• Keine Ergebnisse gefunden

f @ t_ D := t ^ 2 • ; H-Pi • 2 £ t && t £ Pi • 2 L ; f @ t_ D := f @ Pi • 2 D • ; H Pi • 2 < t && t £ 3 Pi • 2 L ; f @ t_ D := f @ t + 2 Pi D • ; H-5 Pi • 2 £ t && t < -Pi • 2 L ; f @ t_ D := f @ t - 2 Pi D • ; H 3 Pi • 2 < t && t £ 7 Pi • 2 L ; f1 @ t_ D

N/A
N/A
Protected

Academic year: 2021

Aktie "f @ t_ D := t ^ 2 • ; H-Pi • 2 £ t && t £ Pi • 2 L ; f @ t_ D := f @ Pi • 2 D • ; H Pi • 2 < t && t £ 3 Pi • 2 L ; f @ t_ D := f @ t + 2 Pi D • ; H-5 Pi • 2 £ t && t < -Pi • 2 L ; f @ t_ D := f @ t - 2 Pi D • ; H 3 Pi • 2 < t && t £ 7 Pi • 2 L ; f1 @ t_ D"

Copied!
17
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Lösungen

1

Remove @ "Global`*" D

f @ t_ D := t ^ 2 ; H-Pi 2 £ t && t £ Pi 2 L ; f @ t_ D := f @ Pi 2 D • ; H Pi 2 < t && t £ 3 Pi 2 L ; f @ t_ D := f @ t + 2 Pi D • ; H-5 Pi 2 £ t && t < -Pi 2 L ; f @ t_ D := f @ t - 2 Pi D • ; H 3 Pi 2 < t && t £ 7 Pi 2 L ; f1 @ t_ D := t ^ 2;

f2 @ t_ D := f1 @ Pi 2 D ;

Plot @ f @ t D , 8 t, -Pi 2, 3 Pi 2 <D ;

-1 1 2 3 4

0.5 1 1.5 2 2.5

Plot @ f @ t D , 8 t, -5 Pi 2, 7 Pi 2 <D ;

-7.5 -5 -2.5 2.5 5 7.5 10

0.5

1

1.5

2

2.5

(2)

Ÿ a Koeffizienten

T = 2 Pi;

cc = -Pi 2;

w = 2 Pi T;

a @ 0 D := 2 T NIntegrate @ f @ t D , 8 t, cc, cc + T <D ;

a @ k_ D := 2 T NIntegrate @ f @ t D Cos @ k w t D , 8 t, cc, cc + T <D ; b @ k_ D := 2 T NIntegrate @ f @ t D Sin @ k w t D , 8 t, cc, cc + T <D ; H* c @ k_ D :=1 T Integrate @ f @ t D E^ H-I k w t L , 8 t,cc,cc+T <D ; *L

ff @ t_ D := a @ 0 D • 2 + Sum @ a @ n D Cos @ n w t D + b @ n D Sin @ n w t D , 8 n, 1, Infinity <D ; ff @ t_, h_ D := a @ 0 D • 2 + Sum @ a @ n D Cos @ n w t D + b @ n D Sin @ n w t D , 8 n, 1, h <D •• Chop;

H * ffk @ t_ D :=Sum @ c @ n D E^ H I n w t L , 8 n,-Infinity,Infinity <D ; * L H* ffk @ t_,h_ D :=Sum @ c @ n D E^ H I n w t L , 8 n,-h,h <D ; *L

g @ t_ D := H ff @ u, 4 D • . u ® t L •• Simplify; g @ t D

1.64493 - 1.27324 Cos @ t D - 0.5 Cos @ 2 t D + 0.047157 Cos @ 3 t D + 0.125 Cos @ 4 t D a1 @ 0 D :=

2 T H Integrate @ f1 @ t D , 8 t, cc, cc + T 2 <D + Integrate @ f2 @ t D , 8 t, cc + T 2, cc + T <DL ; a1 @ k_ D := 2 T H Integrate @ f1 @ t D Cos @ k w t D , 8 t, cc, cc + T 2 <D +

Integrate @ f2 @ t D Cos @ k w t D , 8 t, cc + T 2, cc + T <DL ; b1 @ k_ D := 2 T H Integrate @ f1 @ t D Sin @ k w t D , 8 t, cc, cc + T 2 <D +

Integrate @ f2 @ t D Sin @ k w t D , 8 t, cc + T 2, cc + T <DL ;

ff1 @ u_, h_ D := a1 @ 0 D • 2 + Sum @ a1 @ n D Cos @ n w u D + b1 @ n D Sin @ n w u D , 8 n, 1, h <D •• Chop;

g1 @ t_ D := H ff1 @ u, 4 D • . u ® t L ; g1 @ t D •• Simplify

p

2

€€€€€€€

6 - €€€€€€€€€€€€€€€€€€€€€€€ 4 Cos p @ t D - 1

€€€€ 2 Cos @ 2 t D + €€€€€€€€€€€€€€€€€€€€€€€€€€€ 4 Cos @ 3 t D 27 p + 1

€€€€ 8 Cos @ 4 t D g1 @ t_ D := H ff1 @ u, 4 D • . u ® t L •• N;

g1 @ t D

1.64493 - 1.27324 Cos @ t D - 0.5 Cos @ 2. t D + 0.047157 Cos @ 3. t D + 0.125 Cos @ 4. t D a1 @ 0 D

p

2

€€€€€€€

3

H* a0 2, a0 *L 8 1.6449340668482262`, 2 1.6449340668482262` <

8 1.64493, 3.28987 <

H * ak * L 8 -1.2732395447351628, -0.5`, +0.047157020175376325`, 0.125` <

8-1.27324, -0.5, 0.047157, 0.125 <

H * bk * L 8 0, 0, 0, 0 <

8 0, 0, 0, 0 <

(3)

Ÿ b

Abs @ g @ Pi 2 D - f @ Pi 2 DD 0.197467

Abs @ g1 @ Pi 2 D - f @ Pi 2 DD 0.197467

Abs @ g @ 3 Pi 2 D - f @ 3 Pi 2 DD 0.197467

Abs @ g1 @ 3 Pi 2 D - f @ 3 Pi 2 DD 0.197467

Ÿ c: Gute Näherung schon mit wenigen Koeffizienten

Plot @ Evaluate @8 f @ t D , g @ t D<D , 8 t, -Pi 2, 3 Pi 2 <D ;

-1 1 2 3 4

0.5 1 1.5 2 2.5

Plot @ Evaluate @8 f @ t D , g1 @ t D<D , 8 t, -Pi 2, 3 Pi 2 <D ;

-1 1 2 3 4

0.5

1

1.5

2

2.5

(4)

Ÿ d

f @ Pi 2 D p

2

€€€€€€€

4 N @ % D 2.4674 a1 @ 0 D

p

2

€€€€€€€

3

8 Cos @ Pi 2 D , Cos @ 2 Pi 2 D , Cos @ 3 Pi 2 D , Cos @ 4 Pi 2 D<

8 0, -1, 0, 1 <

In p

2

€€€€€€€

4 == p

2

€€€€€€€

6 + I - €€€€€

p22

+ €€€

12

H -8 + p

2

LM * 0

€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ €€€€€€€€€€€€€€€€€€€€€€€€€€

p - 1

€€€€ 2 * H -1 L + I €€€€€

p62

+ €€€€€

541

H 8 - 9 p

2

LM * 0

€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ €€€€€€€€€€€€€€€€€€€€€€€€€

p + 1

€€€€ 8 * 1 + ....

lässt sich p auf eine Seite der Gleichung bringen und so isolieren, also berechnen

ff1 @ u, Infinity D p

2

€€€€€€€

6 + 1

€€€€€€€€€

2 p H p PolyLog @ 2, -ä ã

u

D + p PolyLog @ 2, ä ã

u

D +

p PolyLog @ 2, -ä ã

äu

D + p PolyLog @ 2, ä ã

äu

D - 2 ä PolyLog @ 3, -ä ã

u

D + 2 ä PolyLog @ 3, ä ã

u

D - 2 ä PolyLog @ 3, -ä ã

äu

D + 2 ä PolyLog @ 3, ä ã

äu

DL

2

Remove @ "Global`*" D g1 @ t_ D := -t;

Ÿ a Koeffizienten

T = 2;

cc = -1;

w = 2 Pi T;

a @ 0 D := 2 T Integrate @ g1 @ t D , 8 t, cc, cc + T <D ;

a @ k_ D := 2 T Integrate @ g1 @ t D Cos @ k w t D , 8 t, cc, cc + T <D ; b @ k_ D := 2 T Integrate @ g1 @ t D Sin @ k w t D , 8 t, cc, cc + T <D ; H* c @ k_ D :=1 T Integrate @ g1 @ t D E^ H-I k w t L , 8 t,cc,cc+T <D ; *L

gg @ t_ D := a @ 0 D • 2 + Sum @ a @ n D Cos @ n w t D + b @ n D Sin @ n w t D , 8 n, 1, Infinity <D ; gg @ t_, h_ D := a @ 0 D • 2 + Sum @ a @ n D Cos @ n w t D + b @ n D Sin @ n w t D , 8 n, 1, h <D •• Chop;

H* ffk @ t_ D :=Sum @ c @ n D E^ H I n w t L , 8 n,-Infinity,Infinity <D ; *L H* ffk @ t_,h_ D :=Sum @ c @ n D E^ H I n w t L , 8 n,-h,h <D ; *L

h4 @ t_ D := H gg @ u, 4 D • . u ® t L •• Simplify; ExpandAll @ h4 @ t DD - €€€€€€€€€€€€€€€€€€€€€€€€€€€ 2 Sin p @ p t D + €€€€€€€€€€€€€€€€€€€€€€€€€€€ Sin @ p 2 p t D - €€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ 2 Sin @ 3 p t D

3 p + €€€€€€€€€€€€€€€€€€€€€€€€€€€ Sin @ 4 p t D

2 p

(5)

h20 @ t_ D := H gg @ u, 20 D • . u ® t L •• Simplify;

w = 2 Pi T p

h4N @ t_ D := h4 @ t D •• N •• Simplify; h4N @ t D

-0.63662 Sin @ 3.14159 t D + 0.31831 Sin @ 6.28319 t D - 0.212207 Sin @ 9.42478 t D + 0.159155 Sin @ 12.5664 t D 8 -0.6366197723675814`, +0.3183098861837907`,

-0.2122065907891938` , +0.15915494309189535` <

8-0.63662, 0.31831, -0.212207, 0.159155 <

Plot @ Evaluate @8 g1 @ t D , h4N @ t D<D , 8 t, -1, 1 <D ;

-1 -0.5 0.5 1

-1 -0.5 0.5 1

Ÿ b

3 h4 @ t D + 2 •• ExpandAll 2 - €€€€€€€€€€€€€€€€€€€€€€€€€€€ 6 Sin @ p t D

p + €€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ 3 Sin @ 2 p t D

p - €€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ 2 Sin @ 3 p t D

p + €€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ 3 Sin @ 4 p t D 2 p g2 @ t_ D := 3 g1 @ t D + 2;

h2 @ t_ D := 3 h4N @ t D + 2 •• Simplify; 8 g2 @ t D , h2 @ t D<

8 2 - 3 t, 2. - 1.90986 Sin @ 3.14159 t D +

0.95493 Sin @ 6.28319 t D - 0.63662 Sin @ 9.42478 t D + 0.477465 Sin @ 12.5664 t D<

8 2.`, -1.909859317102744`, +0.954929658551372`, -0.6366197723675814`, +0.477464829275686` <

8 2., -1.90986, 0.95493, -0.63662, 0.477465 <

(6)

Plot @ Evaluate @8 g2 @ t D , h2 @ t D<D , 8 t, -1, 1 <D ;

-1 -0.5 0.5 1

-1 1 2 3 4 5

Ÿ c Integration der Fourierreihe!

Expand @ h4 @ u DD

- €€€€€€€€€€€€€€€€€€€€€€€€€€€ 2 Sin p @p u D + €€€€€€€€€€€€€€€€€€€€€€€€€€€ Sin @ p 2 p u D - €€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ 2 Sin @ 3 p u D

3 p + €€€€€€€€€€€€€€€€€€€€€€€€€€€ Sin @ 4 p u D 2 p

Integrate @ Evaluate @ Expand @ h4 @ u DDD , 8 u, 0, t <D •• TrigReduce •• Expand

- 115

€€€€€€€€€€€€€€

72 p

2

+ €€€€€€€€€€€€€€€€€€€€€€€€€€€ 2 Cos p @p

2

t D - €€€€€€€€€€€€€€€€€€€€€€€€€€€ Cos @ 2 p t D

2 p

2

+ €€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ 2 Cos @ 3 p t D

9 p

2

- €€€€€€€€€€€€€€€€€€€€€€€€€€€ Cos @ 4 p t D 8 p

2

g3 @ t_ D := Integrate @ g1 @ u D , 8 u, 0, t <D ; g3 @ t D

- t

2

€€€€€€€

2

g31 @ t_ D := Integrate @ h4N @ u D , 8 u, 0, t <D ; g31 @ t D

-0.161832 + 0.202642 Cos @ 3.14159 t D - 0.0506606 Cos @ 6.28319 t D + 0.0225158 Cos @ 9.42478 t D - 0.0126651 Cos @ 12.5664 t D

8 -0.16183244609540065`, +0.20264236728467558` ,

-0.050660591821168895` , +0.022515818587186175` , -0.012665147955292224` <

8-0.161832, 0.202642, -0.0506606, 0.0225158, -0.0126651 <

Plot @ Evaluate @8 g3 @ t D , g31 @ t D<D , 8 t, -1, 1 <D ;

-1 -0.5 0.5 1

-0.5

-0.4

-0.3

-0.2

-0.1

(7)

Ÿ d Differentiation führt zu keiner Konstante: Oszillation, Gibbs!

g1 ' @ t D -1

h4N ' @ t D

-2. Cos @ 3.14159 t D + 2. Cos @ 6.28319 t D - 2. Cos @ 9.42478 t D + 2. Cos @ 12.5664 t D Plot @ Evaluate @8 g1 ' @ t D , h4N ' @ t D<D , 8 t, -1, 1 <D ;

-1 -0.5 0.5 1

-2 2 4

Plot @ Evaluate @8 g1 ' @ t D , h20 ' @ t D<D , 8 t, -1, 1 <D ;

-1 -0.5 0.5 1

-6 -4 -2 2 4

3

Remove @ "Global`*" D ;

Ÿ a

Wir verwenden zuerst die Skalierung nach der Periode 2 Pi. Das vereinfacht die Rechung etwas.

(8)

n=6; w = 2 Pi/n;

{x[0],y[0]}={0 w,2};

{x[1],y[1]}={1 w,2};

{x[2],y[2]}={2 w,3};

{x[3],y[3]}={3 w,2};

{x[4],y[4]}={4 w,3.5};

{x[5],y[5]}={5 w,7};

{x[6],y[6]}={6 w,2};

{x[-1],y[-1]}={-1 w,7};

{x[-2],y[-2]}={-2 w,3.5};

{x[-3],y[-3]}={-3 w,2};

{x[-4],y[-4]}={-4 w,3};

{x[-5],y[-5]}={-5 w,2};

{x[-6],y[-6]}={-6 w,2};

p[k_]:= {x[k],y[k]};

Table[p[k],{k,-(n-1),(n-1)}]

99- €€€€€€€€€ 5 p

3 , 2 = , 9- €€€€€€€€€ 4 p

3 , 3 = , 8-p, 2 < , 9- €€€€€€€€€ 2 p

3 , 3.5 = , 9- €€€€ p 3 , 7 = , 8 0, 2 < , 9 €€€€ p

3 , 2 = , 9 €€€€€€€€€ 2 p

3 , 3 = , 8 p, 2 < , 9 €€€€€€€€€ 4 p

3 , 3.5 = , 9 €€€€€€€€€ 5 p 3 , 7 ==

epi=Prepend[Map[Point,Table[p[k],{k,0,n}]],PointSize[0.03]]

9 PointSize @ 0.03 D , Point @8 0, 2 <D , Point A9 €€€€ p

3 , 2 =E , Point A9 €€€€€€€€€ 2 p 3 , 3 =E , Point @8p, 2 <D , Point A9 €€€€€€€€€ 4 p

3 , 3.5 =E , Point A9 €€€€€€€€€ 5 p

3 , 7 =E , Point @8 2 p, 2 <D=

epi1 = Prepend @ Map @ Point, Table @8 k, y @ k D< , 8 k, 0, n <DD , PointSize @ 0.03 DD 8 PointSize @ 0.03 D , Point @8 0, 2 <D , Point @8 1, 2 <D , Point @8 2, 3 <D ,

Point @8 3, 2 <D , Point @8 4, 3.5 <D , Point @8 5, 7 <D , Point @8 6, 2 <D<

r = E^(-I 2 Pi/n);

c[s_]:= 1/n Sum[y[k] r^(s k),{k,-Floor[(n-1)/2],n-1-Floor[(n-1)/2]}];

Table[c[s],{s,0,10}]//N

8 3.25, 0.208333 + 0.793857 ä, -0.625 + 0.649519 ä,

-0.416667, -0.625 - 0.649519 ä, 0.208333 - 0.793857 ä, 3.25,

0.208333 + 0.793857 ä, -0.625 + 0.649519 ä, -0.416667, -0.625 - 0.649519 ä<

Ÿ a c[s]

8 3.25`, 0.20833333333333373` + 0.7938566201357355` ä, -0.6249999999999993` + 0.649519052838329` ä,

-0.41666666666666663`, -0.6249999999999993` - 0.649519052838329` ä, 0.20833333333333373` - 0.7938566201357355` ä,

3.25`, 0.20833333333333373` + 0.7938566201357355` ä, -0.6249999999999993` + 0.649519052838329` ä,

-0.41666666666666663`, -0.6249999999999993` - 0.649519052838329` ä<

8 3.25, 0.208333 + 0.793857 ä, -0.625 + 0.649519 ä,

-0.416667, -0.625 - 0.649519 ä, 0.208333 - 0.793857 ä, 3.25,

0.208333 + 0.793857 ä, -0.625 + 0.649519 ä, -0.416667, -0.625 - 0.649519 ä <

(9)

fS[t_]:=Sum[c[k] E^(I k t),{k,-Floor[(n-1)/2],n-1-Floor[(n-1)/2]}];

fS[t]

3.25 + H 0.208333 - 0.793857 ä L ã

t

+ H 0.208333 + 0.793857 ä L ã

ät

- H 0.625 + 0.649519 äL ã

-2ät

- H 0.625 - 0.649519 äL ã

2ät

- 0.416667 ã

3ät

% •• ExpandAll

3.25 + H 0.208333 - 0.793857 ä L ã

t

+ H 0.208333 + 0.793857 ä L ã

ät

- H 0.625 + 0.649519 ä L ã

-2ät

- H 0.625 - 0.649519 ä L ã

2ät

- 0.416667 ã

3ät

fS1 @ s_ D := fS @ s 2 Pi n D ;

fS1 @ s D

3.25 + H 0.208333 - 0.793857 ä L ã

-€€€€13ä ps

+ H 0.208333 + 0.793857 ä L ã

€€€€€€€€€€ä p3s

- H 0.625 + 0.649519 äL ã

-€€€€23ä ps

- H 0.625 - 0.649519 äL ã

€€€€€€€€€€€€€€2ä ps3

- 0.416667 ã

ä ps

% •• ExpandAll

3.25 + H 0.208333 - 0.793857 äL ã

-€€€€13ä ps

+ H 0.208333 + 0.793857 äL ã

€€€€€€€€€€ä p3s

- H 0.625 + 0.649519 ä L ã

-€€€€23ä ps

- H 0.625 - 0.649519 ä L ã

€€€€€€€€€€€€€€2ä ps3

- 0.416667 ã

ä ps

% •• N •• Simplify

3.25 + H 0.208333 - 0.793857 ä L ã

-1.0472äs

+ H 0.208333 + 0.793857 ä L ã

1.0472äs

- H 0.625 + 0.649519 ä L ã

-2.0944äs

- H 0.625 - 0.649519 ä L ã

2.0944äs

- 0.416667 ã

3.14159äs

fS[t]//ExpToTrig

3.25 + H 0.416667 + 0. äL Cos @ t D - H 1.25 + 0. äL Cos @ 2 t D - 0.416667 Cos @ 3 t D - H 1.58771 + 0. ä L Sin @ t D - H 1.29904 + 0. ä L Sin @ 2 t D - 0.416667 ä Sin @ 3 t D

% •• ExpandAll

3.25 + H 0.416667 + 0. äL Cos @ t D - H 1.25 + 0. äL Cos @ 2 t D - 0.416667 Cos @ 3 t D - H 1.58771 + 0. äL Sin @ t D - H 1.29904 + 0. äL Sin @ 2 t D - 0.416667 ä Sin @ 3 t D

% •• N

3.25 + H 0.416667 + 0. äL Cos @ t D - H 1.25 + 0. äL Cos @ 2. t D - 0.416667 Cos @ 3. t D - H 1.58771 + 0. äL Sin @ t D - H 1.29904 + 0. äL Sin @ 2. t D - H 0. + 0.416667 äL Sin @ 3. t D

fS1 @ s D •• ExpToTrig

3.25 + H 0.416667 + 0. ä L Cos A p s

€€€€€€€€€

3 E - H 1.25 + 0. ä L Cos A 2 p s

€€€€€€€€€€€€€

3 E - 0.416667 Cos @ p s D - H 1.58771 + 0. äL Sin A p s

€€€€€€€€€

3 E - H 1.29904 + 0. äL Sin A 2 p s

€€€€€€€€€€€€€

3 E - 0.416667 ä Sin @p s D

% •• ExpandAll

3.25 + H 0.416667 + 0. äL Cos A p s

€€€€€€€€€

3 E - H 1.25 + 0. äL Cos A 2 p s

€€€€€€€€€€€€€

3 E - 0.416667 Cos @p s D - H 1.58771 + 0. ä L Sin A p s

€€€€€€€€€

3 E - H 1.29904 + 0. ä L Sin A 2 p s

€€€€€€€€€€€€€

3 E - 0.416667 ä Sin @ p s D

% •• N

3.25 + H 0.416667 + 0. ä L Cos @ 1.0472 s D - H 1.25 + 0. ä L Cos @ 2.0944 s D - 0.416667 Cos @ 3.14159 s D - H 1.58771 + 0. ä L Sin @ 1.0472 s D -

H 1.29904 + 0. ä L Sin @ 2.0944 s D - H 0. + 0.416667 ä L Sin @ 3.14159 s D

(10)

fS1 @ s D •• ExpToTrig •• Chop 3.25 + 0.416667 Cos A p s

€€€€€€€€€

3 E - 1.25 Cos A 2 p s

€€€€€€€€€€€€€

3 E - 0.416667 Cos @ p s D - 1.58771 Sin A p s

€€€€€€€€€

3 E - 1.29904 Sin A 2 p s

€€€€€€€€€€€€€

3 E - 0.416667 ä Sin @p s D 8 3.25`, 8 0.41666666666666746` , -1.2499999999999987` < ,

8 -0.41666666666666663` , -1.587713240271471` , -1.299038105676658` < , 8 -0.41666666666666663` <<

8 3.25, 8 0.416667, -1.25 < , 8-0.416667, -1.58771, -1.29904 < , 8-0.416667 <<

Ÿ b

Plot[Re[fS[t]],{t,0,2Pi}];

1 2 3 4 5 6

1 2 3 4 5 6 7

Plot[Im[fS[t]],{t,0,2Pi}];

1 2 3 4 5 6

-0.4 -0.2 0.2 0.4

Man beachte im letzten Plot die Grösse der Amplitude.

(11)

Plot[{Re[fS[t]],Sin[t/2]},{t,0,2Pi},Epilog->epi];

1 2 3 4 5 6

1 2 3 4 5 6 7

Wie man sieht, liegen die verwendeten Punkte auf der Linie von Sin[t/2]. Der Fehler (z.B. grosser Imaginäranteil stammt vermutlich davon, dass so nur wenige Koeffizienten berechnet werden können.)

Plot @8 Re @ fS1 @ s DD< , 8 s, 0, n < , Epilog ® epi1 D ;

1 2 3 4 5 6

1 2 3 4 5 6 7

Ÿ c

Re @ fS1 @ 3.5 DD 1.93301

Ÿ d

linInt @ t_ D := 2 + H t - 3 L H 3.5 - 2 L ; Plot @ linInt @ t D , 8 t, 2, 5 <D ;

2.5 3 3.5 4 4.5 5

1

2

3

4

5

(12)

linInt @ 3.5 D - Re @ fS1 @ 3.5 DD 0.816987

4

Remove @ "Global`*" D ;

Ÿ a Skizze

f @ t_ D := Cos @ 2 t 3 D + Sin @ 0.4 t - 1 D ; Plot @ f @ t D , 8 t, 0, 100 <D ;

20 40 60 80 100

-2 -1 1 2

Ÿ b

8 2 t 3, 2 t 3 + 2 Pi <

9 2 t

€€€€€€€€€

3 , 2 p + 2 t

€€€€€€€€€

3 =

8 2 t 3, 2 t 3 + 2 Pi < 3 2 •• ExpandAll 8 t, 3 p + t <

8 4 10 t, 4 10 t + 2 Pi <

9 2 t

€€€€€€€€€

5 , 2 p + 2 t

€€€€€€€€€

5 =

8 4 10 t, 4 10 t + 2 Pi < 5 2 •• ExpandAll 8 t, 5 p + t <

T = LCM @ 5 , 3 D p 15 p

? GCD

GCD @ n1, n2, ... D gives the greatest common divisor of the integers ni. Mehr…

(13)

0 Š Simplify @ f @ t + 15 Pi D - f @ t DD •• Chop True

T = 15 Pi;

Ÿ c

cc = 0;

w = 2 Pi T;

a @ 0 D := 2 T Integrate @ f @ t D , 8 t, cc, cc + T <D ;

a @ k_ D := 2 T Integrate @ f @ t D Cos @ k w t D , 8 t, cc, cc + T <D ; b @ k_ D := 2 T Integrate @ f @ t D Sin @ k w t D , 8 t, cc, cc + T <D ; c @ k_ D := 1 T Integrate @ f @ t D E ^ H-I k w t L , 8 t, cc, cc + T <D ;

ff @ t_ D := a @ 0 D • 2 + Sum @ a @ n D Cos @ n w t D + b @ n D Sin @ n w t D , 8 n, 1, Infinity <D ; ff @ t_, h_ D := a @ 0 D • 2 + Sum @ a @ n D Cos @ n w t D + b @ n D Sin @ n w t D , 8 n, 1, h <D ; ffk @ t_ D := Sum @ c @ n D E ^ H I n w t L , 8 n, -Infinity, Infinity <D ;

ffk @ t_, h_ D := Sum @ c @ n D E ^ H I n w t L , 8 n, -h, h <D ; ff @ t, 6 D •• Chop

-0.841471 Cos A 2 t

€€€€€€€€€

5 E + 1. Cos A 2 t

€€€€€€€€€

3 E + 0.540302 Sin A 2 t

€€€€€€€€€

5 E Abs @ f @ 10 D - ff @ 10, 6 DD

1.11022 ´ 10

-15

Ÿ d

Plot @ Evaluate @8 f @ t D , ff @ t, 6 D •• Chop <D , 8 t, 0, T <D ;

10 20 30 40

-2 -1 1 2

Die Genauigkeit der beiden Funktionen f und ff6 ist anhand der Skizze nicht mehr unterscheidbar.

(14)

Plot @ Evaluate @8 f @ t D , ff @ t, 6 D •• Chop <D , 8 t, 0, 2 T <D ;

20 40 60 80

-2 -1 1 2

Ÿ e

ff2 @ t_, h_ D := a @ 0 D ^ 2 2 + Sum @ a @ n D ^ 2 Cos @ n w t D + b @ n D ^ 2 Sin @ n w t D , 8 n, 1, h <D ; Plot @ Evaluate @8 f @ t D , ff2 @ t, 6 D •• Chop <D , 8 t, 0, 30 Pi <D ;

20 40 60 80

-2 -1 1 2

Plot @ Evaluate @8 f @ t D ^ 2, ff @ t, 6 D •• Chop <D , 8 t, 0, 30 Pi <D ;

20 40 60 80

-2 -1 1 2 3 4

Evaluate @H f @ t D ^ 2 - ff @ t, 6 DL • ff @ t, 6 D •• Chop D • . t ® 15.

-2.798

(15)

Plot @ Evaluate @H f @ t D ^ 2 - ff @ t, 6 DL • ff @ t, 6 D •• Chop D , 8 t, 0, T <D ;

10 20 30 40

-3 -2 -1 1

Der Ausdruck schwanktje nach t. Die maximale absolute relative Differenz ist etwa 3.

5 Varianten!

Ÿ a

Remove @ "Global`*" D ;

f @ x_ D := Cos @ 2 x D + I Sin @ 2 x D

FourierTransform @ f @ x D , x, wD •• Simplify

•!!!!!!!! 2 p DiracDelta @ 2 + w D

1 ‘ •!!!!!!!! 2 p FourierTransform @ f @ x D , x, w D •• Simplify DiracDelta @ 2 + wD

•!!!!!!!! 2 p FourierTransform @ f @ x D , x, w D •• Simplify

2 p DiracDelta @ 2 + wD

Ÿ b

Remove @ "Global`*" D ;

f @ x_ D := Sin @ 2 x D + I Cos @ 2 x D

FourierTransform @ f @ x D , x, wD •• Simplify ä •!!!!!!!! 2 p DiracDelta @ -2 + w D

1 ‘ •!!!!!!!! 2 p FourierTransform @ f @ x D , x, wD •• Simplify

ä DiracDelta @-2 + wD

(16)

•!!!!!!!!

2 p FourierTransform @ f @ x D , x, wD •• Simplify 2 ä p DiracDelta @-2 + wD

Ÿ c

Remove @ "Global`*" D ;

fHat @ x_ D := Cos @ 2 wD + I Sin @ 2 wD

InverseFourierTransform @ fHat @ x D , w, x D •• Simplify

•!!!!!!!! 2 p DiracDelta @-2 + x D

•!!!!!!!!

2 p InverseFourierTransform @ fHat @ x D , w, x D •• Simplify 2 p DiracDelta @ -2 + x D

1 ‘ •!!!!!!!! 2 p InverseFourierTransform @ fHat @ x D , w, x D •• Simplify DiracDelta @-2 + x D

1 ‘ •!!!!!!!! 2 p FourierTransform A•!!!!!!!! 2 p InverseFourierTransform @ fHat @ x D , w, x D , x, wE ••

Simplify ã

2ä w

ã

2ä w

•• ExpToTrig Cos @ 2 wD + ä Sin @ 2 wD

6 Varianten!

Remove @ "Global`*" D ;

Ÿ a

H @ x_ D := UnitStep @ x D ; Plot @ H @ x D , 8 x, -3, 3 <D ;

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

(17)

f @ x_ D := Pi H H @ x + Pi D - H @ x - Pi DL ; Plot @ f @ x D , 8 x, -5, 5 <D ;

-4 -2 2 4

0.5 1 1.5 2 2.5 3

FourierTransform @ f @ x D , x, w D •• Simplify

•!!!!!!!! 2 p Sin @p wD

€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€

w

1 ‘ •!!!!!!!! 2 p FourierTransform @ f @ x D , x, wD •• Simplify Sin @ p w D

€€€€€€€€€€€€€€€€€€€€€€€

w

•!!!!!!!! 2 p FourierTransform @ f @ x D , x, w D •• Simplify

2 p Sin @p wD

€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€

w

Referenzen

ÄHNLICHE DOKUMENTE

wenn ein Buchstabe angesagt wird, muss ihn das Kind sofort niederschreiben können, ohne

Während der Wittling fast nur Fische und Crustaceen frißt, nehmen die beiden anderen Arten auch Polychaeten und besonders der S c h e l l ­ fisch in größeren

Im letzten Schritt wird die in der Formel am Anfang stehende Operation abgearbeitet: Der Kehrwert (1÷) gebildet..

Karlsruher Institut f¨ ur Technologie Institut f¨ ur Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester

Die beiden Diagonalen des Rechteckes sind tangential an die Evolute e und schneiden sowohl die Parabel p wie auch die Evolute e orthogonal (Abb.. Beweise

Vorbereitung: Nur f¨ur Funktionen, die in gewissem Sinn 'regul¨ar' sind, konvergiert die ensprechende Fourierreihe punkweise

Grenzwerte auf verschiedenen W egen gleich sein müssen und wir für verschiedene Annä-. herungen verschiedene

Fachbereich Mathematik und Informatik Wintersemester 2008/09 Universit¨ at