• Keine Ergebnisse gefunden

Konstruktion der Matrix

N/A
N/A
Protected

Academic year: 2021

Aktie "Konstruktion der Matrix"

Copied!
13
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Matrizen und Eigensysteme

Remove["Global`*"]

Uebung 1

Konstruktion der Matrix

eW1=1;eW2=2;;

d={{eW1,0},{0,eW2}};

a={2,-1}; b={3,2};

m={a,b};

mT=Transpose[m];

m1=Inverse[mT];

r=mT.d.m1 99€€€€€€€10

7 , €€€€6 7=,9€€€€2

7, €€€€€€€11 7 ==

r//MatrixForm i

kjjjj €€€€€€107 €€€€67

€€€€27 €€€€€€117 y {zzzz mT//MatrixForm

J2 3

-1 2N

MatrixPower[r,1]

9910

€€€€€€€

7 , 6

€€€€7=,92

€€€€7, 11

€€€€€€€

7 ==

MatrixPower[r,2]

9916

€€€€€€€

7 , 18

€€€€€€€

7 =,96

€€€€7, 19

€€€€€€€

7 ==

mT.d.d.m1

9916

€€€€€€€

7 , 18

€€€€€€€

7 =,96

€€€€7, 19

€€€€€€€

7 ==

d={{eW1,0},{0,eW2}}

881, 0<,80, 2<<

e1={1,0}; e2={0,1};

(2)

Daten

MatrixRank[r]

2

NullSpace[r]

8<

CharacteristicPolynomial[r,x]

2-3 x+x2

CharacteristicPolynomial[d,x]

2-3 x+x2 Tr[r]

3

Tr[d]

3

Det[r]

2

Det[d]

2

RowReduce[r]

881, 0<,80, 1<<

Kern, Im

NullSpace[r]

8<

RowReduce[r]

881, 0<,80, 1<<

RowReduce[r].{x1,x2}

8x1, x2<

(3)

Inverse Matrix

rI=Inverse[r]

9911

€€€€€€€

14,-3

€€€€7=,9-1

€€€€7, 5

€€€€7==

rI//MatrixForm i

kjjjj €€€€€€1114 -€€€€37 -€€€€17 €€€€57

y {zzzz rI=mT.d.m1

9910

€€€€€€€

7 , 6

€€€€7=,92

€€€€7, 11

€€€€€€€

7 ==

m1.Inverse[d].mT

9911

€€€€€€€

14, 3

€€€€7=,91

€€€€7, 5

€€€€7==

m1.Inverse[d].mT//MatrixForm i

kjjjj €€€€€€1114 €€€€37

€€€€17 €€€€57 y {zzzz

EW, EV

eW=Eigenvalues[r]

82, 1<

eV=Eigenvectors[r]

993

€€€€2, 1=,8-2, 1<=

Eigenvectors[r]//MatrixForm i

kjjj €€€€32 1

-2 1

y {zzz Eigensystem[r]

982, 1<,993

€€€€2, 1=,8-2, 1<==

Abbildung:

r.{x1,x2}//MatrixForm i

kjjjj €€€€€€€€€€€10 x17 + €€€€€€€€6 x27

€€€€€€€€2 x17 + €€€€€€€€€€€11 x27 y {zzzz

(4)

r.e1 910

€€€€€€€

7 , 2

€€€€7=

r.e2 96

€€€€7, 11

€€€€€€€

7 = rI.e1

910

€€€€€€€

7 , 2

€€€€7=

rI.e2 9€€€€6

7, €€€€€€€11 7 =

{a x1,x2}//MatrixForm J 82 x1,-x1<

x2 N

r.eV[[1]]

83, 2<

r.eV[[2]]

8-2, 1<

rI.eV[[1]]

83, 2<

rI.eV[[2]]

8-2, 1<

r.Transpose[{k1 eV[[1]],k2 eV[[2]]}]

883 k1,-2 k2<,82 k1, k2<<

rI.Transpose[{k1 eV[[1]],k2 eV[[2]]}]

883 k1,-2 k2<,82 k1, k2<<

(5)

Uebung 2

Konstruktion der Matrix

eW1=1;eW2=2; eW3=3;

d={{eW1,0,0},{0,eW2,0},{0,0,eW2}};

a={2,-1,0}; b={3,2,0}; c={0,2,4};

m={a,b,c};

mT=Transpose[m];

m1=Inverse[mT];

r=mT.d.m1

9910

€€€€€€€

7 , 6

€€€€7,-3

€€€€7=,92

€€€€7, 11

€€€€€€€

7 , 3

€€€€€€€

14=,80, 0, 2<=

r//MatrixForm i

k jjjjj jjjj

€€€€€€107 €€€€67 -€€€€37

€€€€27 €€€€€€117 €€€€€€143

0 0 2

y

{ zzzzz zzzz

mT//MatrixForm

i kjjjjj jj

2 3 0

-1 2 2

0 0 4

y {zzzzz zz

MatrixPower[r,1]

9910

€€€€€€€

7 , 6

€€€€7,-3

€€€€7=,92

€€€€7, 11

€€€€€€€

7 , 3

€€€€€€€

14=,80, 0, 2<=

MatrixPower[r,2]

9916

€€€€€€€

7 , 18

€€€€€€€

7 ,-9

€€€€7=,96

€€€€7, 19

€€€€€€€

7 , 9

€€€€€€€

14=,80, 0, 4<=

mT.d.d.m1

9916

€€€€€€€

7 , 18

€€€€€€€

7 ,-9

€€€€7=,96

€€€€7, 19

€€€€€€€

7 , 9

€€€€€€€

14=,80, 0, 4<=

e1={1,0,0}; e2={0,1,0}; e3={0,0,1};

Daten

MatrixRank[r]

3

(6)

NullSpace[r]

8<

CharacteristicPolynomial[r,x]

4-8 x+5 x2-x3

CharacteristicPolynomial[d,x]

4-8 x+5 x2-x3 Tr[r]

5

Tr[d]

5

Det[r]

4

Det[d]

4

RowReduce[r]

881, 0, 0<,80, 1, 0<,80, 0, 1<<

Kern, Im

NullSpace[r]

8<

RowReduce[r]

881, 0, 0<,80, 1, 0<,80, 0, 1<<

RowReduce[r].{x1,x2,x3}

8x1, x2, x3<

Inverse Matrix

rI=Inverse[r]

9911

€€€€€€€

14,-3

€€€€7, 3

€€€€€€€

14=,9-1

€€€€7, 5

€€€€7,- 3

€€€€€€€

28=,90, 0, 1

€€€€2==

(7)

rI//MatrixForm i

k jjjjj jjjjj

€€€€€€1114 -€€€€37 €€€€€€143

-€€€€17 €€€€57 -€€€€€€283 0 0 €€€€12

y

{ zzzzz zzzzz rI=mT.d.m1

9910

€€€€€€€

7 , 6

€€€€7,-3

€€€€7=,92

€€€€7, 11

€€€€€€€

7 , 3

€€€€€€€

14=,80, 0, 2<=

m1.Inverse[d].mT

9911

€€€€€€€

14, 3

€€€€7, 0=,91

€€€€7, 5

€€€€7, 0=,90, 0, 1

€€€€2==

m1.Inverse[d].mT//MatrixForm i

k jjjjj jjjjj

€€€€€€1114 €€€€37 0

€€€€17 €€€€57 0 0 0 €€€€12

y

{ zzzzz zzzzz

EW, EV

eW=Eigenvalues[r]

82, 2, 1<

eV=Eigenvectors[r]

99-3

€€€€4, 0, 1=,93

€€€€2, 1, 0=,8-2, 1, 0<=

Eigenvectors[r]//MatrixForm i

k jjjjj jjjj

-€€€€34 0 1

€€€€32 1 0

-2 1 0

y

{ zzzzz zzzz Eigensystem[r]

982, 2, 1<,99-3

€€€€4, 0, 1=,93

€€€€2, 1, 0=,8-2, 1, 0<==

Abbildung:

r.{x1,x2,x3}//MatrixForm i

k jjjjj jjjj

10 x1

€€€€€€€€€€€7 + €€€€€€€€6 x27 - €€€€€€€€3 x37

€€€€€€€€2 x17 + €€€€€€€€€€€11 x27 + €€€€€€€€3 x314 2 x3

y

{ zzzzz zzzz

(8)

{a x1,b x2, c x3}//MatrixForm

i kjjjjj jj

2 x1 -x1 0 3 x2 2 x2 0 0 2 x3 4 x3

y {zzzzz zz

r.{1,0,0}

910

€€€€€€€

7 , 2

€€€€7, 0=

r.{0,1,0}

96

€€€€7, 11

€€€€€€€

7 , 0= r.{0,0,1}

9-3

€€€€7, 3

€€€€€€€

14, 2= rI.{1,0,0}

910

€€€€€€€

7 , 2

€€€€7, 0=

rI.{0,1,0}

96

€€€€7, 11

€€€€€€€

7 , 0= rI.{0,0,1}

9-3

€€€€7, 3

€€€€€€€

14, 2= r.eV[[1]]

9-3

€€€€2, 0, 2=

r.eV[[2]]

83, 2, 0<

r.eV[[3]]

8-2, 1, 0<

rI.eV[[1]]

9-3

€€€€2, 0, 2=

rI.eV[[2]]

83, 2, 0<

rI.eV[[3]]

8-2, 1, 0<

r.Transpose[{k1 eV[[1]],k2 eV[[2]],k3 eV[[3]]}]

99-3 k1

€€€€€€€€€€€

2 , 3 k2,-2 k3=,80, 2 k2, k3<,82 k1, 0, 0<=

(9)

rI.Transpose[{k1 eV[[1]],k2 eV[[2]],k3 eV[[3]]}]

99-3 k1

€€€€€€€€€€€

2 , 3 k2,-2 k3=,80, 2 k2, k3<,82 k1, 0, 0<=

Uebung 3

Konstruktion der Matrix

eW1=1;eW2=2; eW3=0;

d={{eW1,0,0},{0,eW2,0},{0,0,eW3}};

a={2,-1,0}; b={3,2,0}; c={0,2,4};

m={a,b,c};

mT=Transpose[m];

m1=Inverse[mT];

r=mT.d.m1

9910

€€€€€€€

7 , 6

€€€€7,-3

€€€€7=,92

€€€€7, 11

€€€€€€€

7 ,-11

€€€€€€€

14=,80, 0, 0<=

r//MatrixForm i

k jjjjj jjjj

€€€€€€107 €€€€67 -€€€€37

€€€€27 €€€€€€117 -€€€€€€1114

0 0 0

y

{ zzzzz zzzz

mT//MatrixForm

i kjjjjj jj

2 3 0

-1 2 2

0 0 4

y {zzzzz zz

MatrixPower[r,1]

9910

€€€€€€€

7 , 6

€€€€7,-3

€€€€7=,92

€€€€7, 11

€€€€€€€

7 ,-11

€€€€€€€

14=,80, 0, 0<=

MatrixPower[r,2]

9916

€€€€€€€

7 , 18

€€€€€€€

7 ,-9

€€€€7=,96

€€€€7, 19

€€€€€€€

7 ,-19

€€€€€€€

14=,80, 0, 0<=

mT.d.d.m1

9916

€€€€€€€

7 , 18

€€€€€€€

7 ,-9

€€€€7=,96

€€€€7, 19

€€€€€€€

7 ,-19

€€€€€€€

14=,80, 0, 0<=

Daten

MatrixRank[r]

2

(10)

NullSpace[r]

990, 1

€€€€2, 1==

CharacteristicPolynomial[r,x]

-2 x+3 x2-x3

CharacteristicPolynomial[d,x]

-2 x+3 x2-x3

Tr[r]

3

Tr[d]

3

Det[r]

0

Det[d]

0

RowReduce[r]

981, 0, 0<,90, 1,-1

€€€€2=,80, 0, 0<=

Kern, Im

NullSpace[r]

990, 1

€€€€2, 1==

RowReduce[r]

981, 0, 0<,90, 1,-1

€€€€2=,80, 0, 0<=

RowReduce[r].{x1,x2,x3}

9x1, x2- x3

€€€€€€€

2 , 0=

Inverse Matrix

rI=Inverse[r]

Inverse::sing : Matrix 9910

€€€€€€€€

7 , 6

€€€€€

7,-3

€€€€€

7=,92

€€€€€

7, 11

€€€€€€€€

7 ,-11

€€€€€€€€

14=,80, 0, 0<= is singular. Mehr…

InverseA9910

€€€€€€€

7 , 6

€€€€7,-3

€€€€7=,92

€€€€7, 11

€€€€€€€

7 ,-11

€€€€€€€

14=,80, 0, 0<=E

(11)

rI//MatrixForm InverseA9910

€€€€€€€

7 , 6

€€€€7,-3

€€€€7=,92

€€€€7, 11

€€€€€€€

7 ,-11

€€€€€€€

14=,80, 0, 0<=E rI=mT.d.m1

9910

€€€€€€€

7 , 6

€€€€7,-3

€€€€7=,92

€€€€7, 11

€€€€€€€

7 ,-11

€€€€€€€

14=,80, 0, 0<=

m1.Inverse[d].mT

Inverse::sing : Matrix 881, 0, 0<,80, 2, 0<,80, 0, 0<< is singular. Mehr…

992

€€€€7,-3

€€€€7, 3

€€€€€€€

14=,91

€€€€7, 2

€€€€7,-1

€€€€7=,90, 0, 1

€€€€4==.

Inverse@881, 0, 0<,80, 2, 0<,80, 0, 0<<D.882, 3, 0<,8-1, 2, 2<,80, 0, 4<<

m1.Inverse[d].mT//MatrixForm

Inverse::sing : Matrix 881, 0, 0<,80, 2, 0<,80, 0, 0<< is singular. Mehr…

99€€€€2 7,-€€€€3

7, €€€€€€€3 14=,9€€€€1

7, €€€€2 7,-€€€€1

7=,90, 0, €€€€1 4==.

Inverse@881, 0, 0<,80, 2, 0<,80, 0, 0<<D.882, 3, 0<,8-1, 2, 2<,80, 0, 4<<

EW, EV

eW=Eigenvalues[r]

82, 1, 0<

eV=Eigenvectors[r]

993

€€€€2, 1, 0=,8-2, 1, 0<,90, 1

€€€€2, 1==

Eigenvectors[r]//MatrixForm i

k jjjjj jjjj

€€€€32 1 0

-2 1 0

0 €€€€12 1 y

{ zzzzz zzzz Eigensystem[r]

982, 1, 0<,993

€€€€2, 1, 0=,8-2, 1, 0<,90, 1

€€€€2, 1===

Abbildung:

r.{x1,x2,x3}//MatrixForm i

k jjjjj jjjj

10 x1

€€€€€€€€€€€7 + €€€€€€€€6 x27 - €€€€€€€€3 x37

€€€€€€€€2 x17 + €€€€€€€€€€€11 x27 - €€€€€€€€€€€11 x314 0

y

{ zzzzz zzzz

(12)

{a x1,b x2, c x3}//MatrixForm

i kjjjjj jj

2 x1 -x1 0 3 x2 2 x2 0 0 2 x3 4 x3

y {zzzzz zz

r.{1,0,0}

910

€€€€€€€

7 , 2

€€€€7, 0=

r.{0,1,0}

96

€€€€7, 11

€€€€€€€

7 , 0= r.{0,0,1}

9-3

€€€€7,-11

€€€€€€€

14, 0= rI.{1,0,0}

910

€€€€€€€

7 , 2

€€€€7, 0=

rI.{0,1,0}

96

€€€€7, 11

€€€€€€€

7 , 0= rI.{0,0,1}

9-3

€€€€7,-11

€€€€€€€

14, 0= r.eV[[1]]

83, 2, 0<

r.eV[[2]]

8-2, 1, 0<

r.eV[[3]]

80, 0, 0<

rI.eV[[1]]

83, 2, 0<

rI.eV[[2]]

8-2, 1, 0<

rI.eV[[3]]

80, 0, 0<

r.Transpose[{k1 eV[[1]],k2 eV[[2]],k3 eV[[3]]}]

883 k1,-2 k2, 0<,82 k1, k2, 0<,80, 0, 0<<

(13)

rI.Transpose[{k1 eV[[1]],k2 eV[[2]],k3 eV[[3]]}]

883 k1,-2 k2, 0<,82 k1, k2, 0<,80, 0, 0<<

Referenzen

ÄHNLICHE DOKUMENTE

[r]

Damit kann die Vektoriteration auf die kleinere Matrix A 1 angewendet werden, um den n¨ achsten Eigenwert und einen zugeh¨ origen Eigenvektor zu berechnen.. Dieses

Somit erhält man die gleichschenkligen Dreiecke GMH, HMI und IMG (siehe Beweis gleichschenkliges Dreieck), in die.. Diese Inkreise berühren sich gegenseitig und haben

Man w¨ ahlt daraus dasjenige aus, bei dem die Integranden m¨ oglichst einfach werden.. Konstruktion eines

(σ A = 50N/mm 2 ) (Hinweis: Gehen Sie zur Bestimmung der Nachgiebigkeiten vereinfachend davon aus, dass die Nachgiebigkeit der Schraube gleich der Nachgiebigkeit des Dehnschafts ist

• Die Menge D k der möglichen Werte für First k ( A ) bilden einen vollständigen Verband :-). • Die Operatoren auf den rechten Seiten der Ungleichungen sind

aus, ist jedoch kein Beweis, da ja nicht gezeigt ist, dass die scheinbare Tangen- te genau einen Punkt mit der Ellipse ge- meinsam hat. P ist ein Punkt auf der

Der Raum C 3 sei mit dem komplexen Standard-Skalarprodukt