• Keine Ergebnisse gefunden

Stochastische Differentialgleichungen

N/A
N/A
Protected

Academic year: 2022

Aktie "Stochastische Differentialgleichungen"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Mathematisch-

Naturwissenschaftliche Fakultät

Fachbereich Mathematik

Prof. Dr. Andreas Prohl Dr. Ananta Kumar Majee

Stochastische Differentialgleichungen

Summer Semester 2017 Tübingen, 26.04.2017

Homework 2

Problem 1.LetT >0, and(Ω,F,P)be a probability space. In the lecture, we introduced the Lagrange interpolation

Yek,h(t); 0≤t≤T via

Yek,h(t) = tj+1−t

k Yk,h(tj) +t−tj

k Yk,h(tj+1) ∀tj ≤t < tj+1, whereYk,h(tj) =Pj

l=1ηlis the random walk, andtj =jTJ =:jkare the mesh points of the equi-distant meshGk :=

tj Jj=0 covering[0, T]. Letf ∈Cb(R). Show that the iterates

uj Jj=0 ⊂ Cb(R)be given by

uj(x) =E h

f x+Yek,k(tj)i

∀x∈R solves

(uj(x)−uj−1(x)

k = uj−1(x+

k)−2uj−1(x)+uj−1(x− k)

2k (1≤j≤J)

u0(x) =f(x) ∀x∈R, (1)

where (1) is a finite difference discretization of the linear heat equation.

Problem 2.Lett >0. In the lecture, we define the quadratic variation of a Wiener processW QW(t) =L2−lim

J↑∞QWkJ(t), where QWkJ(t) = PJ

j=1

W(tJj)− W(tJj−1)

2 on the equi-distant mesh of size k > 0 covering [0, t]

IkJ =

0, tJ1,· · · , tJJ wheretJj = jtJ =:jk. Let

Ikl;l∈N be a sequence of equi-distant meshes such thatP

l=1kl<∞. Show that

QWkl(t)→t P-a.s. (l↑ ∞)

Hint:Use Tschebycheff’s inequality and Borel-Cantelli lemma to transfer the corresponding L2-convergence result from the lecture.

Problem 3. Let0 = tJ0 < tJ1 < · · · < tJJ = T, wheretJj = jTJ be an equi-distant mesh of sizek = TJ covering[0, T]. Find the following limits

a). L2−lim

J↑∞

J−1

X

j=0

W(tJj)h

W(tJj+1)−W(tJj)i ,

b). L2− lim

J↑∞

J−1

X

j=0

W(tJj+1)h

W(tJj+1)−W(tJj)i .

Seite 1/2

(2)

Problem 4.Letf ∈Mstep2 such thatf(t) =PJ−1

j=0 ηj1[tj,tj+1)(t). Consider the stochastic integral

I(f) =

J−1

X

j=1

ηj

W(tj+1)−W(tj) .

Show that

E h

I(f)

2i

=E hZ

0

|f(s)|2dsi .

Date of submission: 03.05.2017.

Seite 2/2

Referenzen

ÄHNLICHE DOKUMENTE

Fast jede L¨ osung einer affinen Gleichung mit Ged¨ achtnis – auch eines endlichen – l¨ asst sich durch L¨ osungen von Gleichungen mit unendlichen Vergangenheiten, die durch

Summer Semester 2017 Tübingen, 21.04.2017.

Summer Semester 2017 Tübingen, 04.05.2017.

Summer Semester 2017 Tübingen, 09.05.2017.

We used Kolmogorov’s continuity theorem in the lecture when we introduced a Wiener process. Use the BDG inequality to then bound the p-th moment of the

Show that the strong solution of the related SDE (with proper initial condition) is a Markov process. Hint: Use that the solution is a

Summer Semester 2017 Tübingen, 06.07.2017. Homework

Summer Semester 2017 Tübingen, 13.07.2017.