• Keine Ergebnisse gefunden

TiO 2 :P3HT-Heteroübergang

0 . 0 0 . 4 0 . 8

1 . 2 P r i s t i n e P 3 H T

T i O 2 : P 3 H T P C B M : P 3 H T T i O 2 o n P 3 H T td = 2 5 f s

- 0 . 4 0 . 0 0 . 4

td = 1 p s

∆T/T (norm.)

5 0 0 6 0 0 7 0 0

- 0 . 4 0 . 0

td = 1 0 p s

W a v e l e n g t h λ ( n m )

2 . 4 2 . 2 2 1 . 8

P h o t o n e n e r g y ( e V )

Abbildung B.1.: Relative Transmissionsänderung T /T in den gemischten TiO2:P3HT- und PCBM:P3HT-Heteroübergängen einer reinen P3HT-Schicht (pristine P3HT), sowie eines ebenen TiO2:P3HT-Heteroübergangs als Funktion der Abfrage-Wellenlängeλund ausgewählten Verschiebe-zeitentdzwischen Anrege- und Abfrage-Impuls, gemessen bei einer Anregungsdichte von 30 µJ cm−2. Alle Spektren sind auf das Signal beiλ=555 nm undtd=25 fs normiert.

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0

Abbildung B.2.: Relative Transmissionsänderung nach resonanter Anregung im sichtbaren Spektral-bereich bei der Abfrage-Wellenlänge 1200 nm, normiert auf eins. Die induzierte Absorption ist auf Absorption durch den angeregten Exzitonen-Zustand zurück zu führen.

- 0 . 8

Abbildung B.3.: Relative Transmissionsänderung bei Abfrage-Wellenlängen von a) 650 nm und b) 720 nm. In beiden Fällen normiert auf das Signal aus Abbildung 7.2 bei 555 nm. a) Die Absorption durch Polaron-Paare und b) Absorption durch Polaronen oder des CT-Zustandes baut sich in allen Proben direkt nach der Anregung gleichermaßen auf. Teile c) und d) zeigen die Daten nochmals normiert auf eins für einen Vergleich der Zerfallsdynamik.

Literaturverzeichnis

[Agn12] A. Agnesi, A. Greborio, F. Pirzio, G. Reali, J. Aus der Au und A. Guandalini. 40-fs Yb(3+):CaGdAlO4 laser pumped by a single-mode 350-mW laser diode. Optics Express 20(9):10077 (2012). doi:10.1364/OE.20.010077.

[Alf70a] R. R. Alfano und S. L. Shapiro. Emission in the Region 4000 to 7000 Å Via Four-Photon Coupling in Glass. Physical Review Letters 24(11):584–587 (1970). doi:

10.1103/PhysRevLett.24.584.

[Alf70b] R. R. Alfano und S. L. Shapiro. Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses. Physical Review Letters 24(11):592–594 (1970). doi:10.1103/PhysRevLett.24.592.

[And02] T. Ando, Y. Zheng und H. Suzuura. Dynamical Conductivity and Zero-Mode Anomaly in Honeycomb Lattices. Journal of the Physical Society of Japan 71(5):1318–1324 (2002). doi:10.1143/JPSJ.71.1318.

[Ash17] M. Ashton, J. Paul, S. B. Sinnott und R. G. Hennig. Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials. Physical Review Letters 118(10):106101 (2017). doi:10.1103/PhysRevLett.118.106101.

[Bae10] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong und S. Iijima.Roll-to-roll production of 30-inch graphene films for transparent electrodes.

Nature Nanotechnology5(8):574–578 (2010). doi:10.1038/nnano.2010.132.

[Bae12] S. Bae, S. J. Kim, D. Shin, J.-H. Ahn und B. H. Hong.Towards industrial applications of graphene electrodes. Physica ScriptaT146:014024 (2012). doi:10.1088/0031-8949/

2012/T146/014024.

[Bak93] C. Baker, O. Gelsen und D. Bradley.Location of the lowest even parity excited singlet state in poly(p-phenylenevinylene) by two-photon fluorescence spectroscopy. Chemical Physics Letters201(1-4):127–131 (1993). doi:10.1016/0009-2614(93)85045-P.

[Bak12] A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne und R. H. Friend. The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors. Science 335(6074):1340–1344 (2012). doi:10.1126/science.1217745.

[Bal02] A. Baltuska, T. Fuji und T. Kobayashi. Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control. Optics letters 27(5):306–308 (2002). doi:10.1364/OL.27.000306.

[Bal11] A. A. Balandin.Thermal properties of graphene and nanostructured carbon materials.

Nature Materials10(8):569–581 (2011). doi:10.1038/nmat3064.

[Ban11] N. Banerji, S. Cowan, E. Vauthey und A. J. Heeger. Ultrafast Relaxation of the Poly(3-hexylthiophene) Emission Spectrum. The Journal of Physical Chemistry C 115(19):9726–9739 (2011). doi:10.1021/jp1119348.

[Bas10] M. Bass, V. N. Mahajan und E. W. Van Stryland. Handbook of optics. Volume II, Design, fabrication and testing, sources and detectors, radiometry and photometry.

McGraw-Hill (2010).

[Bau04] P. Baum, S. Lochbrunner und E. Riedle. Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling. Optics letters29(14):1686–1688 (2004).

doi:10.1364/OL.29.001686.

[Ben92] M. Bennati, A. Grupp, M. Mehring, K. Dinse und J. Fink. Pulsed EPR on the photoexcited triplet state of C60 fullerene. Chemical Physics Letters200(5):440–444 (1992). doi:10.1016/0009-2614(92)80072-J.

[Ber07] L. Berge, S. Skupin, R. Nuter, J. Kasparian und J.-P. Wolf. Ultrashort filaments of light in weakly-ionized, optically-transparent media. Reports on Progree in Physics 70:1633–1713 (2007). doi:10.1088/0034-4885/70/10/R03.

[Bon10] F. Bonaccorso, Z. Sun, T. Hasan und A. C. Ferrari. Graphene photonics and optoelectronics. Nature Photonics4(9):611–622 (2010). doi:10.1038/nphoton.2010.

186.

[Bon12] F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo und A. C. Ferrari.

Production and processing of graphene and 2d crystals. Materials Today15(12):564–

589 (2012). doi:10.1016/S1369-7021(13)70014-2.

[Boo08] T. J. Booth, P. Blake, R. R. Nair, D. Jiang, E. W. Hill, U. Bangert, A. Bleloch, M. Gass, K. S. Novoselov, M. I. Katsnelson und A. K. Geim. Macroscopic Graphene Membranes and Their Extraordinary Stiffness. Nano Letters8(8):2442–2446 (2008).

doi:10.1021/nl801412y.

[Bos06] A. Bostwick, T. Ohta, T. Seyller, K. Horn und E. Rotenberg. Quasiparticle dynamics in graphene. Nature Physics3(1):36–40 (2006). doi:10.1038/nphys477.

[Boy64] G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond und A. Savage.LiNbO3: An efficient phase matchable nonlinear optical material. Applied Physics Letters 5(11):234–236 (1964). doi:10.1063/1.1723604.

[Boy08] R. W. Boyd. Nonlinear optics. Academic Press, Burlington, 3. Auflage (2008).

doi:http://doi.org/10.1016/B978-0-12-369470-6.00001-0.

[Bra09] M. Bradler, P. Baum und E. Riedle. Femtosecond continuum generation in bulk laser host materials with sub-µJ pump pulses. Applied Physics B: Lasers and Optics 97(3):561–574 (2009). doi:10.1007/s00340-009-3699-1.

Literaturverzeichnis

[Bra10] C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia und S. P. Williams.

Polymer-fullerene bulk-heterojunction solar cells. Advanced Materials 22(34):3839–

3856 (2010). doi:10.1002/adma.200903697.

[Bre11] M. Breusing, S. Kuehn, T. Winzer, E. Malic, F. Milde, N. Severin, J. P. Rabe, C. Ropers, A. Knorr und T. Elsaesser. Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Physical Review B - Condensed Matter and Materials Physics83(15):1–4 (2011). doi:10.1103/PhysRevB.83.153410.

[Bri07] D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. De Silvestri und G. Cerullo.

Generation of broadband mid-infrared pulses from an optical parametric amplifier.

Optics Express 15(23):15035 (2007). doi:10.1364/OE.15.015035.

[Bri08] D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. De Silvestri und G. Cerullo.Sub-two-cycle light pulses at 1.6µm from an optical parametric amplifier.

Optics Letters33(7):741 (2008). doi:10.1364/OL.33.000741.

[Bri10] D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri und G. Cerullo. Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers. Journal of Optics12(1):013001 (2010). doi:10.1088/

2040-8978/12/1/013001.

[Bri13] D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, a. C. Ferrari, G. Cerullo und M. Polini.Ultrafast collinear scattering and carrier multiplication in graphene.Nature communications4(May):1987 (2013).

doi:10.1038/ncomms2987.

[Bro99] a. Brodeur und S. L. Chin. Ultrafast white-light continuum generation and self-focusing in transparent condensed media. Journal of the Optical Society of America B16(4):637 (1999). doi:10.1364/JOSAB.16.000637.

[Bru14] M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi und A. C. Ferrari. Doping Dependence of the Raman Spectrum of Defected Graphene. ACS Nano 8(7):7432–

7441 (2014). doi:10.1021/nn502676g.

[Bud17] A. Budweg, D. Yadav, A. Grupp, A. Leitenstorfer, M. Trushin, F. Pauly und D. Brida. Control of excitonic absorption by thickness variation in fewlayer GaSe -in Vorbereitung. Physical Review Letters (2017).

[Can11] L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala und A. C. Ferrari. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Letters 11(8):3190–3196 (2011). doi:10.1021/nl201432g.

[Cao14] W. Cao und J. Xue. Recent progress in organic photovoltaics: device architecture and optical design. Energy & Environmental Science 7(7):2123–2144 (2014). doi:

10.1039/c4ee00260a.

[Cas07] C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim und A. C. Ferrari. Raman fingerprint of charged impurities in graphene. Applied Physics Letters91(23):233108 (2007). doi:10.1063/1.2818692.

[Cas09] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov und A. K. Geim.The electronic properties of graphene. Reviews of Modern Physics81(1):109–162 (2009).

doi:10.1103/RevModPhys.81.109.

[Cau16] M. Causa’, J. De Jonghe-Risse, M. Scarongella, J. C. Brauer, E. Buchaca-Domingo, J.-E. Moser, N. Stingelin und N. Banerji. The fate of electron-hole pairs in polymer:fullerene blends for organic photovoltaics. Nature Communications7:12556 (2016). doi:10.1038/ncomms12556.

[Cer98] G. Cerullo, M. Nisoli, S. Stagira und S. De Silvestri. Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible.Optics letters23(16):1283–

1285 (1998). doi:10.1364/OL.23.001283.

[Cer03] G. Cerullo und S. De Silvestri. Ultrafast optical parametric amplifiers. Review of Scientific Instruments74(1 I):1–18 (2003). doi:10.1063/1.1523642.

[Cha54] D. M. Chapin, C. S. Fuller und G. L. Pearson. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 25(5):676–677 (1954). doi:10.1063/1.1721711.

[Col12] L. A. L. A. Coldren, S. W. S. W. Corzine und M. Mashanovitch. Diode lasers and photonic integrated circuits. Wiley (2012).

[Cou07] A. Couairon und A. Mysyrowicz. Femtosecond filamentation in transparent media.

Physics Reports441(2-4):47–189 (2007). doi:10.1016/j.physrep.2006.12.005.

[Das08] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, a. K. Geim, A. C. Ferrari und A. K. Sood.

Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature nanotechnology 3(4):210–5 (2008). doi:10.1038/nnano.2008.67.

[Daw08] J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana und M. G. Spencer.

Measurement of ultrafast carrier dynamics in epitaxial graphene. Applied Physics Letters92(4) (2008). doi:10.1063/1.2837539.

[De 16] A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B.

Plenio, C. A. Rozzi, G. Cerullo, E. Molinari und C. Lienau. Tracking the coherent generation of polaron pairs in conjugated polymers. Nature Communications7:13742 (2016). doi:10.1038/ncomms13742.

[Ded08] Y. S. Dedkov, M. Fonin, U. Rüdiger und C. Laubschat. Rashba Effect in the Graphene/Ni(111) System. Physical Review Letters 100(10):107602 (2008). doi:

10.1103/PhysRevLett.100.107602.

[Dei10a] C. Deibel, D. Mack, J. Gorenflot, A. Schöll, S. Krause, F. Reinert, D. Rauh und V. Dyakonov. Energetics of excited states in the conjugated polymer poly(3-hexylthiophene). Physical Review B 81(8):085202 (2010). doi:10.1103/PhysRevB.

81.085202.

Literaturverzeichnis

[Dei10b] C. Deibel, T. Strobel und V. Dyakonov. Role of the Charge Transfer State in Organic Donor-Acceptor Solar Cells. Advanced Materials 22(37):4097–4111 (2010).

doi:10.1002/adma.201000376.

[Dev15] A. Devižis, J. De Jonghe-Risse, R. Hany, F. Nüesch, S. Jenatsch, V. Gulbinas und J. E. Moser. Dissociation of Charge Transfer States and Carrier Separation in Bilayer Organic Solar Cells: A Time-Resolved Electroabsorption Spectroscopy Study. Journal of the American Chemical Society 137(25):8192–8198 (2015). doi:

10.1021/jacs.5b03682.

[Dow11] S. Dowland, T. Lutz, A. Ward, S. P. King, A. Sudlow, M. S. Hill, K. C. Molloy und S. A. Haque. Direct Growth of Metal Sulfide Nanoparticle Networks in Solid-State Polymer Films for Hybrid Inorganic-Organic Solar Cells. Advanced Materials 23(24):2739–2744 (2011). doi:10.1002/adma.201100625.

[Dri94] T. Driscoll, G. Gale und F. Hache.Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator. Optics Communications110(5-6):638–644 (1994). doi:10.1016/0030-4018(94)90265-8.

[Dru81] S. A. Druet und J.-P. E. Taran. Cars spectroscopy. Progress in Quantum Electronics 7(1):1–72 (1981). doi:10.1016/0079-6727(81)90002-1.

[Dub03] O. Dubay und G. Kresse. Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes. Physical Review B 67(3):035401 (2003). doi:10.1103/PhysRevB.67.035401.

[Dun07] W. R. Duncan und O. V. Prezhdo. Theoretical Studies of Photoinduced Electron Transfer in Dye-Sensitized TiO2. Annual Review of Physical Chemistry 58(1):143–

184 (2007). doi:10.1146/annurev.physchem.58.052306.144054.

[Dur99] C. G. Durfee III, S. Backus, H. C. Kapteyn und M. M. Murnane. Intense 8-fs pulse generation in the deep ultraviolet. Optics Letters 24(10):697–699 (1999). doi:

10.1364/OL.24.000697.

[Ech14] T. J. Echtermeyer, P. S. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov und A. C.

Ferrari. Photothermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors. Nano Letters 14(7):3733–3742 (2014). doi:

10.1021/nl5004762.

[Eck85] R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson und J. van der Laan.Efficient second harmonic generation of 10µm radiation in AgGaSe 2. Applied Physics Letters47(8):786–788 (1985). doi:10.1063/1.96038.

[Ehr17] P. Ehrenreich. Exciton dynamics in polymer thin films. Dissertation, Universität Konstanz (2017).

[Eim87] D. Eimerl, L. Davis, S. Velsko, E. K. Graham und A. Zalkin. Optical, mechanical, and thermal properties of barium borate. Journal of Applied Physics62(5):1968–1983 (1987). doi:10.1063/1.339536.

[Eli11] D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva, K. S. Novoselov, F. Guinea und A. K. Geim.

Dirac cones reshaped by interaction effects in suspended graphene. Nature Physics 7(9):701–704 (2011). doi:10.1038/nphys2049.

[Ell01] R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko und B. Luther-Davies. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Optics Letters26(6):373 (2001). doi:10.1364/OL.26.000373.

[Fac10] A. Facchetti und T. J. Marks, Herausgeber. Transparent Electronics. John Wiley &

Sons, Ltd, Chichester, UK (2010). doi:10.1002/9780470710609.

[Fal14] S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, C. Lienau und Others. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science344(6187):1001–1005 (2014). doi:

10.1126/science.1249771.

[Fer06] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth und A. K. Geim. Raman spectrum of graphene and graphene layers. Physical Review Letters 97(18):1–4 (2006). doi:

10.1103/PhysRevLett.97.187401.

[Fer13] A. C. Ferrari und D. M. Basko. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature nanotechnology8(4):235–46 (2013). doi:10.1038/

nnano.2013.46.

[Fer15] A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. a. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. a.

Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T.

Neil, Q. Tannock, T. Löfwander und J. Kinaret. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11):4598–4810 (2015). doi:10.1039/C4NR01600A.

[Fis16] J. Fischer, A.-C. Heinrich, S. Maier, J. Jungwirth, D. Brida und A. Leitenstorfer.

615 fs pulses with 17 mJ energy generated by an Yb:thin-disk amplifier at 3 kHz repetition rate. Optics Letters 41(2):246 (2016). doi:10.1364/OL.41.000246.

[Fis17] M. P. Fischer. - in Vorbereitung. Dissertation, Universität Konstanz (2017).

[For87] R. L. Fork, C. H. Brito Cruz, P. C. Becker und C. V. Shank. Compression of optical pulses to six femtoseconds by using cubic phase compensation. Optics Letters 12(7):483 (1987). doi:10.1364/OL.12.000483.

Literaturverzeichnis

[For04] S. R. Forrest. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428(6986):911–918 (2004). doi:10.1038/nature02498.

[Gal95] G. M. Gale, M. Cavallari, T. J. Driscoll und F. Hache. Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator. Optics Letters20(14):1562 (1995). doi:10.1364/OL.20.001562.

[Gao10] L. Gao, J. R. Guest und N. P. Guisinger. Epitaxial Graphene on Cu(111). Nano Letters 10(9):3512–3516 (2010). doi:10.1021/nl1016706.

[Gei07] A. K. Geim und K. S. Novoselov. The rise of graphene. Nature Materials6(3):183–

191 (2007). doi:10.1038/nmat1849.

[Gél11] S. Gélinas, O. Paré-Labrosse, C.-N. Brosseau, S. Albert-Seifried, C. R. McNeill, K. R.

Kirov, I. A. Howard, R. Leonelli, R. H. Friend und C. Silva. The Binding Energy of Charge-Transfer Excitons Localized at Polymeric Semiconductor Heterojunctions.

The Journal of Physical Chemistry C 115(14):7114–7119 (2011). doi:10.1021/

jp200466y.

[Gél14] S. Gélinas, A. Rao, A. Kumar, S. L. Smith, A. W. Chin, J. Clark, T. S. van der Poll, G. C. Bazan und R. H. Friend. Ultrafast Long-Range Charge Separation in Organic Semiconductor Photovoltaic Diodes. Science343(6170):512–516 (2014). doi:

10.1126/science.1246249.

[Geo08] P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana und M. G. Spencer. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Letters 8(12):4248–4251 (2008). doi:10.1021/nl8019399.

[Gie15] I. Gierz, F. Calegari, S. Aeschlimann, M. Chavez Cervantes, C. Cacho, R. T.

Chapman, E. Springate, S. Link, U. Starke, C. R. Ast und A. Cavalleri. Tracking Primary Thermalization Events in Graphene with Photoemission at Extreme Time Scales. Physical Review Letters 115(8):1–5 (2015). doi:10.1103/PhysRevLett.115.

086803.

[Gok09] T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K.

Geim, A. C. Ferrari und A. Hartschuh. Making Graphene Luminescent by Oxygen Plasma Treatment. ACS Nano3(12):3963–3968 (2009). doi:10.1021/nn9012753.

[Gon08] J. González und E. Perfetto. Unconventional quasiparticle lifetime in graphene.

Physical Review Letters 101(17):3589–3592 (2008). doi:10.1103/PhysRevLett.101.

176802.

[Gra11] G. Grancini, D. Polli, D. Fazzi, J. Cabanillas-gonzalez, G. Cerullo und G. Lanzani.

Transient Absorption Imaging of P3HT : PCBM Photovoltaic Blend. The Journal of Physical Chemistry Letters2(9):1099–1105 (2011). doi:10.1021/jz200389b.

[Gre15] M. A. Green, K. Emery, Y. Hishikawa, W. Warta und E. D. Dunlop. Solar cell efficiency tables (Version 45). Progress in Photovoltaics: Research and Applications 23(1):1–9 (2015). doi:10.1002/pip.2573.

[Grü03] A. Grüneis, R. Saito, G. Samsonidze, T. Kimura, M. Pimenta, A. Jorio, A. Filho, G. Dresselhaus und M. Dresselhaus. Inhomogeneous optical absorption around the K point in graphite and carbon nanotubes. Physical Review B 67(16):1–7 (2003).

doi:10.1103/PhysRevB.67.165402.

[Gru17] A. Grupp, P. Ehrenreich, J. Kalb, A. Budweg, L. Schmidt-Mende und D. Brida.

Incoherent Pathways of Charge Separation in Organic and Hybrid Solar Cells. The Journal of Physical Chemistry Letters 4858–4864 (2017). doi:10.1021/acs.jpclett.

7b01873.

[Gru18] A. Grupp, A. Budweg, M. P. Fischer, J. Allerbeck, G. Soavi, A. Leitenstorfer und D. Brida. Broadly tunable ultrafast pump-probe system operating at multi-kHz repetition rate. Journal of Optics 20(1):014005 (2018). doi:10.1088/2040-8986/

aa9b07.

[Guo09] J. Guo, H. Ohkita, H. Benten und S. Ito. Near-IR femtosecond transient absorption spectroscopy of ultrafast polaron and triplet exciton formation in polythiophene films with different regioregularities. Journal of the American Chemical Society 131(46):16869–16880 (2009). doi:10.1021/ja906621a.

[Guo10] J. Guo, H. Ohkita, H. Benten und S. Ito. Charge Generation and Recombination Dynamics in Poly ( 3-hexylthiophene )/ Fullerene Blend Films with Different Regioregularities and Morphologies. Journal of the American Chemical Society 132(6):6154–6164 (2010). doi:10.1002/adma.200903528.(11).

[Gus05] V. P. Gusynin und S. G. Sharapov. Unconventional Integer Quantum Hall Effect in Graphene. Physical Review Letters95(14):146801 (2005). doi:10.1103/PhysRevLett.

95.146801.

[GV09] I. Gonzalez-Valls und M. Lira-Cantu. Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ. Sci.2(1):19–34 (2009). doi:10.1039/

B811536B.

[Hal88] F. D. M. Haldane. Model for a Quantum Hall Effect without Landau Levels:

Condensed-Matter Realization of the ”Parity Anomaly”. Physical Review Letters 61(18):2015–2018 (1988). doi:10.1103/PhysRevLett.61.2015.

[Hal11] P. J. Hale, S. M. Hornett, J. Moger, D. W. Horsell und E. Hendry. Hot phonon decay in supported and suspended exfoliated graphene. Physical Review B 83(12):121404 (2011). doi:10.1103/PhysRevB.83.121404.

[Ham05] P. Hamm. Principles of Nonlinear Optical Spectroscopy : A Practical Approach or : Mukamel for Dummies. University of Zurich 41(5):77 (2005).

[Har05] P. Harrison. Quantum Wells, Wires and Dots. John Wiley & Sons, Ltd, Chichester, UK (2005). doi:10.1002/0470010827.

[Hau09] H. Haug und S. Koch. Quantum theory of the optical and electronic properties of semiconductors. World Scientific Publishing Co. Pte. Ltd., 5. Auflage (2009). doi:

10.1142/7184.

Literaturverzeichnis

[He11] L. He, C. Jiang, Rusli, D. Lai und H. Wang. Highly efficient Si-nanorods/organic hybrid core-sheath heterojunction solar cells. Applied Physics Letters 99(2):021104 (2011). doi:10.1063/1.3610461.

[Her11] D. Herrmann, S. Niesar, C. Scharsich, A. Köhler, M. Stutzmann und E. Riedle. Role of Structural Order and Excess Energy on Ultrafast Free Charge Generation in Hybrid Polythiophene/Si Photovoltaics Probed in Real Time by Near-Infrared Broadband Transient Absorption. Journal of the American Chemical Society 133(45):18220–

18233 (2011). doi:10.1021/ja207887q.

[Hey11] H. Heyer. Datasheet for Article #110086 (2011).

[Hil00] I. Hill, A. Kahn, Z. Soos und R. Pascal, Jr. Charge-separation energy in films of π-conjugated organic molecules. Chemical Physics Letters327(3-4):181–188 (2000).

doi:10.1016/S0009-2614(00)00882-4.

[Hob53] J. P. Hobson und W. A. Nierenberg.The Statistics of a Two-Dimensional, Hexagonal Net. Physical Review 89(3):662–662 (1953). doi:10.1103/PhysRev.89.662.

[Hom08] C. Homann, C. Schriever, P. Baum und E. Riedle. Octave wide tunable UV-pumped NOPA: pulses down to 20 fs at 0.5 MHz repetition rate. Optics express 16(8):5746–

5756 (2008). doi:10.1364/OE.16.005746.

[Hua10] L. Huang, G. V. Hartland, L.-Q. Chu, Luxmi, R. M. Feenstra, C. Lian, K. Tahy und H. Xing. Ultrafast Transient Absorption Microscopy Studies of Carrier Dynamics in Epitaxial Graphene. Nano Letters 10(4):1308–1313 (2010). doi:10.1021/nl904106t.

[Hum95] J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao und C. L. Wilkins.

Preparation and Characterization of Fulleroid and Methanofullerene Derivatives.

The Journal of Organic Chemistry60(3):532–538 (1995). doi:10.1021/jo00108a012.

[Hwa07] E. H. Hwang, B. Y. K. Hu und S. Das Sarma. Inelastic carrier lifetime in graphene.

Physical Review B - Condensed Matter and Materials Physics 76(11):1–6 (2007).

doi:10.1103/PhysRevB.76.115434.

[Iij91] S. Iijima. Helical microtubules of graphitic carbon. Nature354(6348):56–58 (1991).

doi:10.1038/354056a0.

[Jac99] D. J. Jackson. Classical Electrodynamics. John Wiley & Sons, Ltd, New York, 3 Auflage (1999).

[Jia02] X. M. Jiang, R. Österbacka, O. Korovyanko, C. P. An, B. Horovitz, R. a. J. Janssen und Z. V. Vardeny. Spectroscopic studies of photoexcitations in regioregular and regiorandom polythiophene films. Advanced Functional Materials 12(9):587 (2002).

doi:10.1002/1616-3028(20020916)12:9<587.

[Kaa13] L. G. Kaake, D. Moses und A. J. Heeger. Coherence and uncertainty in nanostructured organic photovoltaics. Journal of Physical Chemistry Letters 4(14):2264–2268 (2013). doi:10.1021/jz4010569.

[Kad14] F. Kadi, T. Winzer, E. Malic, A. Knorr, F. Göttfert, M. Mittendorff, S. Winnerl und M. Helm. Microscopic description of intraband absorption in graphene: The occurrence of transient negative differential transmission. Physical Review Letters 113(3):1–5 (2014). doi:10.1103/PhysRevLett.113.035502.

[Kad15] F. Kadi, T. Winzer, A. Knorr und E. Malic.Impact of doping on the carrier dynamics in graphene. Scientific reports 5(2):16841 (2015). doi:10.1038/srep16841.

[Kan93] D. J. Kane und R. Trebino. Characterization of Arbitrary Femtosecond Pulses Using Frequency-Resolved Optical Gating (1993). doi:10.1109/3.199311.

[Kär97] F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch und T. Tschudi. Design and fabrication of double-chirped mirrors. Optics Letters22(11):831 (1997). doi:10.1364/OL.22.000831.

[Kim09] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, H. Ahn, P. Kim, J.-Y. Choi und B. H. Hong. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710 (2009). doi:10.1038/nature07719.

[Kip09] B. Kippelen und J.-L. Brédas. Organic photovoltaics. Energy & Environmental Science2(3):251 (2009). doi:10.1039/b812502n.

[Kit07] R. Kitamura, L. Pilon und M. Jonasz. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Applied Optics 46(33):8118 (2007). doi:10.1364/AO.46.008118.

[Kno86] W. H. Knox, C. Hirlimann, D. A. B. Miller, J. Shah, D. S. Chemla und C. V. Shank.

Femtosecond Excitation of Nonthermal Carrier Populations in GaAs Quantum Wells. Physical Review Letters56(11):1191–1193 (1986). doi:10.1103/PhysRevLett.

56.1191.

[Kob02] T. Kobayashi und A. Baltuska. Sub-5 fs pulse generation from a noncollinear optical parametric amplifier. Measurement Science and Technology 13(11):1671–

1682 (2002). doi:10.1088/0957-0233/13/11/303.

[Kor01] O. J. Korovyanko, R. Österbacka, X. M. Jiang, Z. V. Vardeny und R. A. J.

Janssen. Photoexcitation dynamics in regioregular and regiorandom polythiophene films. Physical Review B 64(23):235122 (2001). doi:10.1103/PhysRevB.64.235122.

[Kos12] L. J. A. Koster, S. E. Shaheen und J. C. Hummelen. Pathways to a New Efficiency Regime for Organic Solar Cells. Advanced Energy Materials2(10):1246–1253 (2012).

doi:10.1002/aenm.201200103.

[Kra92] F. Krausz, M. Fermann, T. Brabec, P. Curley, M. Hofer, M. Ober, C. Spielmann, E. Wintner und A. Schmidt. Femtosecond solid-state lasers. IEEE Journal of Quantum Electronics28(10):2097–2122 (1992). doi:10.1109/3.159520.

[Kro85] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl und R. E. Smalley. C 60:

buckminsterfullerene. Nature 318:162–163 (1985). doi:10.1038/318162a0.

Literaturverzeichnis

[Kru10] A. Krueger. Carbon Materials and Nanotechnology. Wiley-VCH Verlag GmbH &

Co. KGaA, Weinheim, Germany (2010). doi:10.1002/9783527629602.

[Kum10] A. Kumar und C. Zhou. The Race To Replace Tin-Doped Indium Oxide: Which Material Will Win? ACS Nano 4(1):11–14 (2010). doi:10.1021/nn901903b.

[Lan06] G. Lanzani, Herausgeber. Photophysics of Molecular Materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG (2006). doi:10.1002/3527607323.

[Lat12] D. J. Late, B. Liu, H. S. S. R. Matte, C. N. R. Rao und V. P. Dravid. Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates. Advanced Functional Materials22(9):1894–1905 (2012). doi:10.1002/adfm.201102913.

[Laz05] M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari und J. Robertson. Electron transport and hot phonons in carbon nanotubes. Physical Review Letters 95(23):1–4 (2005).

doi:10.1103/PhysRevLett.95.236802.

[LC11] M. Lira-Cantu, A. Chafiq, J. Faissat, I. Gonzalez-Valls und Y. Yu. Oxide/polymer interfaces for hybrid and organic solar cells: Anatase vs. Rutile TiO2. Solar Energy Materials and Solar Cells95(5):1362–1374 (2011). doi:10.1016/j.solmat.2010.12.028.

[Lee08] C. Lee, X. Wei, J. W. Kysar und J. Hone. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 321(5887):385–388 (2008).

doi:10.1126/science.1157996.

[Len94] J. M. Leng, S. Jeglinski, X. Wei, R. E. Benner, Z. V. Vardeny, F. Guo und S. Mazumdar. Optical probes of excited states in poly( p -phenylenevinylene).

Physical Review Letters72(1):156–159 (1994). doi:10.1103/PhysRevLett.72.156.

[Li09] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo und R. S. Ruoff.Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science324(5932):1312–1314 (2009). doi:10.1126/science.1171245.

[Li10] X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo und R. S. Ruoff. Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process. Nano Letters 10(11):4328–4334 (2010). doi:10.1021/nl101629g.

[Lia10] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray und L. Yu. For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. Advanced Materials 22(20):E135–E138 (2010). doi:10.1002/adma.200903528.

[Lie14] M. Liebel, C. Schnedermann und P. Kukura. Sub-10-fs pulses tunable from 480 to 980 nm from a NOPA pumped by an Yb:KGW source. Opt. Lett.39(14):4112 (2014).

doi:10.1364/OL.39.004112.

[Lin95] A. L. Linsebigler, G. Lu und J. T. Yates.Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews 95(3):735–758 (1995). doi:

10.1021/cr00035a013.

[Lin09] Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer und P. Avouris.

Operation of Graphene Transistors at Gigahertz Frequencies. Nano Letters9(1):422–

426 (2009). doi:10.1021/nl803316h.

[Liu10] W.-T. Liu, S. W. Wu, P. J. Schuck, M. Salmeron, Y. R. Shen und F. Wang.Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation.

Physical Review B82(8):081408 (2010). doi:10.1103/PhysRevB.82.081408.

[Liu14] C.-H. Liu, Y.-C. Chang, T. B. Norris und Z. Zhong. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nature Nanotechnology 9(4):273–278 (2014). doi:10.1038/nnano.2014.31.

[Lóp04] G. A. López und E. J. Mittemeijer.The solubility of C in solid Cu. Scripta Materialia 51(1):1–5 (2004). doi:10.1016/j.scriptamat.2004.03.028.

[Lou96] G. Louarn, M. Trznadel, J. P. Buisson, J. Laska, A. Pron, M. Lapkowski und S. Lefrant. Raman Spectroscopic Studies of Regioregular Poly(3-alkylthiophenes).

[Lou96] G. Louarn, M. Trznadel, J. P. Buisson, J. Laska, A. Pron, M. Lapkowski und S. Lefrant. Raman Spectroscopic Studies of Regioregular Poly(3-alkylthiophenes).