• Keine Ergebnisse gefunden

1. Euzeby, J.P. List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47, 590-2 (1997).

2. Schloss, P.D. & Handelsman, J. Status of the microbial census. Microbiol Mol Biol Rev 68, 686-91 (2004).

3. Ronald Taylor, T.K., Louisa Howard. Scanning electron microscope image of Vibrio cholerae bacteria, which infect the digestive system (Source:

http://remf.dartmouth.edu/images/bacteriaSEM/source/1.html, Public License:

http://remf.dartmouth.edu/imagesindex.html). (Dartmouth College, 2000).

4. Reidl, J. & Klose, K.E. Vibrio cholerae and cholera: out of the water and into the host.

FEMS Microbiol Rev 26, 125-139 (2002).

5. Liu, Z., Yang, M., Peterfreund, G.L., Tsou, A.M., Selamoglu, N., Daldal, F., Zhong, Z., Kan, B. & Zhu, J. Vibrio cholerae anaerobic induction of virulence gene expression is controlled by thiol-based switches of virulence regulator AphB. Proc Natl Acad Sci U S A 108, 810-5 (2011).

6. De, S.N., Sarkar, J.K. & Tribedi, B.P. An experimental study of the action of cholera toxin. J Pathol Bacteriol 63, 707-17 (1951).

7. NCBI. Taxonomy Browser (URL:

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=666).

8. Kaper, J.B., Morris, J.G., Jr. & Levine, M.M. Cholera. Clin Microbiol Rev 8, 48-86 (1995).

9. Rahim, Z. & Aziz, K.M. Isolation of enterotoxigenic Vibrio cholerae non-01 from the Buriganga river and two ponds of Dhaka, Bangladesh. J Diarrhoeal Dis Res 10, 227-30 (1992).

10. Miller, C.J., Drasar, B.S. & Feachem, R.G. Response of toxigenic Vibrio cholerae 01 to physico-chemical stresses in aquatic environments. J Hyg (Lond) 93, 475-95 (1984).

11. Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144-8 (1961).

12. Brown, II & Sirenko, L.A. The role of the sodium cycle of energy coupling in the emergence and persistence of natural foci of modern cholera. Biochemistry (Mosc) 62, 225-30 (1997).

13. Häse, C.C. & Barquera, B. Role of sodium bioenergetics in Vibrio cholerae. Biochim.

Biophys. Acta, Bioenerg. 1505, 169-178 (2001).

14. Kato, S. & Yumoto, I. Detection of the Na(+)-translocating NADH-quinone reductase in marine bacteria using a PCR technique. Can J Microbiol 46, 325-32 (2000).

15. Kogure, K. Bioenergetics of marine bacteria. Curr Opin Biotechnol 9, 278-82 (1998).

16. Minato, Y., Fassio, S.R., Kirkwood, J.S., Halang, P., Quinn, M.J., Faulkner, W.J., Aagesen, A.M., Steuber, J., Stevens, J.F. & Hase, C.C. Roles of the sodium-translocating NADH:quinone oxidoreductase (Na+-NQR) on vibrio cholerae metabolism, motility and osmotic stress resistance. Plos One 9, e97083 (2014).

17. Juarez, O., Morgan, J.E. & Barquera, B. The Electron Transfer Pathway of the Na+ -pumping NADH: Quinone Oxidoreductase from Vibrio cholerae. J Biol Chem 284, 8963-8972 (2009).

18. Steuber, J., Vohl, G., Casutt, M.S., Vorburger, T., Diederichs, K. & Fritz, G. Structure of the V. cholerae Na+-pumping NADH:quinone oxidoreductase. Nature 516, 62-67 (2014).

19. Rich, P.R., Meunier, B. & Ward, F.B. Predicted structure and possible ionmotive mechanism of the sodium-linked NADH-ubiquinone oxidoreductase of Vibrio alginolyticus. FEBS Lett 375, 5-10 (1995).

20. Hayashi, M., Nakayama, Y. & Unemoto, T. Recent progress in the Na(+)-translocating NADH-quinone reductase from the marine Vibrio alginolyticus. Biochim Biophys Acta 1505, 37-44 (2001).

21. Unemoto, T. & Hayashi, M. Na(+)-translocating NADH-quinone reductase of marine and halophilic bacteria. J Bioenerg Biomembr 25, 385-91 (1993).

22. Zhou, W., Bertsova, Y.V., Feng, B., Tsatsos, P., Verkhovskaya, M.L., Gennis, R.B., Bogachev, A.V. & Barquera, B. Sequencing and preliminary characterization of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio harveyi. Biochemistry 38, 16246-52 (1999).

23. Tao, M., Casutt, M.S., Fritz, G. & Steuber, J. Oxidant-induced formation of a neutral flavosemiquinone in the Na+-translocating NADH:Quinone oxidoreductase (Na+-NQR) from Vibrio cholerae. Biochim Biophys Acta 1777, 696-702 (2008).

24. Casutt, M.S., Huber, T., Brunisholz, R., Tao, M.L., Fritz, G. & Steuber, J. Localization and Function of the Membrane-bound Riboflavin in the Na+-translocating

NADH:Quinone Oxidoreductase (Na+-NQR) from Vibrio cholerae. J Biol Chem 285, 27088-27099 (2010).

25. Hayashi, M., Nakayama, Y., Yasui, M., Maeda, M., Furuishi, K. & Unemoto, T. FMN is covalently attached to a threonine residue in the NqrB and NqrC subunits of Na(+)-translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett 488, 5-8 (2001).

26. Nakayama, Y., Yasui, M., Sugahara, K., Hayashi, M. & Unemoto, T. Covalently bound flavin in the NqrB and NqrC subunits of Na(+)-translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett 474, 165-8 (2000).

27. Casutt, M.S., Schlosser, A., Buckel, W. & Steuber, J. The single NqrB and NqrC subunits in the Na(+)-translocating NADH: quinone oxidoreductase (Na(+)-NQR) from Vibrio cholerae each carry one covalently attached FMN. Biochim Biophys Acta 1817, 1817-22 (2012).

28. Pfenninger-Li, X.D., Albracht, S.P., van Belzen, R. & Dimroth, P. NADH:ubiquinone oxidoreductase of Vibrio alginolyticus: purification, properties, and reconstitution of the Na+ pump. Biochemistry 35, 6233-42 (1996).

29. Türk, K., Puhar, A., Neese, F., Bill, E., Fritz, G. & Steuber, J. NADH oxidation by the Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae: functional role of the NqrF subunit. J Biol Chem 279, 21349-55 (2004).

30. Juarez, O., Morgan, J.E., Nilges, M.J. & Barquera, B. Energy transducing redox steps of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae. Proc Natl Acad Sci U S A 107, 12505-12510 (2010).

31. Hayashi, M., Shibata, N., Nakayama, Y., Yoshikawa, K. & Unemoto, T. Korormicin insensitivity in Vibrio alginolyticus is correlated with a single point mutation of Gly-140 in the NqrB subunit of the Na+-translocating NADH-quinone reductase. Arch Biochem Biophys 401, 173-7 (2002).

32. Juarez, O., Neehaul, Y., Turk, E., Chahboun, N., DeMicco, J.M., Hellwig, P. & Barquera, B. The role of glycine residues 140 and 141 of subunit B in the functional ubiquinone binding site of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae. J Biol Chem 287, 25678-85 (2012).

33. Crofts, A.R., Lhee, S., Crofts, S.B., Cheng, J. & Rose, S. Proton pumping in the bc1 complex: a new gating mechanism that prevents short circuits. Biochim Biophys Acta 1757, 1019-34 (2006).

34. Hirst, J. Towards the molecular mechanism of respiratory complex I. Biochem J 425, 327-39 (2010).

35. Kim, Y.C., Wikstrom, M. & Hummer, G. Kinetic gating of the proton pump in cytochrome c oxidase. Proc Natl Acad Sci U S A 106, 13707-12 (2009).

36. Studier, F.W. & Moffatt, B.A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189, 113-30 (1986).

37. Rosenberg, A.H., Lade, B.N., Chui, D.S., Lin, S.W., Dunn, J.J. & Studier, F.W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56, 125-35 (1987).

38. Studier, F.W., Rosenberg, A.H., Dunn, J.J. & Dubendorff, J.W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185, 60-89 (1990).

39. Paliy, O., Bloor, D., Brockwell, D., Gilbert, P. & Barber, J. Improved methods of cultivation and production of deuteriated proteins from E. coli strains grown on fully deuteriated minimal medium. J Appl Microbiol 94, 580-6 (2003).

40. Guo, X. & Kempf, J.G. Enhanced, simplified expression of perdeuterated hemoglobin for NMR structure and dynamics. Protein Expr Purif 72, 8-18 (2010).

41. Marley, J., Lu, M. & Bracken, C. A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20, 71-5 (2001).

42. Ferentz, A.E. & Wagner, G. NMR spectroscopy: a multifaceted approach to macromolecular structure. Q Rev Biophys 33, 29-65 (2000).

43. Mayer, M. & Meyer, B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem., Int. Ed. 38, 1784-1788 (1999).

44. Meyer, B. & Peters, T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed Engl 42, 864-90 (2003).

45. Anderson, W.A. & Freeman, R. Influence of a Second Radiofrequency Field on High‐

Resolution Nuclear Magnetic Resonance Spectra. The Journal of Chemical Physics 37, 85-103 (1962).

46. Overhauser, A.W. Polarization of Nuclei in Metals. Physical Review 92, 411-415 (1953).

47. Balaram, P., Bothner-By, A.A. & Dadok, J. Negative nuclear Overhauser effects as probes of macromolecular structure. J Am Chem Soc 94, 4015-7 (1972).

48. Balaram, P., Bothner-By, A.A. & Breslow, E. Localization of Tyrosine at Binding-Site of Neurophysin Ii by Negative Nuclear Overhauser Effects. J Am Chem Soc 94, 4017-&

(1972).

49. Albrand, J.P., Birdsall, B., Feeney, J., Roberts, G.C.K. & Burgen, A.S.V. Use of Transferred Nuclear Overhauser Effects in the Study of the Conformations of Small Molecules Bound to Proteins. Int J Biol Macromol 1, 37-41 (1979).

50. Clore, G.M. & Gronenborn, A.M. Theory of the Time-Dependent Transferred Nuclear Overhauser Effect - Applications to Structural-Analysis of Ligand Protein Complexes in Solution. J. Magn. Reson. 53, 423-442 (1983).

51. Feeney, J., Birdsall, B., Roberts, G.C.K. & Burgen, A.S.V. Use of Transferred Nuclear Overhauser Effect Measurement to Compare Binding of Co-Enzyme Analogs to Dihydrofolate-Reductase. Biochemistry 22, 628-633 (1983).

52. London, R.E. Theoretical analysis of the inter-ligand overhauser effect: a new approach for mapping structural relationships of macromolecular ligands. J. Magn. Reson. 141, 301-11 (1999).

53. Li, D., DeRose, E.F. & London, R.E. The inter-ligand Overhauser effect: a powerful new NMR approach for mapping structural relationships of macromolecular ligands. J Biomol NMR 15, 71-6 (1999).

54. Sanchez-Pedregal, V.M., Reese, M., Meiler, J., Blommers, M.J., Griesinger, C. &

Carlomagno, T. The INPHARMA method: protein-mediated interligand NOEs for pharmacophore mapping. Angew. Chem., Int. Ed. 44, 4172-5 (2005).

55. Shuker, S.B., Hajduk, P.J., Meadows, R.P. & Fesik, S.W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531-4 (1996).

56. Hajduk, P.J., Meadows, R.P. & Fesik, S.W. NMR-based screening in drug discovery. Q Rev Biophys 32, 211-40 (1999).

57. Hajduk, P.J., Gerfin, T., Boehlen, J.M., Haberli, M., Marek, D. & Fesik, S.W. High-throughput nuclear magnetic resonance-based screening. J Med Chem 42, 2315-7 (1999).

58. Pervushin, K., Riek, R., Wider, G. & Wuthrich, K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94, 12366-71 (1997).

59. Grzesiek, S. & Bax, A. Improved 3d Triple-Resonance Nmr Techniques Applied to a 31-Kda Protein. J. Magn. Reson. 96, 432-440 (1992).

60. Ikura, M., Kay, L.E. & Bax, A. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29, 4659-67 (1990).

61. Kay, L.E., Ikura, M., Tschudin, R. & Bax, A. 3-Dimensional Triple-Resonance Nmr-Spectroscopy of Isotopically Enriched Proteins. J. Magn. Reson. 89, 496-514 (1990).

62. Kay, L.E., Ikura, M. & Bax, A. The Design and Optimization of Complex Nmr Experiments Application to a Triple-Resonance Pulse Schheme Correlating H-Alpha, Nh,

and N-15 Chemical-Shifts in N-15-C-13-Labeled Proteins. J. Magn. Reson. 91, 84-92 (1991).

63. Bax, A. & Ikura, M. An efficient 3D NMR technique for correlating the proton and 15N backbone amide resonances with the alpha-carbon of the preceding residue in uniformly 15N/13C enriched proteins. J Biomol NMR 1, 99-104 (1991).

64. Powers, R., Gronenborn, A.M., Clore, G.M. & Bax, A. 3-Dimensional Triple-Resonance Nmr of C-13/N-15-Enriched Proteins Using Constant-Time Evolution. J. Magn. Reson.

94, 209-213 (1991).

65. Kay, L.E., Xu, G.Y. & Yamazaki, T. Enhanced-Sensitivity Triple-Resonance Spectroscopy with Minimal H2o Saturation. Journal of Magnetic Resonance Series A 109, 129-133 (1994).

66. Schleucher, J., Sattler, M. & Griesinger, C. Coherence Selection by Gradients without Signal Attenuation - Application to the 3-Dimensional Hnco Experiment. Angewandte Chemie-International Edition in English 32, 1489-1491 (1993).

67. Cavanagh, J., Fairbrother, W.J., Palmer Iii, A.G., Rance, M. & Skelton, N.J. CHAPTER 7 - HETERONUCLEAR NMR EXPERIMENTS, p. 615-617. in Protein NMR Spectroscopy (Second Edition) (eds. Cavanagh, J., Fairbrother, W.J., Palmer, A.G., Rance, M. & Skelton, N.J.) 533-678 (Academic Press, Burlington, 2007).

68. Sychrova, H. Yeast as a model organism to study transport and homeostasis of alkali metal cations. Physiol Res 53 Suppl 1, S91-8 (2004).

69. Clipson, N.J.W. & Jennings, D.H. Role of potassium and sodium in generation of osmotic potential of the marine fungus Dendryphiella salina. Mycol Res 94, 1017-1022 (1990).

70. Buster, D.C., Castro, M.M.C.A., Geraldes, C.F.G.C., Malloy, C.R., Sherry, A.D. &

Siemers, T.C. Tm(Dotp)5--a 23na+ Shift Agent for Perfused Rat Hearts. Magn Reson Med 15, 25-32 (1990).

71. Buster, D.C., Sherry, A.D., Malloy, C.R. & Jeffrey, F.M.H. Na-23 Nmr Investigations of Perfused Rat Hearts Utilizing a Novel Shift Agent - Tm(Dotp)5-. Biochemistry 28, 1940-1941 (1989).

72. Hofeler, H., Jensen, D., Pike, M.M., Delayre, J.L., Cirillo, V.P., Springer, C.S., Jr., Fossel, E.T. & Balschi, J.A. Sodium transport and phosphorus metabolism in sodium-loaded yeast: simultaneous observation with sodium-23 and phosphorus-31 NMR spectroscopy in vivo. Biochemistry 26, 4953-62 (1987).

73. Gupta, R.K. & Gupta, P. Direct Observation of Resolved Resonances from Intra-Cellular and Extracellular Na-23 Ions in Nmr-Studies of Intact-Cells and Tissues Using

Dysprosium(Iii)Tripolyphosphate as Paramagnetic Shift-Reagent. J. Magn. Reson. 47, 344-350 (1982).

74. Gorecki, K., Hagerhall, C. & Drakenberg, T. The Na+ transport in gram-positive bacteria defect in the Mrp antiporter complex measured with 23Na nuclear magnetic resonance.

Anal Biochem 445, 80-6 (2014).

75. Wood, R.W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical Magazine 4, 396-402 (1902).

76. Turbadar, T. Complete Absorption of Light by Thin Metal Films. Proceedings of the Physical Society of London 73, 40-44 (1959).

77. Liedberg, B., Nylander, C. & Lundstrom, I. Surface-Plasmon Resonance for Gas-Detection and Biosensing. Sensors and Actuators 4, 299-304 (1983).

78. Nylander, C., Liedberg, B. & Lind, T. Gas-Detection by Means of Surface-Plasmon Resonance. Sensors and Actuators 3, 79-88 (1982).

79. Casutt, M.S., Nedielkov, R., Wendelspiess, S., Vossler, S., Gerken, U., Murai, M., Miyoshi, H., Moller, H.M. & Steuber, J. Localization of Ubiquinone-8 in the Na+-pumping NADH: Quinone Oxidoreductase from Vibrio cholerae. J Biol Chem 286, 40075-40082 (2011).

80. Vohl, G., Nedielkov, R., Claussen, B., Casutt, M.S., Vorburger, T., Diederichs, K., Moller, H.M., Steuber, J. & Fritz, G. Crystallization and preliminary analysis of the NqrA and NqrC subunits of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun 70, 987-92 (2014).

81. Voss, S. & Skerra, A. Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng 10, 975-82 (1997).

82. Schulz, H., Fabianek, R.A., Pellicioli, E.C., Hennecke, H. & Thony-Meyer, L. Heme transfer to the heme chaperone CcmE during cytochrome c maturation requires the CcmC protein, which may function independently of the ABC-transporter CcmAB. Proc Natl Acad Sci U S A 96, 6462-7 (1999).

83. Krulwich, T.A., Sachs, G. & Padan, E. Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9, 330-43 (2011).

84. Ude, J. NMR studies with the Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae. Masterarbeit. Universität Konstanz (2014).

85. Riek, R., Wider, G., Pervushin, K. & Wuthrich, K. Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. Proc Natl Acad Sci U S A 96, 4918-23 (1999).

86. Bayburt, T.H., Carlson, J.W. & Sligar, S.G. Reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer. J Struct Biol 123, 37-44 (1998).

87. Nath, A., Atkins, W.M. & Sligar, S.G. Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46, 2059-69 (2007).

88. Ansorge, P. NMR-Studien mit Lipidnanodiscs und darin eingebetteten Proteinen.

Masterarbeit. Universität Konstanz (2012).

89. Bayburt, T.H., Grinkova, Y.V. & Sligar, S.G. Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Letters 2, 853-856 (2002).

90. Chain, R.K. & Malkin, R. On the interaction of 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB) with bound electron carriers in spinach chloroplasts.

Arch Biochem Biophys 197, 52-6 (1979).

91. Degli Esposti, M., Rugolo, M. & Lenaz, G. Inhibition of the mitochondrial bc1 complex by dibromothymoquinone. FEBS Lett 156, 15-9 (1983).

92. Draber, W., Trebst, A. & Harth, E. On a new inhibitor of photosynthetic electron-transport in isolated chloroplasts. Z. Naturforsch., B: J. Chem. Sci. 25, 1157-9 (1970).

93. Loschen, G. & Azzi, A. Dibromothymoquinone: a new inhibitor of mitochondrial electron transport at the level of ubiquinone. FEBS Lett 41, 115-7 (1974).

94. Rich, P.R. Electron and proton transfers through quinones and cytochrome bc complexes.

Biochim Biophys Acta 768, 53-79 (1984).

95. Nedielkov, R., Steffen, W., Steuber, J. & Moller, H.M. NMR reveals double occupancy of quinone-type ligands in the catalytic quinone binding site of the Na+-translocating NADH:Quinone oxidoreductase from Vibrio cholerae. J Biol Chem 288, 30597-606 (2013).

96. Bertani, G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62, 293-300 (1951).

97. QIAGEN. The QIAexpressionist: a Handbook for High Level Expression and Purification of 6xHis-tagged Proteins (http://www.qiagen.com/knowledge-and-support/resource-

center/resource-download.aspx?id=79ca2f7d-42fe-4d62-8676-4cfa948c9435&lang=en), (2003).

98. QIAGEN. QIAprep® Miniprep Handbook (http://www.qiagen.com/knowledge-and-

support/resource-center/resource-download.aspx?id=89bfa021-7310-4c0f-90e0-6a9c84f66cee&lang=en), (2012).

99. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-5 (1970).

100. Delort, A.M., Gaudet, G. & Forano, E. 23Na NMR study of Fibrobacter succinogenes S85: comparison of three chemical shift reagents and calculation of sodium concentration using ionophores. Anal Biochem 306, 171-80 (2002).

101. Hwang, T.L. & Shaka, A.J. Water Suppression That Works - Excitation Sculpting Using Arbitrary Wave-Forms and Pulsed-Field Gradients. J. Magn. Reson., Ser. A 112, 275-279 (1995).

102. Hore, P.J. Solvent Suppression. Methods Enzymol 176, 64-77 (1989).

103. Hoult, D.I. Solvent peak saturation with single phase and quadrature fourier transformation. Journal of Magnetic Resonance (1969) 21, 337-347 (1976).

104. Stonehouse, J., Adell, P., Keeler, J. & Shaka, A.J. Ultrahigh-Quality Noe Spectra. J Am Chem Soc 116, 6037-6038 (1994).

105. Piotto, M., Saudek, V. & Sklenar, V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2, 661-5 (1992).

106. Rovnyak, D., Hoch, J.C., Stern, A.S. & Wagner, G. Resolution and sensitivity of high field nuclear magnetic resonance spectroscopy. J Biomol NMR 30, 1-10 (2004).

107. Jaravine, V., Ibraghimov, I. & Orekhov, V.Y. Removal of a time barrier for high-resolution multidimensional NMR spectroscopy. Nat Methods 3, 605-7 (2006).

108. Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L. & Sykes, B.D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6, 135-40 (1995).

109. Eletsky, A., Kienhofer, A. & Pervushin, K. TROSY NMR with partially deuterated proteins. J Biomol NMR 20, 177-80 (2001).

110. Salzmann, M., Pervushin, K., Wider, G., Senn, H. & Wuthrich, K. TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci U S A 95, 13585-90 (1998).

111. Masse, J.E. & Keller, R. AutoLink: automated sequential resonance assignment of biopolymers from NMR data by relative-hypothesis-prioritization-based simulated logic.

J Magn Reson 174, 133-51 (2005).