• Keine Ergebnisse gefunden

I weak mixing if for all A,B ∈ B the average 1 n n−1 X i=0 |µ(T−i(A)∩B)−µ(A)µ(B)| →0

N/A
N/A
Protected

Academic year: 2021

Aktie "I weak mixing if for all A,B ∈ B the average 1 n n−1 X i=0 |µ(T−i(A)∩B)−µ(A)µ(B)| →0"

Copied!
6
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

preserving systems, most of which we introduced before:

A measure preserving system(X,B, µ;T) is

I Bernoulli if it is isomorphic to a two-sided Bernoulli shift.

I strong mixing if for all A,B∈ B

µ(Tn(A)∩B)−µ(A)µ(B)→0.

I weak mixing if for all A,B ∈ B the average 1

n

n1

X

i=0

|µ(Ti(A)∩B)−µ(A)µ(B)| →0.

I ergodic if T1(A) =A modµimplies µ(A) =0 orµ(Ac) =0.

I recurrent if for all A∈ B withµ(A)>0 there is n≥1 such that µ(Tn(A)∩A)>0.

(2)

First an alternative way of stating ergodicity:

Lemma: A probability preserving dynamical system(X,B,T, µ)is ergodic if and only if

1 n

n1

X

i=0

µ(Ti(A)∩B)−µ(A)µ(B)→0 as n→ ∞, for all A,B ∈ B. (Compared to weak mixing, note the absence of absolute value bars.)

(3)

Proof: Assume that T is ergodic, so by Birkho's Ergodic Theorem 1nPn1

i=0 1A◦Ti(x)→µ(A)µ-a.e. Multiplying by 1B gives 1

n

n1

X

i=0

1A◦Ti(x)1B(x)→µ(A)1B(x) µ-a.e.

Integrating over x (using the Dominated Convergence Theorem to swap limit and integral), gives

limn

1 n

n1

X

i=0

Z

X1A◦Ti(x)1B(x) dµ=µ(A)µ(B).

Conversely, assume that A=T1A and take B =A. Then we obtainµ(A) = 1nPn1

i=0 µ(A∩Ti(A))→µ(A)2, hence µ(A)∈ {0,1}.

(4)

TheoremWe have the implications:

Bernoulli ⇒mixing ⇒ weak mixing ⇒ ergodic⇒ recurrent.

None of the reverse implications holds.

ExampleWe know already that irrational rotations Rα :S1 →S1 are ergodic (even uniquely ergodic). Let us show Rα is not mixing:

Take an interval A of length 14. There are innitely many n such that Rαn(A)∩A=∅, so

lim inf

n µ(Rn(A)∩A) =06= (1 4)2. Circle rotations are not weak mixing either.

(5)

ProofBernoulli⇒ mixing holds for any pair of cylinder sets Z =Z[a,b], Z0 =Z[c,d] becauseµ(σn(Z)∩Z0) =µ(Z)µ(Z0) for n>d −a. The property carries over to all measurable sets by the Kolmogorov Extension Theorem.

Mixing⇒weak mixing is immediate from the denition.

Weak mixing⇒ergodic is immediate from the characterization of ergodicity in the previous lemma.

Ergodic⇒ recurrent. If B∈ B has positive measure, then

A:=∪iNTi(B) is T -invariant up to a set of measure 0, see the Poincaré Recurrence Theorem. By ergodicity,µ(A) =1, and thus µ-a.e. x ∈B returns to B.

(6)

An example of arecurrent but not ergodic transformation is the identity map T : [0,1]→[0,1] withµ= Lebesgue.

There are standard examples to show that

I weak mixing 6⇒ mixing. The rst counter-example in the literature is Chácon's cutting and stacking example.

I mixing 6⇒ Bernoulli.

But I will not cover these examples in class. (See the notes for Chacon's cutting and stacking example.)

Referenzen

ÄHNLICHE DOKUMENTE

Programmieraufgabe 4: Verwenden Sie Ihren Code aus Teil PA1 (oder die Matlab-Funktionen fft und ifft) um ein Programm zu schreiben, welches zu vorgegebenen Daten eine

Aufgabe 61: Sei A ⊂ R n eine kompakte, wegzusammenhängende Menge, deren Rand eine

[r]

Die untenstehenden Grafiken zeigen, dass die Form der Verteilung des Mittelwerts von unabh¨ angigen Zufallsvariablen auch dann der Normalverteilung immer ¨ ahnlicher wird, wenn

Der Leiterradius sei vernahlässigbar, durh alle drei Leiter ieÿe ein Strom I in die gleihe Rihtung ( z -Ahse).. Berehnen Sie die Position der zwei Nullstellen in der x − y -Ebene

1 Lokalisierte Spins: Auf einem Kristallgitter sind N Atome xiert, die je eine unabge-. shlossene Shale mit Gesamtdrehimpuls (spin)

In der Abbildung sind drei magenta Parallelo- gramme eingezeichnet, welche je vier Rasterdreiecke

Es sind also jeweils 13 Ellipsen (inklusive der Grenzfälle eine waagerechen oder senkrechten Strecke)