• Keine Ergebnisse gefunden

Die klonale Hämatopoese unbestimmten Potentials umfasst somatisch erworbene Mutationen, die zu einer klonalen Expansion führen, aber nicht zwingend zu einer malignen hämatologischen Neoplasie. Sie ist somit auch im Gesunden nachweisbar.

Die standardisierte Überwachung der minimalen Resterkrankung mit molekularen Methoden mittels NGS-Technik ist ein zunehmend verbreitetes Verfahren, da sie selbst geringe Mutationen zuverlässig detektiert. Der Nachweis minimaler Resterkrankung in CR ist im Vergleich zu den MRD-negativen Patienten mit einer erhöhten Rezidivrate assoziiert (HR 5.58, P<0,001, 5-Jahres CIR 66 vs. 17%). Die minimale Resterkrankung wurde in kompletter Remission vor Transplantation gemessen und identifizierte 12 Patienten mit persistierender klonaler Hämatopoese (VAF >5%). Die CIR der 12 Patienten mit hoher VAF verhielt sich ähnlich wie die der MRD-positiven Patienten im Vergleich zu MRD-negativen Patienten (HR 5.90, 95% KI 2.35-14.81, P<0.001, 5-Jahres CIR 55% vs. 17%). DNMT3A wurde als MRD-Marker vorab ausgeschlossen, da dieser bekanntermaßen nicht prognostisch relevant ist.

Andere Gene hingegen, die in der Literatur mit CHIP beschrieben sind, erwiesen sich in unserer Studie als verlässliche MRD-Marker. NGS-MRD-Positivität sowie die Persistenz der klonalen Hämatopoese waren bei uns mit einer schlechten Prognose assoziiert, unabhängig von anderen prognostischen Risikofaktoren. Die NGS-basierte MRD-Messung bietet somit einen zuverlässigen Vorhersagewert für die Rezidivwahrscheinlichkeit und das Überleben und könnte in Zukunft helfen Entscheidungen bezüglich der Stammzelltransplantation, sowie die Vor- und Nachbehandlung der Patienten zu verbessern. Hinsichtlich der klonalen Hämatopoese wären weiter Studien mit einem größeren Patientenkollektiv sinnvoll, um den Einfluss von CHIP auf den Krankheitsverlauf der AML und seine Bedeutung im Monitoring besser zu verstehen.

80 6. Literaturverzeichnis

(1) Estey E, Döhner H. Acute myeloid leukaemia. Lancet 2006;368(9550):1894-1907.

(2) Löwenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med 1999;341(14):1051-1062.

(3) Deschler B, Lübbert M. Acute myeloid leukemia: epidemiology and etiology. Cancer 2006;107(9):2099-2107.

(4) Juliusson G, Antunovic P, Derolf A, Lehmann S, Möllgård L, Stockelberg D, et al.

Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood 2009;113(18):4179-4187.

(5) Heuser M, Schlenk RF, Ganser A. [Current treatment options in acute myeloid leukemia]. Internist (Berl) 2011;52(12):1386-1393.

(6) Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum F, Büchner T, et al.

Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017;129(4):424-447.

(7) Weinberg OK, Seetharam M, Ren L, Seo K, Ma L, Merker JD, et al. Clinical characterization of acute myeloid leukemia with myelodysplasia-related changes as defined by the 2008 WHO classification system. Blood 2009 Feb 26,;113(9):1906-1908.

(8) Arber D, Orazi A, Hasserjian R, Thiele J, Borowitz M, Le Beau M, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127(20):2391-2405.

(9) Heuser M, Yun H, Berg T, Yung E, Argiropoulos B, Kuchenbauer F, et al. Cell of origin in AML: susceptibility to MN1-induced transformation is regulated by the MEIS1/AbdB-like HOX protein complex. Cancer Cell 2011;20(1):39-52.

(10) Passegué E, Jamieson CHM, Ailles L, Weissman I. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci U S A 2003;100 Suppl 1:11842-11849.

(11) Thol F, Klesse S, Köhler L, Gabdoulline R, Kloos A, Liebich A, et al. Acute myeloid leukemia derived from lympho-myeloid clonal hematopoiesis. Leukemia 2017;31(6):1286-1295.

(12) Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman P, Mar B, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014;371(26):2488-2498.

(13) Mrózek K. Cytogenetic, molecular genetic, and clinical characteristics of acute myeloid leukemia with a complex karyotype. Semin Oncol 2008;35(4):365-377.

81 (14) Mrózek K, Heinonen K, Bloomfield CD. Clinical importance of cytogenetics in acute myeloid leukaemia. Best Practice & Research Clinical Haematology 2001 Mar;14(1):19-47.

(15) Schoch C, Kern W, Kohlmann A, Hiddemann W, Schnittger S, Haferlach T. Acute myeloid leukemia with a complex aberrant karyotype is a distinct biological entity characterized by genomic imbalances and a specific gene expression profile. Genes Chromosomes Cancer 2005;43(3):227-238.

(16) Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, Orleth A, et al. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest 2003;112(11):1751-1761.

(17) Thol F, Damm F, Lüdeking A, Winschel C, Wagner K, Morgan M, et al. Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol 2011;29(21):2889-2896.

(18) Schlenk R, Döhner K, Krauter J, Fröhling S, Corbacioglu A, Bullinger L, et al.

Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008;358(18):1909-1918.

(19) Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson AG, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. The New England journal of medicine 2013 May 30,;368(22):2059-2074.

(20) Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli M, et al.

Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 2005;106(12):3733-3739.

(21) Falini B, Nicoletti I, Martelli M, Mecucci C. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features.

Blood 2007;109(3):874-885.

(22) Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al.

Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype.

N Engl J Med 2005;352(3):254-266.

(23) Gale R, Green C, Allen C, Mead A, Burnett A, Hills R, et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 2008;111(5):2776-2784.

(24) Stirewalt D, Radich J. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 2003;3(9):650-665.

(25) Mrózek K, Marcucci G, Paschka P, Whitman S, Bloomfield C. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood 2007;109(2):431-448.

82 (26) Holz Schietinger C, Matje D, Harrison M, Reich N. Oligomerization of DNMT3A controls the mechanism of de novo DNA methylation. J Biol Chem 2011;286(48):41479-41488.

(27) Ley T, Ding L, Walter M, McLellan M, Lamprecht T, Larson D, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010;363(25):2424-2433.

(28) Gaidzik V, Schlenk R, Paschka P, Stölzle A, Späth D, Kuendgen A, et al. Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia:

results of the AML Study Group (AMLSG). Blood 2013;121(23):4769-4777.

(29) Marcucci G, Metzeler K, Schwind S, Becker H, Maharry K, Mrózek K, et al. Age-related prognostic impact of different types of DNMT3A mutations in adults with primary cytogenetically normal acute myeloid leukemia. J Clin Oncol 2012;30(7):742-750.

(30) Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik V, Paschka P, Roberts N, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med 2016;374(23):2209-2221.

(31) Welch J, Ley T, Link D, Miller C, Larson D, Koboldt D, et al. The Origin and Evolution of Mutations in Acute Myeloid Leukemia. Cell 2012;150(2):264-278.

(32) Appelbaum F, Gundacker H, Head D, Slovak M, Willman C, Godwin J, et al. Age and acute myeloid leukemia. Blood 2006;107(9):3481-3485.

(33) Juliusson G, Antunovic P, Derolf A, Lehmann S, Möllgård L, Stockelberg D, et al.

Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood 2009;113(18):4179-4187.

(34) Mrózek K, Heerema N, Bloomfield C. Cytogenetics in acute leukemia. Blood Rev 2004;18(2):115-136.

(35) Heuser M, Schlenk RF, Ganser A. [Current treatment options in acute myeloid leukemia]. Internist (Berl) 2011;52(12):1386-1393.

(36) Stone R, Mandrekar S, Sanford B, Laumann K, Geyer S, Bloomfield C, et al.

Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N Engl J Med 2017;377(5):454-464.

(37) Schlenk R, Döhner K, Kneba M, Götze K, Hartmann F, Del Valle F, et al. Gene mutations and response to treatment with all-trans retinoic acid in elderly patients with acute myeloid leukemia. Results from the AMLSG Trial AML HD98B. Haematologica 2009;94(1):54-60.

(38) Burnett A, Hills R, Milligan D, Kjeldsen L, Kell J, Russell N, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol 2011;29(4):369-377.

83 (39) Mayer RJ, Davis RB, Schiffer CA, Berg DT, Powell BL, Schulman P, et al.

Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B. N Engl J Med 1994;331(14):896-903.

(40) Heil G, Krauter J, Raghavachar A, Bergmann L, Hoelzer D, Fiedler W, et al. Risk-adapted induction and consolidation therapy in adults with de novo AML aged

(41) Kantarjian H, Thomas X, Dmoszynska A, Wierzbowska A, Mazur G, Mayer J, et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol 2012;30(21):2670-2677.

(42) Seymour J, Döhner H, Butrym A, Wierzbowska A, Selleslag D, Jang J, et al.

Azacitidine improves clinical outcomes in older patients with acute myeloid leukaemia with myelodysplasia-related changes compared with conventional care regimens.

BMC Cancer 2017;17(1):852.

(43) Juliusson G, Lazarevic V, Hörstedt A, Hagberg O, Höglund M. Acute myeloid leukemia in the real world: why population-based registries are needed. Blood 2012;119(17):3890-3899.

(44) Heuser M, Thol F, Ganser A. Clonal Hematopoiesis of Indeterminate Potential.

Dtsch Arztebl Int 2016;113(18):317-322.

(45) Steensma D, Bejar R, Jaiswal S, Lindsley RC, Sekeres M, Hasserjian R, et al.

Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015;126(1):9-16.

(46) Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman P, Mar B, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014;371(26):2488-2498.

(47) Xie M, Lu C, Wang J, McLellan M, Johnson K, Wendl M, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 2014;20(12):1472-1478.

(48) Genovese G, Kähler A, Handsaker R, Lindberg J, Rose S, Bakhoum S, et al.

Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014;371(26):2477-2487.

(49) Shlush LI. Age-related clonal hematopoiesis. Blood 2018 Feb 1,;131(5):496-504.

(50) Valent PP. Proposed Terminology and Classification of Pre-Malignant Neoplastic Conditions: A Consensus Proposal. EBioMedicine 2017;26:17; 17-24; 24.

(51) Gaidzik VI, Weber D, Paschka P, Kaumanns A, Krieger S, Corbacioglu A, et al.

DNMT3A mutant transcript levels persist in remission and do not predict outcome in patients with acute myeloid leukemia. Leukemia 2018;32(1):30-37.

84 (52) Thol F, Kölking B, Damm F, Reinhardt K, Klusmann J, Reinhardt D, et al. Next-generation sequencing for minimal residual disease monitoring in acute myeloid leukemia patients with FLT3-ITD or NPM1 mutations. Genes Chromosomes Cancer 2012;51(7):689-695.

(53) Scott B, Pasquini M, Logan B, Wu J, Devine S, Porter D, et al. Myeloablative Versus Reduced-Intensity Hematopoietic Cell Transplantation for Acute Myeloid Leukemia and Myelodysplastic Syndromes. J Clin Oncol 2017;35(11):1154-1161.

(54) Kern W, Schoch C, Haferlach T, Schnittger S. Monitoring of minimal residual disease in acute myeloid leukemia. Crit Rev Oncol Hematol 2005;56(2):283-309.

(55) Campana D, Pui CH. Detection of minimal residual disease in acute leukemia:

methodologic advances and clinical significance. Blood 1995;85(6):1416-1434.

(56) Martens AC, Schultz FW, Hagenbeek A. Nonhomogeneous distribution of leukemia in the bone marrow during minimal residual disease. Blood 1987;70(4):1073-1078.

(57) Baccarani M, Castagnetti F, Gugliotta G, Rosti G. A review of the European LeukemiaNet recommendations for the management of CML. Ann Hematol 2015;94 Suppl 2:S141-S147.

(58) Goldman JM, Gale RP. What does MRD in leukemia really mean? Leukemia 2014;28(5):1131.

(59) Grimwade D, Freeman S. Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for "prime time"? Hematology Am Soc Hematol Educ Program 2014;2014(1):222-233.

(60) Schuurhuis G, Heuser M, Freeman S, Béné M, Buccisano F, Cloos J, et al.

Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood 2018;131(12):1275-1291.

(61) Schuurhuis G, Heuser M, Freeman S, Béné M, Buccisano F, Cloos J, et al.

Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood 2018;131(12):1275-1291.

(62) C S Hourigan, R P Gale, N J Gormley, G J Ossenkoppele, R B Walter. Measurable residual disease testing in acute myeloid leukaemia. Leukemia 2017 Jul 1,;31(7):1482-1490.

(63) Grimwade D, Jovanovic J, Hills R, Nugent E, Patel Y, Flora R, et al. Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J Clin Oncol 2009;27(22):3650-3658.

(64) Krönke J, Schlenk R, Jensen K, Tschürtz F, Corbacioglu A, Gaidzik V, et al.

Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol 2011;29(19):2709-2716.

85 (65) Ivey A, Hills R, Simpson M, Jovanovic J, Gilkes A, Grech A, et al. Assessment of Minimal Residual Disease in Standard-Risk AML. N Engl J Med 2016;374(5):422-433.

(66) Baer MR, Stewart CC, Dodge RK, Leget G, Sulé N, Mrózek K, et al. High frequency of immunophenotype changes in acute myeloid leukemia at relapse:

implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood 2001;97(11):3574-3580.

(67) Schmitt M, Kennedy S, Salk J, Fox E, Hiatt J, Loeb L. Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A 2012;109(36):14508-14513.

(68) Hovland R, Gjertsen B, Bruserud O. Acute myelogenous leukemia with internal tandem duplication of the Flt3 gene appearing or altering at the time of relapse: a report of two cases. Leuk Lymphoma 2002;43(10):2027-2029.

(69) Kohlmann A, Nadarajah N, Alpermann T, Grossmann V, Schindela S, Dicker F, et al. Monitoring of residual disease by next-generation deep-sequencing of RUNX1 mutations can identify acute myeloid leukemia patients with resistant disease.

Leukemia 2014;28(1):129-137.

(70) Qiagen. AllPrep DNA/RNA Mini Handbook. 2005. Available at:

https://www.qiagen.com/us/resources/resourcedetail?id=bbd50261-3b80-4657-ad58-6a5a97b88821&lang=en. Accessed 25.05.2020. 2020.

(71) Invitrogen. Qubit® 2.0 Fluorometer Handbook. 2010; Available at:

https://www.thermofisher.com/content/dam/LifeTech/migration/en/filelibrary/cell- tissueanalysis/qubit-all-file-types.par.0519.file.dat/qubit-2-fluorometer-user-manual.pdf. Accessed 25.02.2020. 2020.

(72) Thol F, Gabdoulline R, Liebich A, Klement P, Schiller J, Kandziora C, et al.

Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood 2018;132(16):1703-1713.

(73) Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B, Remm M, et al.

Primer3--new capabilities and interfaces. Nucleic Acids Res 2012;40(15):e115.

(74) Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010;26(5):589-595.

(75) McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.

The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20(9):1297-1303.

(76) Wilm A, Aw PPK, Bertrand D, Yeo GHT, Ong S, Wong C, et al. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res 2012;40(22):11189-11201.

86 (77) Peter H Sudmant, Tobias Rausch, Eugene J Gardner, Robert E Handsaker, Alexej Abyzov, John Huddleston, et al. An integrated map of structural variation in 2,504 human genomes. Nature 2015 Oct 1,;526(7571):75-81.

(78) Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al.

Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016 Aug 18,;536(7616):285-291.

(79) Heuser M, Gabdoulline R, Löffeld P, Dobbernack V, Kreimeyer H, Pankratz M, et al. Individual outcome prediction for myelodysplastic syndrome (MDS) and secondary acute myeloid leukemia from MDS after allogeneic hematopoietic cell transplantation.

Ann Hematol 2017;96(8):1361-1372.

(80) Robinson J, Thorvaldsdóttir H, Winckler W, Guttman M, Lander E, Getz G, et al.

Integrative genomics viewer. Nat Biotechnol 2011;29(1):24-26.

(81) Kennedy S, Schmitt M, Fox E, Kohrn B, Salk J, Ahn E, et al. Detecting ultralow-frequency mutations by Duplex Sequencing. Nat Protoc 2014;9(11):2586-2606.

(82) Shlush L, Zandi S, Mitchell A, Chen W, Brandwein J, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014;506(7488):328-333.

(83) Jongen Lavrencic M, Grob T, Hanekamp D, Kavelaars F, Al Hinai A, Zeilemaker A, et al. Molecular Minimal Residual Disease in Acute Myeloid Leukemia. N Engl J Med 2018;378(13):1189-1199.

(84) Kinde I, Wu J, Papadopoulos N, Kinzler K, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A 2011;108(23):9530-9535.

(85) Gundry M, Vijg J. Direct mutation analysis by high-throughput sequencing: from germline to low-abundant, somatic variants. Mutat Res 2012;729(1-2):1-15.

(86) Klco J, Miller C, Griffith M, Petti A, Spencer D, Ketkar Kulkarni S, et al. Association Between Mutation Clearance After Induction Therapy and Outcomes in Acute Myeloid Leukemia. JAMA 2015;314(8):811-822.

(87) Herold T, Jurinovic V, Batcha AMN, Bamopoulos S, Rothenberg Thurley M, Ksienzyk B, et al. A 29-gene and cytogenetic score for the prediction of resistance to induction treatment in acute myeloid leukemia. Haematologica 2018;103(3):456-465.

(88) Getta B, Devlin S, Levine R, Arcila M, Mohanty A, Zehir A, et al. Multicolor Flow Cytometry and Multigene Next-Generation Sequencing Are Complementary and Highly Predictive for Relapse in Acute Myeloid Leukemia after Allogeneic Transplantation. Biol Blood Marrow Transplant 2017;23(7):1064-1071.

(89) Morita K, Kantarjian H, Wang F, Yan Y, Bueso Ramos C, Sasaki K, et al.

Clearance of Somatic Mutations at Remission and the Risk of Relapse in Acute Myeloid Leukemia. J Clin Oncol 2018;36(18):1788-1797.

87 (90) Stasik S, Schuster C, Ortlepp C, Platzbecker U, Bornhäuser M, Schetelig J, et al.

An optimized targeted Next-Generation Sequencing approach for sensitive detection of single nucleotide variants. Biomol Detect Quantif 2018;15:6-12.

(91) Malmberg EBR, Ståhlman S, Rehammar A, Samuelsson T, Alm S, Kristiansson E, et al. Patient-tailored analysis of minimal residual disease in acute myeloid leukemia using next-generation sequencing. Eur J Haematol 2017;98(1):26-37.

(92) Walter R, Gooley T, Wood B, Milano F, Fang M, Sorror M, et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J Clin Oncol 2011;29(9):1190-1197.

(93) Araki D, Wood B, Othus M, Radich J, Halpern A, Zhou Y, et al. Allogeneic Hematopoietic Cell Transplantation for Acute Myeloid Leukemia: Time to Move Toward a Minimal Residual Disease-Based Definition of Complete Remission? J Clin Oncol 2016;34(4):329-336.

(94) Walter RB, Gyurkocza B, Storer BE, Godwin CD, Pagel JM, Buckley SA, et al.

Comparison of minimal residual disease as outcome predictor for AML patients in first complete remission undergoing myeloablative or nonmyeloablative allogeneic hematopoietic cell transplantation. Leukemia 2015;29(1):137-144.

(95) Patkar N, Kodgule R, Kakirde C, Raval G, Bhanshe P, Joshi S, et al. Clinical impact of measurable residual disease monitoring by ultradeep next generation sequencing in NPM1 mutated acute myeloid leukemia. Oncotarget 2018;9(93):36613-36624.

(96) DiNardo, Courtney D C. D. Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. N Engl J Med 2018;378(25):2386; 2386-2398; 2398.

(97) Stein, Eytan M E. M. Enasidenib in mutant relapsed or refractory acute myeloid leukemia. Blood 2017;130(6):722; 722-731; 731.

(98) Amatangelo M, Quek L, Shih A, Stein E, Roshal M, David M, et al. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood 2017;130(6):732-741.

(99) Wlodarski M, Collin M, Horwitz M. GATA2 deficiency and related myeloid neoplasms. Semin Hematol 2017;54(2):81-86.

(100) Wlodarski M, Hirabayashi S, Pastor V, Starý J, Hasle H, Masetti R, et al.

Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood 2016;127(11):1387-97; quiz 1518.

(101) Parkin B, Londoño Joshi A, Kang Q, Tewari M, Rhim A, Malek S. Ultrasensitive mutation detection identifies rare residual cells causing acute myelogenous leukemia relapse. J Clin Invest 2017;127(9):3484-3495.

88 (102) Waalkes A, Penewit K, Wood B, Wu D, Salipante S. Ultrasensitive detection of acute myeloid leukemia minimal residual disease using single molecule molecular inversion probes. Haematologica 2017;102(9):1549-1557.

89 7. Abkürzungsverzeichnis

AML Akute myeloische Leukämie

ARTA All-trans Retinolsäure, engl. All-trans-retinoic-acid ASXL1/2 Additional Sex Combs like 1/2

BCOR BCL-6 corepressor

BCORL1 BCL-6 corepressor-like protein 1 BRAF Serin/Threonin Proteinkinase

BRC-ABL Fusionsprotein aus BRC (breakpoint cluster region) und ABL (Abelson Murine Leukemia Viral Oncogene Homolog 1)

CALR Calreticulin

CBFB Core-binding Factor-Leukämie Beta CBL E3 ubiquitin- Protein Ligase CBL CD Cluster of Differentiation

CDKN2A Zyklin abhängiger Kinase Inhibitor 2A

CEBPA CCAAT Enhancer Binding Protein alpha (C/EBPalpha)

CHIP klonale Hämatopoese unbestimmten Portenzials, engl: clonal hematopoiesis of indeterminate potential

CHOP klonalen Hämatopoese mit erheblichem onkogenen Potential, engl: clonal hematopoiesis with substantial oncogenic potential CIR kumulative Rezidivinzidenz, engl: cumulative incidence of relapse CpG-Inseln Cytosin Guanin Dinukleotidinseln

CR Komplettremission, engl. Complete remission CSF3R Kolonie stimulierender Faktor 3 Rezeptor CSNK1A1 Casein kinase 1 alpha 1

CUX 1 Cut like Homeobox 1 DDX41 DEAD-box helicase 41

DEK-NUP214 Fusionsprotein aus DEK Protein Gen und Nucleoporin 214 DLI Spenderlymphozyten-Infusion, donor leukocyte infusion DNMT3A DNA (cytosine-5-)-methyltransferase 3-like

ECOG Eastern Cooperative Oncology Group;

EFS Event-free survival ELN European LeukemiaNet EPO Erythropoietin

90 ETNK1 Ethanolamin Kinase 1

ETV6 Transkriptionsfaktor ETV6 EZH2 Enhancer of zeste homolog 2

FAB French-American-British Klassifikation der AML FLT3 Fms-like tyrosine kinase-3

FLT3-ITD Interne Tandemduplikation von FLT3 FLT3-TKD Tyrosinkinase-Domäne (TKD)

GATA 2 GATA binding protein 2 HLA Humane Leukozyten Antigen

HSZ/ HSC Hämatopoetische Stammzelle, engl. Hematopoietic stem cell IDH1/2 Isocitrat-Dehydrogenase1/2

JAK2 Janus kinase 2

KDM6A Lysine demethylase 6A

KIT v-kit Hardy-Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog

KM Knochenmark

K-RAS v-Ki-ras2 Kirsten Rat Sarcoma Viral Oncogene Homolog MDS Myelodysplastisches Syndrom

MECOM MDS1 and EVI1 complex locus MLL Mixed Lineage Leukemia

MLL-PTD Mixed Lineage Leukemia- Partielle Tandem-Duplikation

MLLT3-KMT2A Fusionsprotein aus Mixed-Lineage Leukemia Translocated To Chromosome 3 Protein und Histone-lysine N-methyltransferase 2A

MPL Thrompopoetinrezeptor Gen

MRD Minimale Resterkrankung, engl. Minimal residual disease MYC MYC Proto-Oncogene, BHLH Transcription factor

NF1 Neurofibromin 1

NGS Next Generation Sequencing NOTCH1 Notch homolog 1 Gen

NPM1 Nucleophosmin 1

NRAS Neuroblastoma RAS Viral (v-ras) Oncogene Homolog

NRM nicht durch einen Erkrankungsrückfall bedingte Mortalität, engl:

non-relapse mortality

OS Gesamtüberleben, engl. Overall Survival

91 PB peripheres Blut, engl. Peripheral Blood

PCR Polymerase Kettenreaktion, engl. Polymerase Chain Reaction PHF-6 plant homeodomain (PHD)-like finger protein 6

PML-RARα Promyelozyten Leukämie/ Retinolsäure Rezeptor Alpha, engl.

Promyelocytic Leukemia/Retinoic Acid Receptor Alpha PPM1D Protein Phosphatase 1D

PTPN11 Tyrosine protein phosphatase non-receptor type 11

qRT-PCR Quantitative Reverse Transkriptase-Polymerasekettenreaktion RAD21 RAD21 cohesin complex component Gen

RBM15-MKL1 Fusionsprotein aus RNA Binding Motif Protein 15 und megakaryoblastic leukemia 1

RFS Rezidivfreies Überleben - engl. Relaps-free survival.

RT-PCR Real Time-PCR

RUNX1 Runt-related Transcription Factor 1

SCT Stammzelltransplantation, engl. Stem Cell Transplantation.

SETBP1 SET Binding protein 1 SF3B1 splicing factor 3b subunit 1

SMC1A Structural Maintenance Of Chromosomes 1A SMC3 Structural maintenance of chromosomes 3

SNV Einzelbasenveränderung, engl. Single Nukleotid Variant SRSF2 serine and arginine rich splicing factor 2

STAG 2 Stromal Antigen 2

t-AML therapieassoziierte akute myeloische Leukämie TCGA the Cancer Genome Atlas

TET2 Ten eleven Translocation2 TP53 Tumor Suppressor Protein 53

U2AF1 U2 Small Nuclear RNA Auxiliary Factor 1 Gen WBC Leukozytenzahl, engl. White Blood Cell (Count) WHO Weltgesundheitsorganisation

WT1 Wilms Tumor 1

ZBTB7A Zinc finger and BTB Domain Containing 7A

ZRSR2 Zinc finger CCCH-type, RNA bindung motif and serine/arginin rich