irulationand variabilityresearh (Dunne etal., 2013).

A set of variables is usedalong the researh. Besides the sea surfae temperature (SST),

neessaryfor the ENSOanalysis, thesubsurfaetemperatures(T),surfae zonal winds(U10),

vertialwindsat 500 hPaheight (W500),preipitation (PR), totalloud over (CLT) and net

surfaeheat uxes (NHFS)areinorporated inour study inorder to analyzetheatmospheri

state and response. The NHFS's dominant omponents arealso applied: the latent heat ux

(LHFS)andthe shortwave (SW) radiation.

(19)

A brief desription of the dierent GFDL-ESM2M omponents and their oupling is pro-

vided next:

a. Atmosphere

The atmospheri omponent is idential to its predeessor CM2.1, the Atmospheri Model

version2(AM2). Ithasa2

latitudinalx2.5

longitudinalhorizontalresolutionwith24vertial

layers. ThegridshemeusedistheDgrid,with3hoursradiationand0.5hourdynamialtime

steps.

b. Oean

The oeanmodelapplied isthe Modular Oean Modelversion4p1 (MOM4p1) set to vertial

pressure layers. The horizontal grid resolution of 1

in latitude and longitude is progressively

nerreahing

1 / 3 ◦

at theequator. Above65

N,a tripolar gridisusedwithpoles overEurasia,

NorthAmeria andAntartia. Inthis ase,themodelonsistsof50 vertiallevels,with10 m

thiknessinthe rst 220 m.

. Land

Integrating the land water, energy, and arbon yles, the Land Model version 3 (LM3.0) is

applied. Thelandwateraountsforamultilayersnowpak,ontinuousvertialsoilwaterwith

saturated and unsaturatedzones, frozen soil water, groundwater disharge, river runo, lakes

as well as lake ie and lake snowpak. Vegetation anopy and leaves are onsidered for the

radiation, the wateryle andarbon dynamis.

d. Sea Ie

The sea iemodel, Sea Ie Simulator (SIS), onsiders full iedynamis, two ie layer and one

snowlayerthermodynamis,andveiethiknessdivision. Theiealbedodierentiates,when

the snow onie is onsidered (0.80) and without snow (0.65), and themelting temperature is

set to 1

C.

d. Iebergs

The originofiebergsisaountedfor,whenthesnowdepth ofLM3.0exeedsaritialvalue.

Then, theexessivesnow pakistransportedto theoean-seaie ompartments byriversasa

Lagrangian partilesdraggedbytheoean,seaie andatmosphere.

e. Coupling

FortheouplingoftheEarthSystemModel'somponentstheFlexibleModelingSystem(FMS)

hasbeenemployed. Theuxesarepassedarosstheomponent's interfaesbytheexhanging

(20)

every 0.5hour, while the traer-oupling between theoean andthe atmosphere ours every

2hours.

2.1.2 ERA-20C

The European Centre for Medium-Range Weather Foreast (ECMWF) twentieth entury re-

analysisprodut(ERA-20C)ontainsglobalatmospheridatabetweentheperiodof1900-2010.

Itis therst ECMWF reanalysis preisely onstruted for longterm limate analysis. Hene,

itwill be our referenetoolto keep trakof the GFDL-ESM2M modelrealism.

TheIntegratedForeastSystemversionCy38r1(IFS-y38r1),whihinorporatesanatmos-

pheri general irulation model (AGCM) and a variational sheme, allows a medium range

foreast. IFSouldbedened astheenvironment, wherethedataassimilation andforeasting

ativitiesperformedat ECMWFmeet. Theforeastassimilation issetto 24hour yles,from

whihtheanalysisisobtainedforeahylebyombiningobservationswiththemodelforeast

estimates,initialized fromthe previous yleanalysis.

The model integrations are based on a spetral T159 horizontal resolution, theequivalent

of about 125 km, and 91 vertial levels from 10 m above the surfae up to 1 Pa, that is,

80 km approximately. The presribed model foring, sea surfae temperature and sea ie

onentration, are obtained from HadISST version 2.1.0.0. The solar radiation, tropospheri

and stratospheri aerosols, ozone and greenhousegases foring soures on the other hand are

as speied for CMIP5 experiment. The observations enompasses the atmospheri surfae

pressuredatafromtheInternationalSurfaePressureDatabankversion3.2.6(ISPD-3.2.6)and

the International Comprehensive Oean-Atmosphere Data Set version 2.5.1 (ICOADS-2.5.1).

Aseond observational inputarethemarine windreports fromICOADS.

An exhaustive quality ontrol has been applied to the observations, rejeting thedata in

thenext ases: the dataat exatly0

latitude and 0

longitude exeptfor a PIRATA mooring

arraybuoy loatedat thatloation;observations of windinspei loationssuh asnear the

oastlinesor seassurrounded by mountains, beause of the oarse model resolution; ICOADS

oean-proling instrument data;station and shipobservations arenot rejeted,but avoided if

thereareatleastthreeobservationswithaonstant5-daywindow;datathatexeedsmorethan

7 times the expeted value extrated from the model ensemble. The aepted observational

surfaepressure data goesfrom30000to 3.6million between 1900 - 2010.

Dierenttehniquesandindieshavebeenusedtodemonstrate thereliabilityofthereana-

lysisprodut. For instane, thevariability of theNiño3.4 index shows similar behavior when

omparingtheERA-20Cto otherreanalysis produts: Japanese 55-yearReanalysis (JRA-55),

20 th

Century Reanalysis version 2 (20CRv2) and ERA-Interim. Although all the reanalysis

produts ontain presribed SSTs, the input soure is dierent for eah of the mentioned re-

analysisoutputs. Nevertheless, some of the early 20 th

entury ENSO events are exaggerated

inmagnitude. Infatinomparison to20CRv2,the ERA-20Cdiersgreater before1940 than

after. For more detailed information related to the reanalysis produt one should look into

Hersbah et al. (2013)and Poli et al. (2016).

Due to the fairly realisti ENSO amplitude and relatively long time-period, whih allows

us to study the limate variability, the ERA-20C has been hosen to be our referene and

(21)

sea surfae temperatures (SST), surfae zonal winds (U10), vertial winds at 500 hPa height

(W500), preipitation(PR),total loudover(CLT),netsurfaeheatux(NHFS),latentheat

ux (LHFS)andshortwave radiation (SW)areextrated from theECMWFwebsite.

2.2 Methodology

2.2.1 Model mean state bias

Before starting withanyENSO analysis, the mean modelbiases are analyzedfor the tropial

Pai region relative to ERA-20C reanalysis produt. The tropial Pai region has been

onnedto 20

N- 20

Sandeastof120

Ereahingtheentral-south Amerian ontinent. The

mainrelevantmeanstatebiasesshownbymultiplelimatemodelsareknowntobeexpressedin

theSSTandU10,representingananomalousWalkerCirulation intensityandloation(Davey

et al., 2002;Dommenget et al.,2014;Bayr etal., 2018).

Firstofall,themeanstateofthedenedtropialPairegionwasalulatedandompared

fortheSSTandU10variables. ForthemeanSSTomparison,insteadofusingabsolutevalues,

wehaveobtainedtherelativevaluesaftersubtratingthetropialPaiareameanvalue. The

reasons to use the relative SST, as explained in Bayr et al. (2018), are mainly two: rst, the

omparisonismoreeasilyaomplishedbetweentwolimateswithdierentmeantemperatures,

andseond, thedependeneoftropialatmospheriirulationishigheronrelativevaluesthan

onabsoluteones. Nevertheless,inordertorelateourndingsofmodelbiastopreviousstudies,

the absolutemeanSSTbiases areomputed aswell.

In addition, we have put our attention on the equatorial Pai mean state (5

N - 5

S)

biases, extending the analysis to W500, NHFS, CLT and PR variables in order to obtain

further information about theloation and intensityof theWalker Cirulation.

2.2.2 ENSO denition

For the ENSO harateristi analysis we have seleted the Niño3.4 region as the main study

area. AlthoughtheNiño3hasbeenappliedbyseveralauthors(Rodgersetal.,2004;Wittenberg,

2009; Lloyd et al.,2012; Bellenger et al., 2014; Atwood et al.,2017), theNiño3.4 box (170

W

- 120

Wand 5

N - 5

S) hasbeen dened asthe most appropriate and generione inorder to

apture thespatially varyingENSO(Bamstonet al.,1997). Aording toHanley etal.(2003),

the Niño3.4index ismore sensitiveto dierentavorsofElNiñoeventsthantheNiño3region.

Infat,theNiño3indexdoesn'tapturethesignalofCPElNiñoeventswell(Lietal.(2010)).

Hene, similarlyasinSantosoet al.(2017), ElNiñoorLaNiñaeventswillbeomputed,when

the Niño3.4 SSTAs exeed half a SST standard deviation for at least 5 onseutive months,

and inour ase the strong events areonsidered bysetting athreshold of a doubled standard

deviation.

Duetothelarge extent ofourtimeseries andthevariabilityofthebakgroundmeanstate,

the mean values (seasonal yle) that we use to obtain the monthly anomalies are omputed

relativetoa30yearrunningwindow. Themainreasontohoosea30yearwindowlengthisthat

the World Meteorologial Organization (WMO)denes a lassialperiodof 30 years to study

(22)

eventstendtohaveavaryingperiodiityofourrenebetween 2and7years(Bellenger etal.,

2014), we need at least 30 years to aount for deadal periods of dierent ENSO behavior.

Similarly, for the rest of variable anomalies we have subtrated the seasonal mean of the 30

yearrunning window as well. The only exeption is made for the setions in whih we study

speitimeperiodsofthe500yearontrolrun. Inthoseases,sinethetimeperiodisalready

restrited,theseasonal yleof the wholedened periodhas been omputed.

AlthoughtheNiño3.4indexisnotapableofdistinguishingbetweenthetwotypesofENSO

events, this will be ahievedbyombining itwith theTrans-Niño Index(TNI) (Trenberth and

Stepaniak, 2001). TNI aims to apture the spatially varying SSTA, separating the eastern

basin SSTA or EP events from the entral-western SSTA or CP events. The original index

omputes normalized Niño1.2 SSTA and subtrats the normalized Niño4 SSTA. Then, if the

largestanomalies arefound onthe east (west), TNIwill obtain positive (negative) values and

the ENSO event will be dened as EP (CP). Due to the GFDL-ESM2M model bias, whih

representsthe strongestSSTvariability anomalouslyawayfrom thesouthAmerianontinent

and therefore out of the Niño1.2 region, the mentioned index has to be modied (Equation

2.1). For our partiular study the eastern boxhave been shifted to 130

W - 90

Wand 5

N -

5

S,whilethewestern boxhasbeen transferred to 170

E - 140

W.

T N I = SST A E N − SST A W N

(2.1)

SST A E N

and

SST A W N

represent theeasternand western normalized SSTvariability,res- petively. ThestandardizationisahievedbysubtratingthemonthlySSTmeanofthe30year

runningwindowand dividing itby thestandard deviationof thesame windowlength.

2.2.3 ENSO metris

For the ENSO representability, dierent metris have been applied and ompared to ERA-

20C.TheENSOasymmetry,thatis, the diereneinamplitudebetween El NiñoandLaNiña

events, isomputedastheskewnessofinterannualvariabilityofSST(BurgersandStephenson,

1999). After omputing the Niño3.4 SSTA, the skewness of the probability density funtion

willprovide us withinformation about theENSO asymmetry. In addition, to ndtheregions

of strongest ENSO asymmetry,the mentioned skewness hasbeen alulated for eah tropial

Pai spatialgrid point using theSSTAsand U10 anomalies (U10A) (Atwood et al.,2017).

TheseasonaldependeneontheSSTvariability,alsoalledtheENSOphaseloking,isthe

seondmetri. TheSSTvariabilityis inreasedduring themonthsofborealautumn, peaks in

winterandisonsiderablydereasedduringspring(RasmussonandCarpenter,1982). Toprove

the reliability of the GFDL-ESM2M's ENSO phase loking, we have omputed the standard

deviation of Niño3.4 SST for eah month. Nevertheless, in order to relate the seasonal SST

variability to other Niño regions, the study of the seasonality is also extended to the whole

equatorial(5

N - 5

S) Pai byusingtheHovmöller diagram.

The third metri orresponds to the spatial pattern of SST variability during the ENSO

events. ForthispurposewehaveomputedtheElNiñoandLaNiñaompositesandshowtheir

tropialPaiSSTApatterns. Independentlyanalyzingthem,weaninvestigateifthereisany

(23)

andtakingintoaount theENSOasymmetry,weaninvestigate theplausibleeetsonto the

mean tropial Pai state thattheresidual ofEl Niñoand La Niñaeventsould have.

TheENSOamplitudewasdetetedasinBellengeret al.(2014), alulatedasthestandard

deviation ofSST,butinouraseovertheNiño3.4region. Beauseourmaininterestisfoused

on the deadal variability of theENSO amplitude, a 30 year running standard deviation has

beenusedtoexposethelongtermvariability. InordertoomparethedeadalENSOamplitude

with ENSO event frequeny and EP - CP ENSO avors, the 500 year time series has been

split into 30 year bins, deteting the ENSO events with the above explained tehnique and

distinguishing the EP-CP events by the modied TNI index for eah binned period of time.

Finally, thesequene of El Niño - La Niña events is analyzed by applying theNiño and Niña

ompositeintheHovmöllerdiagrams,extendingthetimeevolutionofSSTAovertheequatorial

Pai 20monthsbefore andafter the month ofDeember.

2.2.4 Atmospheri feedbaks

ThemeanstateandvariabilityofthetropialPailimateisstronglydeterminedbyoupled

oean-atmospherefeedbaks(Lin,2007). Agenerilassiationofthosefeedbaksinthetropi-

al limate dividesthem,dependingon their positive or negative sign. Thetwo mostommon

feedbaks that onsider atmospheri proesses are the U10 feedbak and the NHFS feedbak

(Zebiak and Cane, 1987; Jin et al., 2006). With a positive sign, the U10 feedbak, or the

atmospheri omponent of the Bjerknes feedbak(Bjerknes, 1969), ismeasured asthedistant

zonal wind response to an anomalous SST over the entral-eastern equatorial Pai (Lloyd

et al., 2012). The anomalous westerly (easterly) wind anomalies ause a derease (inrease)

of thezonal SST gradient by attening(tilting) thethermoline slope. In return, the weake-

ning(strengthening) oftheSSTgradientfurtherdamps (exites)theeasterlywinds,forminga

positive feedbak. Similarly,a positiveSSTA overthe entral-eastern tropialPai swithes

ananomalousloalonvetionstateinsteadofaommonlyobservedsubsidene. Theonvetion

auseshigherpreipitation,whihinreasestheheatbylatentenergy,andloudoverandwater

vapor whih at as radiative heating. Hene, a positive feedbak is formed. Following Lloyd

et al. (2009) the U10 feedbak is omputed asa linear relation shown inEquation 2.2, where

τ x

representsthe U10A,beinga produt oftheSSTA (

SST

)and theU10 feedbak(

µ

).

τ x = µ × SST

(2.2)

The main negative feedbak, the proess whih damps the anomalous SSTs, is the NHFS

feedbak. The SST anomalies are responded to by thermodynami hanges: positive SSTA

will ause an inrease of heatloss, mostly by latent uxes and the redutionof inoming SW

radiation bythe inreaseof CLT. Toa lesserextent,sensible uxand long-wave radiationalso

aet the exited SSTs (Lloyd et al., 2009). The NHFS feedbak omputation is visible in

the Equation 2.3. Similarly as in Equation 2.2, the negative feedbak (

α

) is obtained by the

relationbetweentheNHFSanomalies(NHFSA)(

Q

)andSSTA.Followingthesameproedure,

we have applied thesame equation to the two most dominant NHFS omponents: the LHFS

and theSWradiation (Lloyd et al.,2009, 2012).

Q = α × SST

(2.3)

(24)

First of all, the linear relation between thementioned variable anomalies and theNiño3.4

SSTAareomputed foreahtropialPaigridpoint. Onewehavedetetedtheregionwith

U10andNHFSsensitivities,itwillbeusedtoalulatethetemporalevolutionofthefeedbak.

Forinstane, the U10feedbakmaximumvaluesareloatedovertheNiño4area, whilefor the

NHFSfeedbakwewill ombine the Niño3and Niño4boxes.

2.2.5 Deadal ENSO amplitude modulation

Inorder to understand the possible auses and onsequenesof the deadal ENSO amplitude

variability, we have deteted and dierentiated between two time periods of high and low

ENSOamplitudes: theHighandLowepohs. Aftersettingbothperiodsto thesametemporal

length of 60 years, we have studied the mean state and variabilities of the tropial Pai

natural systemfor the SST, T, U10, W500,NHFS, PR and CLT. The interannual variability

hasbeen omputed asthestandard deviation, obtainingthe anomalies relative to the60 year

seasonal yle. Ogata et al. (2013) separated the studies relating the mean state and the

ENSOamplitude intotwo groups: the onesthatlookinto theENSOamplitude responsewhen

dierentstohastiforingareappliedtomultiple meanstates,andtheseondonesexamining

theinteration between themean stateand theENSO amplitude.

Ourresearh would tinto the seond study-type: besidesthemeanstate and interannual

variability, we have alulated the whole ENSO harateristis and linear atmospheri feed-

baks for both epohs. Thiswill help us understand thepossible eets ofthe ENSOmetris

dierenes,like its amplitude,asymmetryand spatialpattern onto themeanstate.

Furthermore, the possible auses for the ENSO deadal variability are investigated. A li-

near Pearson orrelation has been used to study the relation between the ENSO amplitude,

atmospherifeedbaks andthe mean state.

Following Bellenger et al. (2014), our last but not the least important fous is set on the

non-linearexpressionsoftheGFDL-ESM2Moupledlimatemodelfeedbaks. Ourintentionis

toobtainfurtherinformationaboutthepossibleausesforthedeadalENSOamplitudemodu-

lation. We have split the months between positive and negative Niño3.4 SSTA, for both the

HighandLowepohs, andthen obtainseparatelinear relationships withU10Ato understand

thewind sensitivityto surfaetemperature anomalies.

Similarly,we have applied the SWanomalies (SWA)into our non-linear analysis, whih is

known to be the main soure of ENSO error within limate models (Kim and Jin,2011). In

observations,the SWfeedbakisaptured asapositivefeedbak,whenSSTAsobtainnegative

values. In a subsideneregime, aSST inrease will ause adestabilization of theatmospheri

boundarylayer,restriting the stratiformloudformation, inreasing theSWradiationand in

turninrease the SST. Onthe ontrary,when the SSTAsare positive, thatis, in aonvetive

regime, the SW feedbak is turned negative. In this ase an inrease of SST will produe an

inrement of CLT, aderease of theinoming SWradiation and a redution ofthe perturbed

SST(Philanderetal.,1996;Xie,2004). Fromthisanalysiswewillretaininformationaboutthe

abilityofthemodelto demonstrate the system'sshift between onvetive/subsidene regimes.

The nextnon-linear variability showninour researhis relatedto W500anomalies, whih

infatwill provide furtherinformation abouttheabilityofthesystemtoshiftfromsubsidene

(25)

the Niño3 box, adomain inwhih the vertial windvariability diersthemost andstrong EP

eventsourduringtheHighepoh. Hene,the non-linearanalysisinthisasewillinvolve the

Niño3 area.

Thelastpossiblenon-linearrelationwiththedeadalENSOamplitudehasbeenattributed

to the mean thermoline slope. The thermoline depth is omputed asthe strongest vertial

temperature gradient instead of the ommonly used 20

C isotherm. The seond mentioned

approahofthethermolineisnotreommendedunderlong-termmeanstatehanges(Yangand

Wang,2009). SimilarlyasinHuet al.(2013),whodemonstrated thatatoolargeor tooweak

thermolinetiltdereasestheENSOamplitudeformingaonavefuntion,thethermolinetilt

isalulated bythe dierene ofthemeanthermoline depthbetweentheeasternandwestern

equatorial Pai. The western box is set to 160

E - 170

W, 5

N - 5

S and theeastern area

to 120

W - 90

W, 5

N - 5

S.In order to represent the deadal relationship, we have applied

a 30 yearrunning meanto the monthly thermoline tiltdata.

(26)

Results

3.1 ENSO simulation skills

The GFDL-ESM2M model is known to reprodue relatively realisti ENSO dynamis and it

hasbeenhosenasoneofthebestoupledlimatemodeloptionwithintheCMIP5group(Kim

andJin,2011;Bellenger etal.,2014;Kimetal.,2014;Capotondietal.,2015). Furthermore,its

strongatmospheri feedbaks have been foundto be relativelylose tothe observations (Bayr

et al., 2019). In the rst hapter we will analyze some of the harateristis of the present

limatemodel, omparingitto theERA-20Creanalysis produt,starting fromthemeanstate

model bias and ontinuing with the relevant ENSO statistis and feedbaks. Both the mean

stateandfeedbaksareimportantfatorstoobtaingoodENSOdynamis,asithasbeenproven

inmanypreviousstudies(KimandJin,2011;Lloydet al.,2012;Hametal.,2013;Dommenget

et al., 2014). Therefore, this setion will be of great importane in order to understand the

behaviorof thesimulation obtained withthe GFDL-ESM2M limatemodel.

3.1.1 Model bias in the mean state

Many limate models have relevant issues when simulating the realisti representation of the

tropial Pai mean state. One example is the old SST bias over the equatorial region.

Theold tongue bias,as thenegative bias inthe mean state is alled, simulatesa ontinuous

La Niña-like state: the old SST over the equatorial Pai leads to an intensiation of the

easterlieswestoftheNiño4region,pushingthewesternPaionvetiveregionwestward,and

henedisplaingthe risingbranhoftheWalkerCirulation. Iftherisingbranhisloatedtoo

farwest,theonvetiveresponseisgreatlydereasedandthereforethestrengthoftheU10and

NHFSfeedbaksisredued, ausing dierent ENSOdynamis (Daveyetal., 2002;Bayr etal.,

2018).

The hosen modelfor this researhis not an exeption. Figure3.1 demonstratesthe die-

renesintherepresentation ofthemeantropialPaiSST.Inordertomaketheomparison

easier,insteadof the absolutetemperatures, we showthe meanSSTrelative to theareamean

of the tropial Pai (120

E-80

W, 20

N-20

S). In addition, the distribution of the relative

SSThasalargerimpatonthetropialatmospheriirulationthantheabsolutevalues(Bayr

andDommenget,2013).

(27)

Althoughthe general pattern oftherelativeSSTissimilar toERA-20Creanalysis produt

with warmtemperatureson the west andold ontheeast,thegradient or thetransitionfrom

positive to negative relative SST is shifted 60

to the west, onning the Pai Warm Pool

to the very western equatorial region, and displaing the minimum SST values away from

the South Amerian oast. Furthermore, the SST dierene between the GFDL-ESM2M and

ERA-20C(Figure 3.2a) demonstrate anegative equatorialSSTbias above 1

C, andapositive

bias above 3

C along the South Amerian oastline. Due to the old bias the atmospheri

irulation shows an anomalouspattern: strongereasterlies over theNiño4 region andwest of

Central Ameria are found, while o the oast of Peru weaker mean zonal winds are visible

(Figure 3.2b).

Figure 3.1: Themeanseasurfaetemperature(SST)relativetotheareameantropialPaiSST

for: a)ERA-20C, andb)GFDL-ESM2M.

Figure 3.2: Meanstatemodelbiasfora)theseasurfaetemperature(SST),andb)thesurfae

zonal winds(U10),obtainedbythedierenebetweentheGFDL-ESM2M modelandtheERA-20C

reanalysisprodut.

Figure 3.3 represents the zonal equatorial struture (5

N-5

S) of the relative SST, U10,

W500, NHFS,CLT, and PR. The mentioned old bias strengthens the easterlywinds west of

150

W, pushing the rising branh of the Walker Cirulation 15

to the west. In addition, the

rising branh of the Walker Cirulation auses too high CLT and PR and too weak NHFS,

while on theeasternside thetoo strong subsidene state shownbythedownward windsleads

to lessCLTand PRwitha strongerNHFS whenomparing to ERA-20C.

Hene,duetotheequatorialoldbiasandaonstantLaNiña-likestate,therisingbranhof

the WalkerCirulation isloatedfar too westand thesubsidene stateis anomalouslystrong,

extending slightly west ofthedate line.

(28)

120E 150E 180 150W 120W 90W -4

-2 0 2 4

(°C)

RELATIVE SST ERA-20C GFDL-ESM2M

(a)

120E 150E 180 150W 120W 90W -6

-4 -2 0 2

(m/s)

(b) U10

120E 150E 180 150W 120W 90W -0.06

-0.04 -0.02 0 0.02

(Pa/s)

(c) W500

120E 150E 180 150W 120W 90W 30

60 90 120

(W/m²)

(d) NHFS

120E 150E 180 150W 120W 90W 40

50 60 70 80

(%)

(e) CLT

120E 150E 180 150W 120W 90W 2

4 6 8 10

(mm/day)

(f) PR

Figure3.3: EquatorialPaimeanstate(5

N-5

S)ofa)seasurfaetemperature(SST),b)surfae

zonalwinds (U10),)vertialwindat500hPaheight(W500),d)netheatux(NHFS),e) totalloud

over(CLT)andf)preipitation(PR).GFDL-ESM2Min redandERA-20Cinblue.

3.1.2 ENSO metris

In the present subsetion we will pay attention to the ability of the GFDL-ESM2M limate

modelto reprodue multiple ENSOharateristis.

First of all we must highlight its strong non-linear behavior when simulating the ENSO

events, as presented by the probability density funtion (PDF) of Niño3.4 sea surfae tem-

perature anomalies (SSTA) (Figure 3.4). In both ases, ERA-20C and GFDL-ESM2M, the

distributionhas apositive skewness: the tail ofthe PDFis elongatedtowardspositive values,

representingstrongerpositiveSSTAthannegativeones. However,thelimatemodel'sskewness

is about three times larger than that of ERA-20C, 0.42 and 0.16 respetively, revealing that

theGFDL-ESM2M modelhasrelatively strongerEl Niñothan La Niñaevents.

(29)

NINO3.4 SSTA

Sk: 0.16

-4 -3 -2 -1 0 1 2 3 4

Nino3.4 SSTA (°C) 0.01

0.03 0.05 0.07 0.09 0.11

(a) NINO3.4 SSTA

Sk: 0.42

-4 -3 -2 -1 0 1 2 3 4

Nino3.4 SSTA (°C) 0.01

0.03 0.05 0.07 0.09 0.11 (b)

Figure 3.4: Probabilitydensityfuntion ofNiño3.4seasurfaetemperatureanomalies(SSTA).The

skewnessvalue,representingtheENSOasymmetry,isdisplayedintheupperleftornerof theplots:

a) ERA-20C,andb)GFDL-ESM2M.

The geographial distribution of the tropial Pai SSTA skewness (Figure 3.5) also dis-

plays relevant dierenes. Both the map for ERA-20C and GFDL-ESM2M show a dipole

pattern: positive skewness on the east equatorial Pai resembles stronger positive SSTAs

than negative, that is, stronger El Niño than La Niña events. However, when El Niño is de-

veloping,theoeani heatontent isdisplaedfromthe western equatorialPaitowards the

east, and hene, negative SSTAs areloatedoverthe edge ofthe Pai WarmPool: positive

skewness in the east is related to negative skewness in the west. It must be said that both

representations agree on the loation of the highest skewness: the strongest asymmetries are

situated on the easternPai, theloationof thesoalled EP El Niñoevents.

Figure 3.5: SkewnessmapoftropialPaiseasurfaetemperatureanomalies(SSTA)fora)

ERA-20C, andb)GFDL-ESM2M.

Nevertheless,theextensionofthementionedpositiveskewnessisexaggeratedintotwomain

regions(south andnortheastequatorialregions)andthenegative skewnessis displaedfartoo

the west, agreeingwith the loation of the Pai Warm Poolbeing too far west. Beause of

the old equatorialbiasandstrong western equatorial U10,theedgeof thePai WarmPool

is limited to the west, allowing the strong positive SSTA to spread further west and limiting

the eastward extension of the negative skewness in the limate model. In addition, both the

(30)

Figure3.6: SkewnessmapoftropialPaisurfaezonal windanomalies(U10A)fora)ERA-20C,

andb)GFDL-ESM2M.

Similarly, the skewness of U10A (Figure 3.6) is positioned far too the west ompared to

ERA-20Candthestrongervaluesillustratethehighlynon-linearbehavioroftheGFDL-ESM2M

oupledmodel onemore.

AnotherimportantENSOharateristiisitsphaseloking. ThehighestNiño3.4SSTstan-

darddeviationistwomonthsdelayedforthethelimatemodel(Figures3.7a,b,). Nevertheless,

themodelisapable ofreproduing thehighestNiño3.4SSTstandard deviationduringboreal

wintermonthsalongwiththedampingofitsvariabilityduringspring. Thisisarelatively lose

approximation to realisti ENSO dynamis, in whih ENSO grows during autumn, peaks in

thewinter months and isdamped duringspring (Rasmusson andCarpenter,1982). A seond

smallerpeakofthestandarddeviationisvisibleduringthemonthofJuly. Theanomalousdou-

blepeakof SST variability is due to the double(semiannual) ITCZ and the seasonal reversal

ofthemeridionalSSTgradientand windsinthe east(Wittenberg etal.,2006). TheHovmöller

diagramoflatitudinallyaveraged(5

N-5

S)SSTvariabilityrepresentsthementionedbehavior:

both peaks are equally strong, but during boreal summer months the variability is extended

furtherwest, apturing itbythe Niño3.4regionwithhigher magnitude (Figure3.7).

Thegeographial position oftheSSTA usingEl Niño and LaNiña omposites isvisible in

Figure3.8. Asshown before, both the positive and negative SSTA extend too far west in the

present limatemodeland itsintensityisgreatly enhanedwhenomparingto ERA-20C.The

largestpositive SSTA isloatedat 120

Wandthenegative SSTA isslightly shiftedwestward.

Thereanalysis produt, on the other hand, hasboth a positive and negative SSTA maximum

entered in the equatorial Pai setion. The dierene between the eets of El Niño and

La Niña events, that is, their residual, is demonstrated by adding both omposites. El Niño

events tendto warmthe very easternsetion, whileLa Niñasaet more stronglythewestern

region. The result is a dipole pattern for both the limate model and the reanalysis produt.

Thedierenesarevisibleinthemagnitudeandthe loation: thelimatemodelhasastronger

dipolepattern withthe negative valuesloatedtoofar west.

Although theGFDL-ESM2M isknownfor itsrelatively realisti ENSOdynamis,itseems

that it has diulties to reprodue proper ENSO harateristis: the ENSO asymmetry is

anomalously large, the phase loking is delayed, it shows a double SSTA standard deviation

peak, andLaNiñaandElNiñoeventstendto extendtoofarwestalongtheequatorialPai.

Inaddition, thepresent limate modeldoesn't seem to reprodue realisti EPEl Niño events,

(31)

J F M A M J J A S O N D 0.6

0.7 0.8 0.9 1

ERA-20C (°C)

0.9 1 1.1 1.2 1.3

GFDL-ESM2M (°C)

NINO3.4 SST STD

(a)

SST STD

120°E 150°E 180° 150°W 120°W 90°W Jul

Aug Sep Oct Nov Dec Jan Feb Mar Apr May

Jun 0.25

0.5 0.75 1 1.25 1.5 1.75

(°C)

(b) SST STD

120°E 150°E 180° 150°W 120°W 90°W Jul

Aug Sep Oct Nov Dec Jan Feb Mar Apr May

Jun 0.25

0.5 0.75 1 1.25 1.5 1.75

(°C)

(c)

Figure 3.7: Monthlystandarddeviationoftheseasurfaetemperatures(SST)over: a)theNiño3.4

region, ERA-20CinblueandGFDL-ESM2M modelin red,b)thePaiequatorial(5

N-5

S)region

forERA-20C,and )thesameasb)butforGFDL-ESM2M.

Figure 3.8: GeographialloationofERA-20CreanalysisproduttropialPaiseasurfae

temperatureanomalies(SSTA)froma)ElNiñoomposite,b)LaNiñaomposite,and)theirresidual

obtainedbyaddingbothomposites. Similarly,d)e) andf)orrespondto theGFDL-ESM2M model.

(32)

3.1.3 Atmospheri feedbaks

The atmospheri positive and negative feedbaks are of great importane for induing ENSO

growth and damping, respetively. Hene, their orret simulation will ause a substantial

improvement on the ENSO properties suh as El Niño/La Niña asymmetry or phase loking

(Bayretal.,2018). Bayretal.(2018)statethedependeneoftheSSTmeanstateonsimulating

the ENSO atmospheri feedbaks. They onluded that the U10 and NHFS feedbaks at

linearly depending on the equatorial SST mean state, ompensating eah other's biases, but

leading toerroneous ENSOproperties.

Thewindisknowntoatasapositivefeedbak: thepositiveSSTAovertheNiño3.4region

dereasesthezonal SSTgradient overtheequatorialPai, andhenethezonalwindson the

easternequatorialregion andthe thermoline tiltareredued, induing a furtherheating: the

Bjerknes feedbak (Bjerknes, 1969). In ontrast, the NHFS ats to redue the oeani heat

ontent when SSTA inreases. LHFS and SW radiation are the dominant variables aeting

theNHFS (Lloyd etal.,2009). For instane,when positive SSTA areloatedovertheNiño3.4

region, higher evaporation releases a larger amount of heat energy, inreasing the LHFS. In-

reasing the loud over over the anomalous SST region redues the inoming SW radiation

towardsthe surfae ofthe oeanbyreeting itbak: thealbedo eet. Thereforeit isonsi-

deredto be anegative feedbak,whih playsamajorrolein damping ENSOevents duringthe

monthsofspring (Dommenget andYu,2016;Wengel etal., 2017).

Applying a simple polynomial t of the rst order, we get a linear regression that relates

U10andNFHSanomaliestoNiño3.4SSTA.Theslopeofthepolynomialtwillbethestrength

ofthefeedbak.

Therststepforthefeedbakanalysisistodetet theregionsinwhihtheU10andNHFS

areaetedthemost bythe Niño3.4SSTA. Therefore,wewill ompute thefeedbaksfor eah

spatialgridpoint alongthetropial Pai,relatingU10Aand NHFSA to Niño3.4SSTA.

Figure3.9: Linearwind(U10)feedbak: anomaloussurfaezonalwind (U10A)sensitivityto

Niño3.4seasurfaetemperatureanomalies(SSTA)foreahtropialPaigridpointfora)

ERA-20C,andb)GFDL-ESM2M.

Figure3.9shows thelinearrelationshipbetween theNiño3.4SSTAand U10A.Inthis ase,

we must say thatthe U10 feedbak simulation is very similar to the reanalysis produt, both

in strength and loation. For the GFDL-ESM2M model however, the positive feedbak still

(33)

both ases agreethat thestrongest U10 feedbak isloated lose totheNiño4 region.

Figure 3.10: Linearnetheatux(NHFS)feedbak: anomalousnetheatux (NHFSA)sensitivityto

Niño3.4 seasurfaetemperatureanomalies(SSTA)foreah tropialPaigridpointfora)

ERA-20C, andb)GFDL-ESM2M

The main negative feedbak, theNHFS feedbak, is spread over a larger equatorial region

(Figure3.10). ThelimatemodelshowssubstantialdiereneswhenomparingittoERA-20C:

it is weaker in magnitude and its maximum is separated in two main domains, one entered

at 120

W and the other one at 180

. The ombination of Niño3 and Niño4 regions will be

onsidered asthe loation of the strongest relationship between theNHFSA and the Niño3.4

SSTA.

J F M A M J J A S O N D 0.6

0.9 1.2 1.5

(m/s per °C)

-20 -15 -10 -5 0

(W/m² per °C)

MONTHLY FEEDBACK

U10 NHFS LHFS SW

Figure 3.11: Monthlywind(U10)feedbakin redandnetheatux (NHFS)feedbakinsolidblue.

Thenetheatux feedbakhasbeendividedinto latentheat ux(LHFS)shownasdashedblueand

shortwaveradiation(SW)asdash-dotblue. Niño3.4seasurfaetemperatureanomalies(SSTA)have

beenlinearlyrelatedtoNiño4surfaezonalwind anomalies,andwiththeombinationofNiño3and

(34)

The seasonality of the feedbaks an be observed in Figure 3.11. The U10 feedbak has

strongestvalues from Otober to Deember, theseason inwhih theSST varies themost and

theENSOevents grow. However, a seondpeakis visibleduring May,whihould berelated

tothedoubleITCZandrelaxationoftheeasterlies,heneformingaseondpeakontheENSO

phase loking (Figure 3.7a). The NHFS, as demonstrated by Lloyd et al. (2009), is mostly

governedbyLHFSandSWfeedbaks. ItpeaksfromJanuarytoApril,reduing thevariability

oftheNiño3.4SSTand leading to relatively realisti ENSOphaseloking.

From our feedbak analysis we ould argue that the GFDL-ESM2M limate model has a

quiterealistirepresentation of the U10feedbak,although itextendstoo farinto thewestern

equatorialPai. However, themodelshowslarger deienies when simulating thenegative

NHFS feedbak: its maximum values are split into two equatorial domains and the absolute

values areoverallweakerthaninERA-20C.Hene, sinetheSSTvariabilityisover-exitedby

thepositivefeedbak, mostlyinthewesternequatorialPai,butitistooweaklydampedby

theNHFS feedbak, exessively ative ENSOeventsareto beexpeted.

Abbildung

Figure 1.1: Shemati representation of the tropial Pai's oeani and atmospheri mean states.
Figure 1.2: El Niño and La Niña onditions: during an El Niño (La Niña) event the thermoline is
Figure 1.3: Spatial pattern of the sea surfae temperature anomalies (SSTA) for spei warm and
Figure 3.1: The mean sea surfae temperature (SST) relative to the area mean tropial Pai SST
+7

Referenzen

ÄHNLICHE DOKUMENTE

8 Deviation of wind direction b etween observered and ECMWF value 14 9 Position of the Drescher A WS and the closest ECMWF-Grid p oints 15 10 Dierent interp olation for the lo

alulating the root value of the tree using the value Y ϕ and the authentiation data stored in the MSS signature.. First Y ϕ is onatenated and hashed with Auth

Lösung: Es gibt keine solhe positive ganze Zahl. Beweis: Denn für jede positive ganze Zahl n beweist die Umfomung

Es gibt eine konkret berehenbare Zahl w , so dass gilt: Jede ungerade Zahl n ≥ w kann als eine Summe aus drei Primzahlen geshrieben werden. Winogradow selbst konnte keinen Wert für

• Leicht, falls der Fehler eine nicht abgefangene exeption auslöste :-). • Schwer, falls das Programm stumm in eine Endlos-Schleife

Da für die natürlihe Konvektion an vertikalen Wänden das T emperaturprol durh. das oben genannte Anpassen der Gradienten bek annt ist, konnte in

Sofern noh niht vorhanden, füge das neue Element als Blatt. so ein, dass die Suhbaumeigenshaft erfüllt ist,

ta Mining) eingeteilt wird, welche hier erst kurz vorgestellt werden, um dann auf die.. drei T eile F ull-Text, Spatial und Still Image