• Keine Ergebnisse gefunden

∫ Die Vektorgleichung zerlegt man in Komponenten und integriert die Gleichung für die x- und y-Komponente getrennt. Man erhält:

N/A
N/A
Protected

Academic year: 2021

Aktie "∫ Die Vektorgleichung zerlegt man in Komponenten und integriert die Gleichung für die x- und y-Komponente getrennt. Man erhält:"

Copied!
5
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Wir setzen im folgenden voraus, dass ein Körper unter dem Winkel ϕ zur Horizontalen mit der Geschwindigkeit v0 aus der Anfangshöhe h geworfen wird. Es sollen keine Reibungseffekte berücksichtigt wer- den. Außer der Gravitationskraft sollen keine weiteren Kräfte auf den Körper einwirken (etwa Windkraft o.ä.). In diesem Fall kann das Problem zweidimensional behandelt werden, indem wir die Bewegung in der x-y-Ebene stattfinden lassen. Die horizontale Richtung sei r (d.h. entspricht der x-Achse), die vertikale Richtung r (y-Achse).

Damit lauten die Anfangsbedingungen folgendermaßen:

i

j

( t t ) r h j

r

0

r

0

r

r = = =

( t t ) v v (cos i sin ) j v r =

0

= r

0

=

0

ϕ r + ϕ r

Der Körper befindet sich unter der Einwirkung der vertikalen Gravita- tionskraft. Die Beschleunigung sei räumlich und zeitlich konstant:

( )

t const. g gj ar = = r =− r

Allgemein erhält man die Geschwindigkeit mittels der Relation

) t ( v ' dt ) 't ( a )

t (

v

0

t

t0

r r

r = ∫ +

Die Vektorgleichung zerlegt man in Komponenten und integriert die Gleichung für die x- und y-Komponente getrennt. Man erhält:

ϕ

= v cos

v

x 0 vy = −gt+ v0sinϕ

Die Abhängigkeit des Ortes von der Zeit ergibt sich durch Integration von

(2)

) t ( r ' dt ) 't ( v )

t (

r 0 0

t

t0

r r

r =

+

Dies führt auf folgende Komponentendarstellung für den Ort:

ϕ +

= x v t cos

x

0 0 0 t2

2 sin g

t v h

y = + ϕ−

In den folgenden beiden Abbildungen sind die Funktionen x(t) und vx(t) sowie y(t) zusammen mit vy(t) grafisch dargestellt. Die Kurven wurden für eine Abwurfhöhe von 2m, eine Anfangsgeschwindigkeit von 20m/s und einen Abwurfwinkel von 60° berechnet (x0 = 0). Es könnte sich um die Flugbahn eines Sektkorkens handeln.

0 5 10 15 20 25 30 35 40 45

0 1 2 3 4 5

Zeit / s

x / m

0 2 4 6 8 10 12 14

Geschwindigkeit / (m/s)

Wurfweite / m Horizontalgeschwindigkeit

-20 -15 -10 -5 0 5 10 15 20

0 1 2 3 4 5

Zeit / s

y / m

-30 -20 -10 0 10 20 30

Geschwindigkeit / (m/s)

y(t) Tangentialgeschwindigkeit Vertikalgeschwindigkeit

(3)

Tangentialgeschwindigkeit----v = v2x + v2y aufgetragen.

Aus den beiden Grafiken geht hervor, dass sich der geworfene Körper in horizontaler Richtung geradlinig gleichförmig und in vertikaler Richtung gleichmäßig beschleunigt bewegt. Das Bahnmaximum wird unter der Bedingung vy = 0 erreicht. Aus dieser Bedingung ergibt sich für die Flugzeit bis zum Erreichen des Maximum

ϕ

= sin g tm v0

Durch Einsetzen in die Beziehung y(tm) = ymax erhält man die maxima- le Flughöhe zu

ϕ +

= 20 2

max sin

g 2 h v y

Für das angeführte Beispiel sind das tm = √3 s und ymax = 17 m (ver- gleiche Grafik). Die Tangentialgeschwindigkeit im Scheitelpunkt muss gleich der Horizontalgeschwindigkeit von vmax = vx = 10 m/s sein.

Die Flugbahn (Trajektorie) ist der Zusammenhang y(x). Man erhält ihn aus den Gleichungen für y(t) und x(t), indem man t eliminiert. In der folgenden Grafik ist die Flugparabel y(x) sowie die Tangential- und Vertikalgeschwindigkeit als Funktion von x dargestellt:

(4)

-20 -15 -10 -5 0 5 10 15 20

0 10 20 30 40 50

Wurfweite / m

Höhe / m

-30 -20 -10 0 10 20 30

Geschwindigkeit / (m/s)

Wurfhöhe Tangentialgeschwindigkeit Vertikalgeschwindigkeit

Die Bahngleichung lautet für x0 = 0:

h tan

x cos x

v 2

y

2

g

2 2

0

+ ϕ ϕ +

=

Mittels dieser Gleichung kann die Wurfweite aus der Bedingung y = 0 berechnet werden. Man erhält





 ϕ+ ϕ+

ϕ

= 2

0 2 2

m 0

v gh sin 2

sin g cos

x v

Im oberen Beispiel erhält man eine Flugweite von etwa 36m. Mittels der letzten Gleichung kann man die Frage beantworten, unter wel- chem Winkel man einen Körper abwerfen muss, damit die Flugweite maximal wird. Dazu muss die Extremwertaufgabe

d 0 ) ( dxm =

ϕ

ϕ gelöst werden. Für den vereinfachten Fall h = 0 erhält

man aus der Gleichung sinϕ = cosϕ den Winkel ϕmax = 45°. In der fol- genden Grafik ist die Reichweite (y = 0) für unser Beispiel aufgetra- gen:

(5)

0 5 10 15 20 25 30 35

0 20 40 60 80 1

Abwurfwinkel / Grad

Reichweite / m

00

Für 45° erhält man xm = 41,9 m, für 60° xm = 35,8m. Im Falle eines waagerechten Wurfes fliegt der Körper lediglich 12,6m.

Referenzen

ÄHNLICHE DOKUMENTE

L ¨ osung Klausur vom 12.2.2003 Die Literaturangaben stammen von Herr Rupp... 1.)a) Teilchen befinde sich im

Mit der ab heute gültigen „Förderrichtlinie Investition Herdenschutz Wolf“ macht die bayerische Staatsregierung endlich den vom BN seit Jah- ren geforderten ersten richtigen

149 gezogene Kurve entspricht somit einem stabilen Regulator, weil eine be- liebige durch 0 gehende Linie OP weniger steil verläuft, als die Kurve selbst im Punkte P; es wird

Durchschnittlich=es|5244 Anteilder3TarifklassenamGesamtverkehrin%,in|in.%/o|in% |ı[ufm]ıJum Ei:DieZahlengeberProzentsätze

Der auf der Scheibe sitzende Daumen d ist mittelst einer Kette %, mit der Anspannvorrichtung verbunden, während von der unter dem Wagen durchgehenden Leitung Z das eine Kettenstück

o.B.d.A.. Ein Tank soll mit Hilfe einer Pumpe mit Wasser gefüllt werden. Der Tank hat für den Schlauch zwei Anschlüsse, oben und unten. Wie verhält es sich mit der durch die Pumpe

Pontanusstraße 55, 33102 Paderborn Bockermann Fritze IngenieurConsult. Dieselstraße 11,

BA Gemeindegrenze Neuhof bis