• Keine Ergebnisse gefunden

(1)Denition: A measure µfor a dynamical system(X,T)is T-invariantif µ(A) =µ(T−1(A)) for every measurable setA⊂X

N/A
N/A
Protected

Academic year: 2021

Aktie "(1)Denition: A measure µfor a dynamical system(X,T)is T-invariantif µ(A) =µ(T−1(A)) for every measurable setA⊂X"

Copied!
8
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Denition: A measure µfor a dynamical system(X,T)is T-invariantif

µ(A) =µ(T1(A)) for every measurable setA⊂X.

Lemma 1: Let T :X →X be a continuous map on a compact spaceX. Thenµis T-invariant if and only if

Z

X

f dµ= Z

X

f ◦T dµ

for every f ∈C(X). (Here C(X) is the space of all continuous functions onX, equipped with the normk k.)

(2)

Proof of Lemma 1:

Assume thatµis T-invariant andA∈ B, the σ-algebra of µ-measurable sets. Then

Z

X

1A◦T dµ=µ(T1A) =µ(A) = Z

X

1A dµ.

A similar expression works for linear combinations of indicator sets.

These linear combinations of indicator sets lie dense inC(X), so the result carries over toC(X).

(NB: We used here that continuous function of a compact space are bounded).

(3)

For the other direction: for every closed setAandε >0, we can nd a functionf ∈C(X)such that f ≡1 onAand

R|f −1A|dµ < εas well as R

|f −1A| ◦T dµ < ε. Then

|µ(T1A)−µ(A)| = | Z

1A◦T dµ− Z

1A dµ|

= | Z

(f −1A)◦T dµ− Z

(f −1A) dµ|

≤ 2ε.

Sinceεis arbitrary, µ(T1A) =µ(A). The closed sets generate the Borelσ-algebra, so also µ(T1A) =µ(A) for all A∈ B.

(4)

We have seen examples that Lebesgue measure isT-invariant for the doubling map and also for rotations

Rα(x) =x+αmod1 onS1. It is reasonable to ask:

Does every dynamical system have an invariant measure?

Theorem of Krylov-Bogol'ubov: IfT :X →X is a continuous map on a nonempty compact metric spaceX, then the set of invariant probability measuresM(X,T)6=∅.

(5)

T : (0,1)→(0,1), T(x) =x2.

0,1∈/ (0,1), so the Dirac measuresδ0 andδ1 are not allowed.

Suppose thatµ isT-invariant, and assume that A⊂(0,1) is a compact set withµ(A)>0. Then there isn1 ∈Nsuch that A1 :=T−n1(A)is disjoint from A. Hence µ(A1) =µ(A)>0.

Proceed by induction: ni ∈Nis such thatAi :=T−ni(Ai−1) is disjoint fromAi−1. Thenµ(A) =µ(Ai)>0 for alli ∈Nand all Ai are pairwise disjoint. Hence

µ((0,1))≥X

i

µ(Ai) =∞,

soµ is not a probability measure.

Exercise 2.1: Show that continuity is an essential assumption in the Theorem of Krylov-Bogol'ubov.

(6)

Proof of the Theorem of Krylov-Bogol'ubov:

Letν be any probability measure (invariant or not) and dene Cesaro means:

νn(A) = 1 n

n−1

X

j=0

ν(T−jA).

These are all probability measures.

The collection of probability measures on a compact metric space is known to be compact in the weak topology.

This means that there is limit probability measureµand a subsequence(ni)i∈N such that for every continuous function ψ:X →R:

Z

X

ψdνni → Z

ψ dµasi → ∞.

(7)

continuous functionψA :X →[0,1]such that ψA(x) =1 if x ∈A and

µ(A)≤ Z

X

ψAdµ≤µ(A) +ε and

µ(T1A)≤ Z

X

ψA◦T dµ≤µ(T1A) +ε.

Here we use outer regularity of the measureµ:

µ(A) = inf{µ(G) :G ⊃A is open}.

We takeG ⊃A so small thatµ(G)−µ(A)< ε and make sure that ψA =0 for allx ∈/G. Note that it is important thatA is closed, because if there existsa∈∂A\A, then the above property fails for µ=δa.

(8)

Now by Lemma 1 and the denition ofµ

|µ(T1(A)) − µ(A)| ≤ Z

ψA◦T dµ− Z

ψA

= lim

i→∞

Z

ψA◦T dνni − Z

ψAni

= lim

i→∞

1 ni

ni1

X

j=0

Z

ψA◦Tj+1 dν− Z

ψA◦Tj

≤ lim

i→∞

1 ni

Z

ψA◦Tni dν− Z

ψA

≤ lim

i→∞

2

niAk+ε=ε.

Sinceε >0 is arbitrary, µ(T1(A)) =µ(A). The closed sets generate Borel sets, soµ(T1(A)) =µ(A)for all A∈ B.

Referenzen

ÄHNLICHE DOKUMENTE

Die Diagonalelemente sind nicht invariant unter einem Phasenfaktor exp ( − iθ) und verursachen daher eine Symmetriebrechung..

Sind die Summanden in einer Reihe selbst Funktionen einer Variablen x, so stellt der Ausdruck P ∞. n=0 a n (x) eine Funktion dar,

[r]

Wengenroth Wintersemester 2014/15 21.01.2015. Maß- und Integrationstheorie

Falls niht, beweisen Sie

F alls niht, beweisen Sie Ihre Vermutung.. Lösung: Für jedes f ist Φ ∗ f eine Lösung

[r]

Wie genau kann das Elektron nach den Regeln der klassischen Optik mit einem solchen Mikroskop lokalisiert werden (dies liefert uns die Ortsunsch¨arfe ∆x).. Wir betrachten den