• Keine Ergebnisse gefunden

He () = − ∫ ( x | y ) ln( x x | ) y )( ∏ dx

N/A
N/A
Protected

Academic year: 2022

Aktie "He () = − ∫ ( x | y ) ln( x x | ) y )( ∏ dx"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Augmenting the BSH operational forecasting system by in situ data assimilation

S. N. Losa 1 , S. Danilov 1 , J. Schröter 1 , L. Nerger 1 , S. Ma β mann 2 , F. Janssen 2

1

Alfred Wegener Institute for Polar and Marine Research (AWI, Bremerhaven, Germany),

2

Federal Maritime and Hydrographic Agency (BSH, Hamburg, Germany) Svetlana.Losa@awi.de

Assimilated Data

Abstract

Quality of the forecast provided by the German Maritime and Hydrographic Agency (BSH) for the North and Baltic Seas had been previously improved by assimilating satellite sea surface temperature SST (project DeMarine, Losa et al., 2012). We investigate possible further improvements using in situ observational temperature and salinity data: Marnet time series and CTD and ScanFish measurements. To assimilate the data, we implement the Singular Evolutive Interpolated Kalman (SEIK) filter (Pham et al., 1998). The SIEK analysis is performed locally (Nerger et al. 2006) accounting for/assimilating the data within a certain radius. In order to determine suitable localisation conditions for Marnet data assimilation, the BSHcmod error statistics have been analysed based on LSEIK filtering every 12 hours over a one year period (September 2007 – October 2008) given a 12-hourly composites of NOAA’s SST and under the experiment conditions corresponding the maximum entropy. The principle of Maximum Entropy is also used as an additional criterion of plausibility of the augmented system performance.

MARNET data

Principle of Maximum Entropy

Scanfish T, S profiles

Pham, D. T., J. Verron and L. Gourdeau (1998), Singular evolutive Kalman filters for data assimilation in oceanography, C. R. Acad. Sci.

Paris, Earth and Planetary Sciences, 326, 255–260.

Nerger, L., S. Danilov, W. Hiller, and J. Schröter. Using sea level data to constrain a finite-element primitive-equation model with a local SEIK filter. Ocean Dynamics 56 (2006) 634.

The model error correlations obtained with an increment analysis based on the experiments corresponding the Maximum Entropy. The blue curves are the correlations along the latitudes and longitudes. The green and black curves are possible approximations of the correlation functions.

The surface and bottom salinity forecast at the MARNET stations against observations for the period October – December 2007.

T ime se rie s at Ma rn et st at io ns

Kivman, G. A., Kurapov, A. L., Guessen, A., 2001. An entropy approach to tuning weights and smoothing in the generalized inversion. Journal of atmospheric and oceanic technology 18, 266–276.

Losa, S.N., Danilov, S., Schröter, J., Nerger, L., Maßmann, S., Janssen, F. (2012). Assimilating NOAA SST data into the BSH operational circulation model for the North and Baltic Seas: Inference about the data. Journal of Marine Systems, 105-108, pp. 152–162.

general formulation, Kivman et al., 2001

ρ(x|y) is the probability density function (PDF) of model trajectories realisations x given the y or the conditional PDF also called the analysis PDF, which expresses the state of our know- knowledge about the model state when data are observed. µ(x) is the lowest information about x. The maximum probable x or mean with respect to ρ(x/y) is

L*, H* reflect our assumptions on the model and data error covariances. Operators Mm and Md are nonnegative, self-adjoint and . M is an operator-valued measure. Given λi of Mm or Md matrixes, one can calculate the entropy

In Kalman type Filtering

The maximum probable x or state vector analysis xa is , where x(tn)a and x(tn)f denote analysis and forecast of the model state at certain time tn. yn is observations available at tn. K is the Kalman gain

Here, following Pham (1998), Pnf is the forecast error covariance matrix, H is the observation operator and R is the observational error covariance matrix. To calculate the entropy He(ρ) , we just need to know λi of the Kalman gain matrix (using SVD decomposition). Such a matrix could be constructed by collecting and considering Kn, for instance, globally over a certain period of time or locally. The last variant is valuable for validation of localisation conditions.

Mm+Md€ =I

xi=Mmxm+Mdxd

Mm=L*L,

Md=H*H

He(M)=−trace(MdlnMd+MmlnMm)=− [λilnλi+(1−λi)ln(1−λi)]

i=1 N

x(tn)a=x(tn)f,m+Kn(dn−Hx(tn)f,m)

Kn=PnfH(HPnfHT+R)−1 He(ρ)=− ρ(x|y)

X lnρ(xµ(x)|y)

dx

Remote Sensing Data: NOAA SST Scanfish and CTD T,S profiles MARNET T and S time series

Model error correlations based on the experiments with Maximum Entropy

Acknowledgement: The authors are grateful to

Simon Jandt

2for setting up the observational data.

The data archive is based on measurements collected by BSH, Sweden's Meteorological and Hydrological Institute (SMHI) and the Institute of Marine Research (IMR, Norway)

11/10/0721/10/0731/10/0710/11/0720/11/0730/11/0710/12/0720/12/07 8

10 12 14 16 18

S/psu

date Marnet station Darss Sill: Surface salinity

11/10/0721/10/0731/10/0710/11/0720/11/0730/11/0710/12/0720/12/07 8

10 12 14 16 18

S/psu

date Marnet station Darss Sill: Bottom salinity 11/10/0721/10/0731/10/0710/11/0720/11/0730/11/0710/12/0720/12/07

10 15 20 25

S/psu

date Marnet station Fehmarn Belt: Surface salinity

11/10/0721/10/0731/10/0710/11/0720/11/0730/11/0710/12/0720/12/07 10

15 20 25

S/psu

date Marnet station Fehmarn Belt: Bottom salinity

0 10 20 30 40 50

−0.4

−0.2 0 0.2 0.4 0.6 0.8 1

grid points

corr coef

Summer T

14 15 16

56 56.5 57 57.5

longitude, oE latitude, oN

error correlations at the Fehmarn Belt level = 1

−0.5 0 0.5 1

0 10 20 30 40 50

0 0.2 0.4 0.6 0.8 1

grid points

corr coef

Spring T

14 15 16

56 56.5 57 57.5

longitude, oE latitude, oN

error correlations at the Fehmarn Belt level = 1

−0.5 0 0.5 1

0 10 20 30 40 50

0 0.2 0.4 0.6 0.8 1

grid points

corr coef

Summer T

13 14 15 16

55 55.5 56 56.5

longitude, oE latitude, oN

error correlations at the Darss Sill level = 1

−0.5 0 0.5 1

0 10 20 30 40 50

0 0.2 0.4 0.6 0.8 1

grid points

corr coef

Spring T

13 14 15 16

55 55.5 56 56.5

longitude, oE latitude, oN

error correlations at the Darss Sill level = 1

−0.5 0 0.5 1

DATA Forecast with NOAA and in situ T, S DA

Forecast without DA Forecast with in situ T, S DA

DATA Forecast with NOAA and in situ T, S DA

Forecast without DA Forecast with in situ T, S DA RMSE = 0.35oC

RMSE = 1.55oC RMSE = 0.24oC

RMSE = 0.99oC RMSE = 1.14oC

RMSE = 0.94oC - Forecast without DA

- Marnet obswevations

- Forecast with NOAA und in situ DA - Forecast with in situ DA

08/07/08 18/07/08 28/07/08 07/08/08 17/08/08 27/08/08 2

4 6 8 10 12 14 16 18

oC

date

Arkona Basin: Bottom temperature Temporal evolution the bottom temperature forecast at the MARNET station “Arkona Basin” produced with BSHcmod without DA (black);

with LSEIK analysis of the model and NOAA’s SST DA under statistical conditions corresponding the He= 4.86 for the period 25 June – 8 August 2008 (blue solid); based on NOAA’s SST LSEIK analysis under error statistics with He=2.71 for the same period (blue dashed);

assimilating satellite SST and in situ T, S data including MARNET(black dashed); assimilating only in situ data (red). The green curve depicts MARNET observations.

Temperature profiles plotted in the longitude order on 26 July 2008 (to the left) and on 27 July 2008 (to the bottom).

Despite of good agreement between LSEIK analysis and observations both for T and S, the forecast quality is crucially depends on the plausibility of the localisation conditions.

In some locations, the best forecast is possible only with combined satellite and in situ data assimilation.

Referenzen

ÄHNLICHE DOKUMENTE

[r]

Numerical Algorithms for Visual Computing III 2011 Example Solutions for Assignment 51. Problem 1 (The

Einige Aufgaben dienen dazu, dass Sie testen kön- nen, ob Ihnen topologische Grundbegriffe ausreichend vertraut sind.. Die erste Aufgabe beweist nicht nur ein ständig ohne

Der Adressat des Briefes, der Marquis de l’Hˆ opital, hat es in der Wissen- schaftsgeschichte durch einen wohl einmaligen Vorgang zu zweifelhaftem Ruhm ge- bracht.. Die von

das Flüssigkeitsvolumen, welches pro Zeiteinheit durch S hindurch fliesst in

Betrachte Beispiel 3.12 von Folie 169, die Arithmetik der

Betrachte Beispiel 3.12 von Folie 169, die Arithmetik der

(1) Man beachte, dass die partiellen Ableitungen im Gegensatz zu den gew¨ ohn- lichen Ableitungen nicht durch Striche (oder Punkte im Falle der zeitlichen Ableitung)