• Keine Ergebnisse gefunden

Wellenlänge  [nm]

8. Experimenteller Teil

8.2. Versuchs- und Messbedingungen

8.2.4. Reflektometrische Inteferenzspektroskopie (RIfS)

Über einen Y-Lichtleiter (Quarz, 1mm Durchmesser, Laser Components) wurde Weißlicht von einer Wolfram-Halogenlampe (20 W) zu einem Transducer-Chip geleitet. Das reflektierte Licht wurde über denselben Lichtleiter zu einem Diodenzeilenspektrometer (Spekol 1100, Analytik Jena) gesendet und dort spektral aufgezeichnet.

Die Auswertung erfolgte über einen PC. Der Transducer-Chip befindet sich in einer Flusszelle und wird mittels Glycerin mit dem Lichtleiter in Kontakt gebracht.

Flusszelle (RIfS)

Sie besteht aus einem Transducer-Chip (1212 mm², d ~1 mm, Glas beschichtet mit 10 nm Ta2O5 und 330 nm SiO2, Schott, siehe Abbildung 8.7), einer Silikonmaske mit elliptischer Öffnung 57 mm, 0.5 mm dick und einem Quarzfenster (Hellma) mit 2 Kanülen, durch die mittels Schläuchen und einer Schlauchpumpe (Ismatec, 0.5 ml/min) Lösung gepumpt werden kann.

Abbildung 8.7: Transducer-Chip.

Bestrahlungsbedingungen (RIfS)

Die Bestrahlungen wurden mit der zu Beginn des Kapitels beschriebenen UV-Lampe (Interfe-renzfilter 365 nm, I = 6.098  10-8 Es-1) über einen Lichtleiter durchgeführt. Das Ende des zweiten Lichtleiters kann zur Belichtung der Substrate von oben in die Flusszelle eingeführt werden.

Ein Kantenfilter (420 nm) vor dem Diodenzeilenspektrometer blockiert das UV-Licht, damit die Messung nicht gestört wird.

Oberflächenmodifizierung der RIfS-Transducerchips

1) Reinigung

- Transducer-Chips etwa 1 min in 6 M NaOH einlegen - mit Millipore Wasser spülen

- Transducer-Chips 15 min in Piranha-Lösung (60% H2SO4 und 40% H2O2, frisch herstellen!) geben und ins Ultraschallbad stellen

- mit Millipore Wasser und Ethanol p.a. spülen und mit Stickstoff trockenblasen 2) Silanisierung mit GOPTS (wasserfrei)

- Transducer-Chips werden paarweise verarbeitet

- auf einen der gereinigten Transducer-Chips 10 µl GOPTS geben und mit einem zweiten Chip abdecken (d.h. die zu funktionalisierenden Seiten der Transducer-Chips aufeinander legen)

- in einer abgedeckten Petrischale 1 h einwirken lassen

- mit trockenem Aceton p.a. (H2O-Gehalt  0.1%) spülen und sofort mit Stick-stoff trockenblasen, schnell weiterverarbeiten

3) Funktionalisierung mit Dicarboxy-PEG

- 4 mg Dicarboxy-PEG in 1 ml Dichlormethan (trocken) lösen - Transducer-Chips werden einzeln verarbeitet

- 30 µl dieser Lösung auf dem Transducer-Chip gleichmäßig verteilen

- Transducer-Chip in eine trockene Petrischale geben und über Nacht im Ofen bei ~ 70 °C, nicht abgedeckt, stehen lassen

- mit Millipore Wasser und Ethanol p.a. spülen und mit Stickstoff trockenblasen 4) Aktivierung der Carboxy-Funktion über Aktivester

- Transducer-Chips werden paarweise verarbeitet

- Aktivierlösung: 7.5 mg NHS in 38 µl trockenem DMF lösen und 12 µl DIC zugeben → Lösung erst kurz vor Gebrauch herstellen !!!

- 10 µl dieser Lösung auf den funktionalisierten Transducer-Chip geben und ei-nen zweiten Transducer-Chip mit der funktionalisierten Seite darauf legen, 4 h in einer DMF-Dampfkammer liegen lassen

- Transducer-Chips mit trockenem DMF und trockenem Aceton spülen und mit Stickstoff trockenblasen

- schnell weiterarbeiten, Aktivester ist hydrolyseempfindlich 5) Anbindung der Probe über den Aminlinker

- Transducer-Chips werden paarweise verarbeitet

- ~ 1 - 2 mg Bt-NPPOC-NH2 in 50 µl trockenem DMF lösen

- 10 µl dieser Lösung auf den aktivierten Transducer-Chip im Dunklen bei Rot-licht geben und einen zweiten Transducer-Chip mit der aktivierten Seite darauf legen, über Nacht in einer abgedeckten DMF-Dampfkammer im Dunklen lie-gen lassen

- Transducer-Chips mit DMF p.a. und Aceton p.a. im Dunklen bei Rotlicht spü-len und mit Stickstoff trockenblasen

- Aufbewahrung der modifizierten Transducer-Chips in Aufbewahrungsbox im Exsikkator über Trockenmittel (Silica Orange), eingepackt in Alufolie

9. Literatur

[1] The 1000 Genomes Project Consortium, Nature 2012, 491, 56-65.

[2] H. Feldmann. Das Humangenomprojekt. Chemie in unserer Zeit 2000, 34, 338-347.

[3] L. T. C. França, E. Carrilho, T. B. L. Kist. A review of DNA sequencing techniques.

Quarterly Reviews of Biophysics 2002, 35, 169-200.

[4] S. Lorkowski, G. Lorkowski, P. Cullen. Biochips – Das Labor in der Streichholz-schachtel. Chemie in unserer Zeit 2000, 34, 356-372.

[5] E. Pettersson, J. Lundeberg, A. Ahmadian. Generations of sequencing technologies.

Genomics 2009, 93, 105-111.

[6] E. M. Southern. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 1975, 98, 503-517.

[7] D. Bowtell, J. Sambrook. DNA Microarrays. A Molecular Cloning Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2003.

[8] V. G. Cheung, M. Morley, F. Aguilar, A. Massimi, R. Kucherlapati, G. Childs.

Making and reading microarrays. Nature Genetics Supplement 1999, 21, 15-19.

[9] D. J. Duggan, M. Bittner, Y. Chen, P. Meltzer, J. M. Trent. Expression profiling using cDNA microarrays. Nature Genetics Supplement 1999, 21, 10-14.

[10] E. S. Lander. Array of hope. Nature Genetics Supplement 1999, 21, 3-4.

[11] D. J. Lockhart, E. A. Winzeler. Genomics, gene expression and DNA arrays. Nature 2000, 405, 827-836.

[12] A. Marshall, J. Hodgson. DNA chips: An array of possibilities. Nature Biotechnology 1998, 16, 27-31.

[13] G. Ramsay. DNA chips: State-of-the art. Nature Biotechnology 1998, 16, 40-44.

[14] E. Southern, K. Mir, M. Shchepinov. Molecular interactions on microarrays. Nature Genetics Supplement 1999, 21, 5-9.

[15] Mit freundlicher Genehmigung von Prof. Dr. Dr. C. Richert (Institut für Organische Chemie, Universität Stuttgart).

[16] M. Bras, J. P. Cloarec, F. Besseuille, E. Souteyrand, J. R. Martin, J. P. Chauvet.

Control of Immobilization and Hybridization on DNA Chips by Fluorescence Spec-troscopy. Journal of Fluorescence 2000, 10, 247-253.

[17] R. I. Zhdanov, S. M. Zhenodarova. Chemical Methods of Oligonucleotide Synthesis.

Synthesis 1975, 4, 222-245.

[18] C. Heise, F. F. Bier. Immobilization of DNA on Microarrays. Top. Curr. Chem. 2006, 261, 1-25.

[19] A. d. Campo, I. J. Bruce. Substrate Patterning and Activation Strategies for DNA Chip Fabrication. Top. Curr. Chem. 2005, 260, 77-111.

[20] R. J. Lipshutz, S. P. A. Fodor, T. R. Gingeras, D. J. Lockhart. High density synthetic oligonucleotide arrays. Nature Genetics 1999, 21, 20-24.

[21] T. J. Albert, J. Norton, M. Ott, Todd Richmond, K. Nuwaysir, E. F. Nuwaysir, K.-P.

Stengele, R. D. Green. Light-directed 5'-3' synthesis of complex oligonucleotide microarrays. Nucl. Acids Res. 2003, 31, e35/31-e35/39.

[22] S. L. Beaucage. Strategies in the Preparation of DNA Oligonucleotide Arrays for Diagnostic Applications. Current Medicinal Chemistry 2001, 8, 1213-1244.

[23] S. P. A. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, D. Solas. Light-Direc-ted, Spatially Addressable Parallel Chemical Synthesis. Science 1991, 251, 767-773.

[24] D. Wöll. Neue photolabile Schutzgruppen mit intramolekularer Sensibilisierung-Synthese, photokinetische Charakterisierung und Anwendung für die DNA-Chip-Synthese. Dissertation, Universität Konstanz 2006.

[25] D. Wöll, S. Walbert, K. P. Stengele, T. Albert, T. Richmond, J. Norton, M. Singer, R.

Green, W. Pfleiderer, U. E. Steiner. Triplet-Sensitized Photodeprotection of Oligo-nucleotides in Solution and on Microarray Chips. Helv. Chim. Acta 2004, 87, 28-45.

[26] A. P. Pelliccioli, J. Wirz. Photoremovable protecting groups: reaction mechanisms and applications. Photochem. Photobiol. Sci. 2002, 1, 441-458.

[27] G. H. McGall, A. D. Barone, M. Diggelmann, S. P. A. Fodor, E. Gentalen, N. Ngo.

The efficiency of light-directed synthesis of DNA arrays on glass substrates. J. Am.

Chem. Soc. 1997, 119, 5081-5090.

[28] S. Bühler, I. Lagoja, H. Giegrich, K. P. Stengele, W. Pfleiderer. New types of very efficient photolabile protecting groups based upon the [2-(2-nitrophenyl)propoxy]car-bonyl (NPPOC) moiety. Helv. Chimica Acta 2004, 87, 620-659.

[29] H. Giegrich, S. Eisele-Bühler, C. Hermann, E. Kvasyuk, R. Charubala, W. Pfleiderer.

New Photolabile Protecting Groups in Nucleoside and Nucleotide Chemistry - Synthe-sis, Cleavage Mechanisms and Applications. Nucleosides & Nucleotides 1998, 17, 1987-1996.

[30] A. Hasan, K.-P. Stengele, H. Giegrich, P. Cornwell, K. R. Isham, R. A. Sachleben, W.

Pfleiderer, R. S. Foote. Photolabile Protecting Groups for Nucleosides: Synthesis and Photodeprotection Rates. Tetrahedron 1997, 53, 4247-4264.

[31] D. Wöll. Untersuchungen zur sensibilisierten Abspaltung photolabiler Schutzgruppen für die Oligonukleotidsynthese. Diplomarbeit, Universität Konstanz 2002.

[32] D. Wöll, S. Walbert, K.-P. Stengele, R. Green, T. Albert, W. Pfleiderer, U. E. Steiner.

More Efficient Photolithographic Synthesis of DNA-Chips by Photosensitization.

Nucleosides, Nucleotides & Nucleic Acids 2003, 22, 1395-1398.

[33] D. Wöll, S. Laimgruber, M. Galetskaya, J. Smirnova, W. Pfleiderer, B. Heinz, P.

Gilch, U. E. Steiner. On the Mechanism of Intramolecular Sensitization of Photoclea-vage of the 2-(2-Nitrophenyl)propoxycarbonyl (NPPOC) Protecting Group. J. Am.

Chem. Soc. 2007, 129, 12148-12158.

[34] D. Wöll, J. Smirnova, M. Galetskaya, T. Prykota, J. Bühler, K. P. Stengele, W.

Pfeiderer, U. E. Steiner. Intramolecular Sensitization of Photocleavage of the Photola-bile 2-(2-Nitrophenyl)propoxycarbonyl (NPPOC) Protecting Group: Photoproducts and Photokinetics of the Release of Nucleosides. Chem. Eur. J. 2008, 14, 6490-6497.

[35] D. Wöll, J. Smirnova, W. Pfleiderer, U. E. Steiner. Highly Efficient Photolabile Pro-tecting Groups with Intramolecular Energy Transfer. Angew. Chem. Int. Ed. 2006, 45, 2975 –2978.

[36] J. Smirnova, D. Wöll, W. Pfleiderer, U. E. Steiner. Synthesis of Caged Nucleosides with Photoremovable Protecting Groups Linked to Intramolecular Antennae. Helv.

Chim. Acta 2005, 88, 891-904.

[37] S. Walbert. Mechanistische Untersuchungen zur Abspaltung photolabiler Schutzgrup-pen. Dissertation, Universität Konstanz 2003.

[38] S. Walbert, W. Pfleiderer, U. E. Steiner. Photolabile Protecting Groups for Nucleo-sides: Mechanistic Studies of the 2-(2-Nitrophenyl)ethyl Group. Helv. Chim. Acta 2001, 84, 1601-1611.

[39] H. N. Daghestani, B. W. Day. Theory and Applications of Surface Plasmon Reso-nance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Inter-ferometry Biosensors. Sensors 2010, 10, 9630-9646.

[40] A. Brecht, G. Gauglitz. Optical probes and transducers. Biosensors & Bioelectronics 1995, 10, 923-936.

[41] G. Gauglitz. Direct optical sensors: principles and selected applications. Anal.

Bioanal. Chem. 2005, 381, 141-155.

[42] J. Homola, S. S. Yee, G. Gauglitz. Surface plasmon resonance sensors: review.

Sensors and Actuators B 1999, 54, 3 - 15.

[43] G. Ramsay. Commercial Biosensors: Applications to Clinical, Bioprocess and En-vironmental Samples, John Wiley & Sons, Inc., New York, 1998.

[44] H. Elsinger. Verarmungskräfte in biologischen Systemen: Bündelung von Aktinfila-menten. Dissertation, Universität Konstanz 2003.

[45] J. Davies. Surface Analytical Techniques for Probing Biomaterial Processes, CRC Press, Boca Raton, New York, 1996.

[46] H. Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Vol.

111, Springer-Verlag, Berlin, Heidelberg, 1988.

[47] Y. Fang. Non-Invasive Optical Biosensor for Probing Cell Signaling. Sensors 2007, 7, 2316-2329.

[48] Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, J. Balakrishnan. Resonant Wave-guide Grating Biosensor for Living Cell Sensing. Biophysical Journal 2006, 91, 1925-1940.

[49] G. Proll, G. Markovic, L. Steinle, G. Gauglitz. Reflectometric Interference Spectros-copy. Vol. 503, Humana Press, 2009.

[50] B. P. Möhrle. Markierungsfreie Untersuchung biochemischer Erkennung und die Cha-rakterisierung der Adhäsionseigenschaften von Zellen im Flusssystem. Dissertation, Eberhard-Karls-Universität (Tübingen), 2006.

[51] F. Luderer, U. Walschus. Immobilization of Oligonucleotides for Biochemical Sensing by Self-Assembled Monolayers: Thiol-Organic Bonding on Gold and Silanization on Silica Surfaces. Top. Curr. Chem. 2005, 260, 37-56.

[52] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem.

Rev. 2005, 105, 1103-1169.

[53] A. Ulman. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, 1533-1554.

[54] M. D. Porter, T. B. Bright, D. L. Allara, C. E. D. Chidsey. Spontaneously Organized Molecular Assemblies. 4. Structural Characterization of n-Alkyl Thiol Monolayers on Gold by Optical Ellipsometry, Infrared Spectroscopy, and Electrochemistry. J. Am.

Chem. Soc. 1987, 109, 3559-3568.

[55] D. A. Hutt, G. J. Leggett. Influence of Adsorbate Ordering on Rates of UV Photo-oxidation of Self-Assembled Monolayers. J. Phys. Chem. 1996, 100, 6657-6662.

[56] J. Spinke, M. Liley, F. J. Schmitt, H. J. Guder, L. Angermaier, W. Knoll. Molecular recognition at self-assembled monolayers: Optimization of surface functionalization.

J. Chem. Phys. 1993, 99, 7012-7019.

[57] K. L. Prime, G. M. Whitesides. Adsorption of Proteins onto Surfaces Containing End-Attached Oligo( ethylene oxide): A Model System Using Self-Assembled Monolayers.

J. Am. Chem. Soc. 1993, 115, 10714-10721.

[58] A.-M. Caminade, C. Padié, R. Laurent, A. Maraval, J.-P. Majoral. Uses of Dendrimers for DNA Microarrays. Sensors 2006, 6, 901-914.

[59] S. S. Mark, N. Sandhyarani, C. Zhu, C. Campagnolo, C. A. Batt. Dendrimer-Functionalized Self-Assembled Monolayers as a Surface Plasmon Resonance Sensor Surface. Langmuir 2004, 20, 6808-6817.

[60] C. Cao, S. J. Sim. Double-Enhancement Strategy: A Practical Approach to a Femto-Molar Level Detection of Prostate Specific Antigen-α1-Antichymotrypsin (PSA/ACT Complex) for SPR Immunosensing. J. Microbiol. Biotechnol. 2007, 17, 1031-1035.

[61] E. Hutter, M.-P. Pileni. Detection of DNA Hybridization by Gold Nanoparticle Enhanced Transmission Surface Plasmon Resonance Spectroscopy. J. Phys. Chem. B 2003, 107, 6497-6499.

[62] J.-H. Lee, D.-Y. Kang, T. Lee, S.-U. Kim, B.-K. Oh, J.-W. Choi. Signal Enhancement of Surface Plasmon Resonance Based Immunosensor Using Gold Nanoparticle-Anti-body Complex for -Amyloid (1-40) Detection. J. Nanosci. Nanotechnol. 2009, 9, 7155-7160.

[63] J. S. Mitchell, Y. Wu, C. J. Cook, L. Main. Sensitivity enhancement of surface plas-mon resonance biosensing of small molecules. Anal. Biochem. 2005, 343, 125-135.

[64] R. Pei, X. Yang, E. Wang. Enhanced surface plasmon resonance immunosensing using a streptavidin–biotinylated protein complex. Analyst 2001, 126, 4-6.

[65] X. Yang, Q. Wang, K. Wang, W. Tan, H. Li. Enhanced surface plasmon resonance with the modified catalytic growth of Au nanoparticles. Biosensors & Bioelectronics 2007, 22, 1106-1110.

[66] D. Beccati, K. M. Halkes, G. D. Batema, G. Guillena, A. C. d. Souza, G. v. Koten, J.

P. Kamerling. SPR Studies of Carbohydrate-Protein Interactions: Signal Enhancement of Low-Molecular-Mass Analytes by Organoplatinum(II)-Labeling. ChemBioChem 2005, 6, 1196-1203.

[67] T. Liebermann, W. Knoll. Parallel multispot detection of target hybridization to surface-bound probe oligonucleotides of different base mismatch by surface-plasmon field-enhanced fluorescence microscopy. Langmuir 2003, 19, 1567-1572.

[68] F. Yu, B. Persson, S. Löfås, W. Knoll. Surface Plasmon Fluorescence Immunoassay of Free Prostate-Specific Antigen in Human Plasma at the Femtomolar Level. Anal.

Chem. 2004, 76, 6765-6770.

[69] F. Yu, B. Persson, S. Löfås, W. Knoll. Attomolar Sensitivity in Bioassays Based on Surface Plasmon Fluorescence Spectroscopy. J. Am. Chem. Soc. 2004, 126, 8902-8903.

[70] F. Yu, D. Yao, W. Knoll. Surface Plasmon Field-Enhanced Fluorescence Spectros-copy Studies of the Interaction between an Antibody and Its Surface-Coupled Antigen.

Anal. Chem. 2003, 75, 2610-2617.

[71] Bilder aus der RCSB PDB (www.pdb.org) von PDB ID 1STP (P.C. Weber, D.H.

Ohlendorf, J.J. Wendoloski, F.R. Salemme, (1989) Structural origins of high-affinity biotin binding to streptavidin. Science 243: 85-88).

[72] E. A. Bayer, H. Ben-Hur, G. Gitlin, M. Wilchek. An improved method for the single-step purification of streptavidin. Journal of Biochemical and Biophysical Methods 1986, 13, 103-112.

[73] G. Gitlin, E. A. Bayer, M. Wilchek. Studies on the biotin-binding sites of avidin and streptavidin. Biochem. J. 1990, 269, 527-530.

[74] L. Häussling, B. Michel, H. Ringsdorf, H. Rohrer. Rastertunnelmikroskopische Beo-bachtung von spezifisch adsorbiertem Streptavidin auf Biotin-funktianalisierten, selbstorganisierten Monoschichten. Angew. Chem. 1991, 103, 568-572.

[75] G. T. Hermanson. Bioconjugate Techniques, Academic Press, 1996.

[76] Y. Lindqvist, G. Schneider. Protein-biotin interactions. Current Opinion in Structural Biology 1996, 6, 798-803.

[77] C. L. Smith, J. S. Milea, G. H. Nguyen. Immobilization of Nucleic Acids Using Biotin-Strept(avidin)Systems. Top. Curr. Chem. 2006, 261, 63-90.

[78] A. Otto. Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection. Zeitschrift für Physik 1968, 216, 398-410.

[79] E. Kretschmann, H. Raether. Radiative decay of nonradiative surface plasmons exci-ted by light. Z. Naturforsch. 1968, 23 A, 2135-2136.

[80] E. Kretschmann. Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen. Z. Physik 1971, 241, 313-324.

[81] E. Kretschmann. The angular dependence and the polarisation of light emitted by sur-face plasmons on metals due to roughness. Optics Communications 1972, 5, 331-336.

[82] R. H. Ritchie. Plasma Losses by Fast Electrons in Thin Films. Physical Review 1957, 106, 874-881.

[83] D. Sarid, W. Challener. Modern Introduction to Surface Plasmons: Theory, Mathema-tica Modeling and Applications, University Press, Cambridge, 2010.

[84] J. Homola. Present and future of surface plasmon resonance biosensors. Anal. Bioanal.

Chem. 2003, 377, 528-539.

[85] H.-J. Münzer. Spektroskopische Untersuchungen mit Oberflächenplasmonen. Diplom-arbeit, Universität Konstanz 1997.

[86] J. Spinke, M. Liley, H. J. Guder, L. Angermaier, W. Knoll. Molecular Recognition at Self-Assembled Monolayers: The Construction of Multicomponent Multilayers.

Langmuir 1993, 9, 1821-1825.

[87] M. Henzler, W. Göpel. Oberflächenphysik des Festkörpers, Teubner, Stutgart, 1994.

[88] S. Hüfner. Photoelectron Spectroscopy: Principles and Applications, Springer-Verlag, Berlin Heidelberg, 1995.

[89] Abbildung von www.odb-tec.de der Firma ODB-Tec GmbH & Co. KG Neuss.

[90] S. Voss. Structural and Spectroscopic Characterization of Monolayers of Mn12 Single Molecule Magnets. Dissertation, Universität Konstanz 2009.

[91] Material AG Rüdiger, FB Physik, Universität Konstanz.

[92] K. Christmann. Introduction to Surface Physical Chemistry, Steinkopff Verlag, Darm-stadt, 1991.

[93] G. Gauglitz, G. Proll. Strategies for Label-Free Optical Detection. Adv Biochem Engin/Biotechnol 2008, 109, 395-432.

[94] C. Hänel, G. Gauglitz. Comparison of reflectometric interference spectroscopy with other intruments for label-free optical detection. Anal. Bioanal. Chem. 2002, 372, 91-100.

[95] A. Schütz. Einsatz der reflektometrischen Interferenzspektroskopie (RIfS) zur markie-rungsfreien Affinitätsdetektion für das Hochdurchsatzscreening. Dissertation, Eber-hard-Karls-Universität (Tübingen), 2000.

[96] Onlineinformation zu RIfS, G. Gauglitz, in Onlineinformation zu RIfS, Universität Tübingen, Institut für physikalische und theoretische Chemie, 2004.

[97] J. Piehler, A. Brecht, K. E. Geckeler, G. Gauglitz. Surface modification for direct immunoprobes. Biosensors & Bioelectronics 1996, 11, 579-590.

[98] A. Jung, I. Stemmler, A. Brecht, G. Gauglitz. Covalent strategy for immobilization of DNA-microspots suitable for microarrays with label-free and time-resolved optical detection of hybridization. Fresenius J. Anal. Chem. 2001, 371, 128-136.

[99] F. Pröll, B. Möhrle, M. Kumpf, G. Gauglitz. Label-free characterisation of oligo-nucleotide hybridisation using reflectometric interference spectroscopy. Anal. Bioanal.

Chem. 2005, 382, 1889-1894.

[100] O. Birkert, H. M. Haake, A. Schütz, J. Mack, A. Brecht, G. Jung, G. Gauglitz. A streptavidin surface on planar glass substrates for the detection of biomolecular interaction. Analytical Biochemistry 2000, 282, 200-208.

[101] O. Birkert, R. Tünnemann, G. Jung, G. Gauglitz. Label-free parallel screening of combinatorial triazine libraries using reflectometric interference spectroscopy.

Analytical Chemistry 2002, 74, 834-840.

[102] J. Piehler, A. Brecht, K. Hehl, G. Gauglitz. Protein interactions in covalently attached dextran layers. Colloids and Surfaces B: Biointerfaces 1999, 13, 325-336.

[103] P. Fechner, F. Pröll, M. Carlquist, G. Proll. An advanced biosensor for the prediction of estrogenic effects of endocrine-disrupting chemicals on the estrogen receptor alpha.

Anal. Bioanal. Chem. 2009, 393, 1579-1585.

[104] H. M. Haake, A. Schütz, G. Gauglitz. Label-free detection of biomolecular interaction by optical sensors. Fresenius J. Anal. Chem. 2000, 366, 576-585.

[105] K. Kröger, J. Bauer, B. Fleckenstein, J. Rademann, G. Jung, G. Gauglitz. Epitope-mapping of transglutaminase with parallel label-free optical detection. Biosensors and Bioelectronics 2002, 17, 937-944.

[106] G. Gauglitz, A. Brecht, G. Kraus, W. Nahm. Chemical and biochemical sensors based on interferometry at thin (multi-)layers. Sensors and Actuators B 1993, 11, 21-27.

[107] M. Sauer, A. Brecht, K. Charissé, M. Maier, M. Gerster, I. Stemmler, G. Gauglitz, E.

Bayer. Interaction of chemically modified antisense oligonucleotides with sense DNA:

a label-free interaction study with reflectometric interference spectroscopy. Anal.

Chem. 1999, 71, 2850-2857.

[108] K. Gebauer. Untersuchung der photochemischen Abspaltung oberflächengebundener photolabiler Schutzgruppen. Diplomarbeit, Universität Konstanz 2004.

[109] J. Mehne, G. Markovic, F. Pröll, N. Schweizer, S. Zorn, F. Schreiber, G. Gauglitz.

Characterisation of morphology of self-assembled PEG monolayers: a comparison of mixed and pure coatings optimised for biosensor applications. Anal. Bioanal. Chem.

2008, 391, 1783-1791.

[110] J. Piehler, A. Brecht, R. Valiokas, B. Liedberg, G. Gauglitz. A high-density poly(ethy-lene glycol) polymer brush for immobilization on glass-type surfaces. Biosensors &

Bioelectronics 2000, 15, 473-481.

[111] S. Sortino, S. Petralia, G. G. Condorelli, S. Conoci, G. Condorelli. Novel Photoactive Self-Assembled Monolayer for Immobilization and Cleavage of DNA. Langmuir 2003, 19, 536-539.

[112] L. Häussling, H. Ringsdorf, F. J. Schmitt, W. Knoll. Biotin-Functionalized Self-Assembled Monolayers on Gold: Surface Plasmon Optical Studies of Specific Recognition Reactions. Langmuir 1991, 7, 1837-1840.

[113] D. H. Waldeck, A. P. Alivisatos, C. B. Harris. Nonradiative Damping of Molecular Electronic Excited States by Metal Surfaces. Surf. Sci. 1985, 158, 103-125.

[114] F. Callari, S. Petralia, S. Sortino. Highly photoresponsive monolayer-protected gold clusters by self-assembly of a cyclodextrin-azobenzene-derived supramolecular com-plex. Chem. Commun. 2006, 1009-1011.

[115] F. L. Callari, S. Sortino. ‘‘Catch-and-release’’ of porphyrins by photoswitchable self-assembled monolayers. J. Mater. Chem. 2007, 17, 4184-4188.

[116] A. Manna, P. L. Chen, H. Akiyama, T. X. Wei, K. Tamada, W. Knoll. Optimized Photoisomerization on Gold Nanoparticles Capped by Unsymmetrical Azobenzene Disulfides. Chem. Mater. 2003, 15, 20-28.

[117] Z. Sekkat, J. Wood, Y. Geerts, W. Knoll. Surface plasmon investigation of light-induced modulation in the optical thickness of molecularly thin photochromic layers.

Langmuir 1996, 12, 2976-2980.

[118] S. Sortino, S. Petralia, S. Conoci, S. D. Bella. Monitoring photoswitching of azobenzene-based self-assembled monolayers on ultrathin platinum films by UV/Vis spectroscopy in the transmission mode. J. Mater. Chem. 2004, 14, 811-813.

[119] K. Tamada, H. Akiyama, T. X. Wei. Photoisomerization Reaction of Unsymmetrical Azobenzene Disulfide Self-Assembled Monolayers Studied by Surface Plasmon Spectroscopy: Influences of Side Chain Length and Contacting Medium. Langmuir 2002, 18, 5239-5246.

[120] K. Tamada, H. Akiyama, T. X. Wei, S. A. Kim. Photoisomerization Reaction of Unsymmetrical Azobenzene Disulfide Self-Assembled Monolayers: Modification of Azobenzene Dyes to Improve Thermal Endurance for Photoreaction. Langmuir 2003, 19, 2306-2312.

[121] M. O. Wolf, M. A. Fox. Photochemistry and Surface Properties of Self-Assembled Monolayers of cis- and trans-4-Cyano-4'-(10-thiodecoxy)stilbene on Polycrystalline Gold. J. Am. Chem. Soc. 1995, 117, 1845-1846.

[122] M. O. Wolf, M. A. Fox. Photoisomerization and Photodimerization in Self-Assembled Monolayers of cis- and trans-4-Cyano-4'-(10-mercaptodecoxy)stilbene on Gold.

Langmuir 1996, 12, 955-962.

[123] J. Zhang, J. K. Whitesell, M. A. Fox. Photoreactivity of Self-assembled Monolayers of Azobenzene or Stilbene Derivatives Capped on Colloidal Gold Clusters. Chem. Mater.

2001, 13, 2323-2331.

[124] E. Kaganer, R. Pogreb, D. Davidov, I. Willner. Surface plasmon resonance characteri-zation of photoswitchable antigen-antibody interactions. Langmuir 1999, 15, 3920-3923.

[125] J. F. Masson, P. A. Liddell, S. Banerji, T. M. Battaglia, D. Gust, K. S. Booksh.

Nondestructive Monitoring of the Photochromic State of Dithienylethene Monolayers by Surface Plasmon Resonance. Langmuir 2005, 21, 7413-7420.

[126] W. Li, V. Lynch, H. Thompson, M. A. Fox. Self-Assembled Monolayers of 7-(10-Thiodecoxy)coumarin on Gold: Synthesis, Characterization, and Photodimerization. J.

Am. Chem. Soc. 1997, 119, 7211-7217.

[127] E. B. Caruso, S. Petralia, S. Conoci, S. Giuffrida, S. Sortino. Photodelivery of Nitric Oxide from Water-Soluble Platinum Nanoparticles. J. Am. Chem. Soc. 2007, 129, 480-481.

[128] J. Hu, J. Zhang, F. Liu, K. Kittredge, J. K. Whitesell, M. A. Fox. Competitive Photo-chemical Reactivity in a Self-Assembled Monolayer on a Colloidal Gold Cluster. J.

Am. Chem. Soc. 2001, 123, 1464-1470.

[129] S. Sortino, S. Petralia, G. Compagnini, S. Conoci, G. Condorelli. Light-Controlled Nitric Oxide Generation from a Novel Self-Assembled Monolayer on a Gold Surface.

Angew. Chem. Int. Ed. 2002, 41, 1914-1917.

[130] K. Drexler, J. Smirnova, M. Galetskaya, S. Voss, M. Fonin, J. Boneberg, U. Rüdiger, P. Leiderer, U. E. Steiner. X-ray Photoelectron Spectroscopy- and Surface Plasmon Resonance-Detected Photo Release of Photolabile Protecting Groups from Nucleoside Self-Assembled Monolayers on Gold Surfaces. Langmuir 2009, 25, 10794-10801.

[131] D. R. Lide. CRC Handbook of Chemistry and Physics, 83rd ed., 2002-2003.

[132] Programm Winspall von Prof. W. Knoll (MPI Mainz).

[133] W. D. Wilson. Analyzing Biomolecular Interactions. Science 2002, 295, 2103-2105.

[134] P. Siffalovic, M. Michelswirth, P. Bartz, B. Decker, C. Agena, C. Schäfer, S. Molter, R. Ros, M. Bach, M. Neumann, D. Anselmetti, J. Mattay, U. Heinzmann, M.

Drescher. Large-scale homogeneous molecular templates for femtosecond time-resolved studies of the guest–host interaction. J. Biotechnol. 2004, 112, 139-149.

[135] H. Labhart. Bestimmung von Moleküleigenschaften aus elektrooptischen Effekten.

Tetrahedron 1963, 19, 223-241.

[136] E. D. Palik. Handbook of Optical Constants of Solids, Academic Press, San Diego, 1998.

[137] G. Boisset. Internetprogramm für die Berechnung von Reflektivität/Durchlässigkeit von Licht, welches unter einem beliebigen Winkel auf dünne Filme eingestrahlt wird, www.luxpop.com.

[138] P. Yeh. Optical waves in layered media, John Wiley & Sons, New York, 1988.

[139] L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, S. S. Yee. Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films. Langmuir 1998, 14, 5636-5648.

[140] H. P. Chiang, C.-W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, P. T. Leung.

Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface. Thin Solid Films 2007, 515, 6953-6961.

[141] H.-P. Chiang, Y.-C. Wang, P. T. Leung, W. S. Tse. A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance. Optics Communications 2001, 188, 283-289.

[142] H.-P. Chiang, H.-T. Yeh, C.-M. Chen, J.-C. Wu, S.-Y. Su, R. Chang, Y.-J. Wu, D. P.

Tsai, S. U. Jen, P. T. Leung. Surface plasmon resonance monitoring of temperature via phase measurement. Optics Communications 2004, 241, 409-418.

[143] J. H. Scofield. Hartree-Slater Subshell Photoionization Cross-Sections at 1254 and 1487 eV. J. Elec. Spec. Rel. Phen. 1976, 8, 129-137.

[144] D. G. Castner, K. Hinds, D. W. Grainger. X-ray Photoelectron Spectroscopy Sulfur 2p Study of Organic Thiol and Disulfide Binding Interactions with Gold Surfaces.

Langmuir 1996, 12, 5083-5086.

[145] K. E. Nelson, L. Gamble, L. S. Jung, M. S. Boeckl, E. Naeemi, S. L. Golledge, T.

Sasaki, D. G. Castner, C. T. Campbell, P. S. Stayton. Surface Characterization of Mixed Self-Assembled Monolayers Designed for Streptavidin Immobilization.

Langmuir 2001, 17, 2807-2816.

[146] S. Sortino, S. Petralia, S. Conoci, S. D. Bella. Novel Self-Assembled Monolayers of Dipolar Ruthenium(III/II) Pentaammine(4,4'-bipyridinium) Complexes on Ultrathin Platinum Films as Redox Molecular Switches. J. Am. Chem. Soc. 2003, 125, 1122-1123.

[147] M. Millaruelo, L. M. Eng, M. Mertig, B. Pilch, U. Oertel, J. Opitz, B. Sieczkowska, F.

Simon, B. Voit. Photolabile Carboxylic Acid Protected Terpolymers for Surface Patterning. Part 2: Photocleavage and Film Patterning. Langmuir 2006, 22, 9446-9452.

[148] A. Shaporenko, K. Heister, A. Ulman, M. Grunze, M. Zharnikov. The Effect of Halo-gen Substitution in Self-Assembled Monolayers of 4-Mercaptobiphenyls on Noble Metal Substrates. J. Phys. Chem. B 2005, 109, 4096-4103.

[149] H. S. Munro, R. J. Ward, E. Khor. The Synthesis and XPS Characterization of Iodine Containing Plasma Polymers. J. Polym. Sci. Polym. Chem. Ed. 1990, 28, 923-929.

[150] J. Bushell, A. F. Carley, M. Coughlin, P. R. Davies, D. Edwards, D. J. Morgan, M.

Parsons. The Reactive Chemisorption of Alkyl Iodides at Cu(110) and Ag(111) Surfaces: A Combined STM and XPS Study. J. Phys. Chem. B 2005, 109, 9556-9566.

[151] D. A. Hutt, E. Cooper, G. J. Leggett. Structure and Mechanism of Photooxidation of Self-assembled Monolayers of Alkylthiols on Silver Studied by XPS and Static SIMS.

[151] D. A. Hutt, E. Cooper, G. J. Leggett. Structure and Mechanism of Photooxidation of Self-assembled Monolayers of Alkylthiols on Silver Studied by XPS and Static SIMS.