• Keine Ergebnisse gefunden

10. Literaturverzeichnis

ABBOTT, D. A., T. A. KNIJNENBURG, L. M. I. DE POORTER, M. J. T. REINDERS, J.

T. PRONK u. A. J. A. VAN MARIS (2007):

Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae.

FEMS Yeast Research 7, 819-833

AHMAD, Z., S. SHARMA u. G. K. KHULLER (2005):

In vitro and ex vivo antimycobacterial potential of azole drugs against Mycobacterium tuberculosis H37Rv.

FEMS Microbiology Letters 251, 19-22

ALMOFTI, Y. A., M. DAI, Y. SUN, H. HAIHONG u. Z. YUAN (2011):

Impact of erythromycin resistance on the virulence properties and fitness of Campylobacter jejuni.

Microbial Pathogenesis 50, 336-342

ANDERSSON, D. I. u. D. HUGHES (2011):

Persistence of antibiotic resistance in bacterial populations.

FEMS Microbiology Reviews 35, 901-911

ANDRZEJEWSKA, M., B. SZCZEPAŃSKA, D. ŚPICA u. J. J. KLAWE (2019):

Prevalence, virulence, and antimicrobial resistance of Campylobacter spp. in raw milk, beef, and pork meat in Northern Poland.

Foods (Basel, Switzerland) 8, 13

AWAD, W. A., C. HESS u. M. HESS (2018):

Re-thinking the chicken–Campylobacter jejuni interaction: a review.

Avian Pathology 47, 352-363

BAFFONE, W., A. CASAROLI, B. CITTERIO, L. PIERFELICI, R. CAMPANA, E.

VITTORIA, E. GUAGLIANONE u. G. DONELLI (2006):

Campylobacter jejuni loss of culturability in aqueous microcosms and ability to resuscitate in a mouse model.

International Journal of Food Microbiology 107, 83-91 BERENBAUM, M. C. (1978):

A method for testing for synergy with any number of agents.

The Journal of Infectious Diseases 137, 122-130

BERGSSON, G., J. ARNFINNSSON, S. M. KARLSSON, O. STEINGRÍMSSON u. H.

THORMAR (1998):

In vitro inactivation of Chlamydia trachomatis by fatty acids and monoglycerides.

Antimicrobial Agents and Chemotherapy 42, 2290-2294

10. Literaturverzeichnis 78

BERRANG, M., J. NORTHCUTT u. J. A. CASON (2004):

Recovery of Campylobacter from broiler feces during extended storage of transport cages.

Poultry Science 83, 1213-1217

BERRANG, M. E., R. J. BUHR, J. A. CASON u. J. A. DICKENS (2001):

Broiler carcass contamination with Campylobacter from feces during defeathering.

Journal of Food Protection 64, 2063-2066

BERRANG, M. E., J. K. NORTHCUTT, D. L. FLETCHER u. N. A. COX (2003):

Role of dump cage fecal contamination in the transfer of Campylobacter to carcasses of previously negative broilers.

Journal of Applied Poultry Research 12, 190-195

BIRK, T., M. T. WIK, R. LAMETSCH u. S. KNOCHEL (2012):

Acid stress response and protein induction in Campylobacter jejuni isolates with different acid tolerance.

BMC Microbiology 12, 13

BRACEY, D., C. D. HOLYOAK u. P. J. COOTE (1998):

Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae: is growth inhibition dependent on reduced intracellular pH?

Journal of Applied Microbiology 85, 1056-1066 BRUL, S. u. P. COOTE (1999):

Preservative agents in foods. Mode of action and microbial resistance mechanisms.

International Journal of Food Microbiology 50, 1-17

BYRD, J. A., D. E. CORRIER, M. E. HUME, R. H. BAILEY, L. H. STANKER u. B. M.

HARGIS (1998):

Incidence of Campylobacter in crops of preharvest market-age broiler chickens.

Poultry Science 77, 1303-1305

BYRD, J. A., B. M. HARGIS, D. J. CALDWELL, R. H. BAILEY, K. L. HERRON, J. L.

MCREYNOLDS, R. L. BREWER, R. C. ANDERSON, K. M. BISCHOFF, T. R.

CALLAWAY u. L. F. KUBENA (2001):

Effect of lactic acid administration in the drinking water during preslaughter feed withdrawal on Salmonella and Campylobacter contamination of broilers.

Poultry Science 80, 278-283

CAMPOS, F. M., J. A. COUTO, A. R. FIGUEIREDO, I. V. TÓTH, A. O. S. S. RANGEL u. T. A. HOGG (2009):

Cell membrane damage induced by phenolic acids on wine lactic acid bacteria.

International Journal of Food Microbiology 135, 144-151

10. Literaturverzeichnis 79

CARVALHO, C. M., B. W. GANNON, D. E. HALFHIDE, S. B. SANTOS, C. M. HAYES, J. M. ROE u. J. AZEREDO (2010):

The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens.

BMC Microbiology 10, 11 CAVE, N. A. G. (1984):

Effect of dietary propionic and lactic acids on feed intake by chicks.

Poultry Science 63, 131-134

CHAVEERACH, P., D. A. KEUZENKAMP, L. J. LIPMAN u. F. VAN KNAPEN (2004):

Effect of organic acids in drinking water for young broilers on Campylobacter infection, volatile fatty acid production, gut microflora and histological cell changes.

Poultry Science 83, 330-334

CHAVEERACH, P., D. A. KEUZENKAMP, H. A. URLINGS, L. J. LIPMAN u. F. VAN KNAPEN (2002):

In vitro study on the effect of organic acids on Campylobacter jejuni/coli populations in mixtures of water and feed.

Poultry Science 81, 621-628

CHAVEERACH, P., A. A. H. M. TER HUURNE, L. J. A. LIPMAN u. F. VAN KNAPEN (2003):

Survival and resuscitation of ten strains of Campylobacter jejuni and Campylobacter coli under acid conditions.

Applied and Environmental Microbiology 69, 711-714 CLSI (2013):

VET01-A4. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; Approved standard- Fourth Edition; Clinical and Labaoratory Standards Institute: Wayne, PA, USA.

CRAWSHAW, T. R., J. I. CHANTER, S. C. L. YOUNG, S. CAWTHRAW, A. M.

WHATMORE, M. S. KOYLASS, A. B. VIDAL, F. J. SALGUERO u. R. M. IRVINE (2015):

Isolation of a novel thermophilic Campylobacter from cases of spotty liver disease in laying hens and experimental reproduction of infection and microscopic pathology.

Veterinary Microbiology 179, 315-321

DAI, L., O. SAHIN, M. GROVER u. Q. ZHANG (2020):

New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant Campylobacter.

Translational Research 223, 76-88

DE CASTRO BURBARELLI, M. F., G. DO VALLE POLYCARPO, K. DELIBERALI LELIS, C. A. GRANGHELLI, A. C. CARÃO DE PINHO, S. RIBEIRO ALMEIDA

10. Literaturverzeichnis 80

QUEIROZ, A. M. FERNANDES, R. L. MORO DE SOUZA, M. E. GAGLIANONE MORO, R. DE ANDRADE BORDIN u. R. DE ALBUQUERQUE (2017):

Cleaning and disinfection programs against Campylobacter jejuni for broiler chickens:

productive performance, microbiological assessment and characterization.

Poultry Science 96, 3188-3198

DESBOIS, A. P. u. V. J. SMITH (2010):

Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential.

Applied Microbiology and Biotechnology 85, 1629-1642 DIBNER, J. J. u. P. BUTTIN (2002):

Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism.

Journal of Applied Poultry Research 11, 453-463 DIBNER, J. J. u. J. D. RICHARDS (2005):

Antibiotic growth promoters in agriculture: history and mode of action.

Poultry Science 84, 634-643

DOYLE, M. P. u. D. J. ROMAN (1981):

Growth and survival of Campylobacter fetus subsp. jejuni as a function of temperature and pH.

Journal of Food Protection 44, 596-601 EFSA (2011):

Scientific Opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain.

EFSA Journal 9, 141 EFSA (2019):

The European Union One Health 2018 Zoonoses Report.

EFSA Journal 17, 276 Campylobacter jejuni and Campylobacter coli colonizing broiler chickens.

Journal of Food Protection 72, 733-740 EUROPEAN COMMISSION (2019):

10. Literaturverzeichnis 81

Regulation (EC) No 1831/2003. European Union register of feed additives. Edition 7/2019 (273). Annex I - 07.08.2019.

FISCHBACH, M. A. (2011):

Combination therapies for combating antimicrobial resistance.

Current Opinion in Microbiology 14, 519-523

FLETCHER, R. D., A. C. ALBERS, A. K. CHEN u. J. N. ALBERTSON (1983):

Ascorbic acid inhibition of Campylobacter jejuni growth.

Applied and Environmental Microbiology 45, 792-795

FRIRDICH, E., J. BIBOY, M. PRYJMA, J. LEE, S. HUYNH, C. T. PARKER, S. E.

GIRARDIN, W. VOLLMER u. E. C. GAYNOR (2019):

The Campylobacter jejuni helical to coccoid transition involves changes to peptidoglycan and the ability to elicit an immune response.

Molecular Microbiology 112, 280-301

GIBBENS, J. C., S. J. S. PASCOE, S. J. EVANS, R. H. DAVIES u. A. R. SAYERS (2001):

A trial of biosecurity as a means to control Campylobacter infection of broiler chickens.

Preventive Veterinary Medicine 48, 85-99

GREENACRE, E. J., T. F. BROCKLEHURST, C. R. WASPE, D. R. WILSON u. P. D.

G. WILSON (2003):

Salmonella enterica serovar Typhimurium and Listeria monocytogenes acid tolerance response induced by organic acids at 20°C: optimization and modeling.

Applied and Environmental Microbiology 69, 3945-3951

GRILLI, E., F. VITARI, C. DOMENEGHINI, A. PALMONARI, G. TOSI, P. FANTINATI, P. MASSI u. A. PIVA (2013):

Development of a feed additive to reduce caecal Campylobacter jejuni in broilers at slaughter age: from in vitro to in vivo, a proof of concept.

Journal of Applied Microbiology 114, 308-317

GULLBERG, E., S. CAO, O. G. BERG, C. ILBÄCK, L. SANDEGREN, D. HUGHES u.

D. I. ANDERSSON (2011):

Selection of resistant bacteria at very low antibiotic concentrations.

PLoS Pathogens 7, 9

GUO, B., K. ABDELRAOUF, K. R. LEDESMA, M. NIKOLAOU u. V. H. TAM (2012):

Predicting bacterial fitness cost associated with drug resistance.

Journal of Antimicrobial Chemotherapy 67, 928-932 HALD, B., H. M. SOMMER u. H. SKOVGÅRD (2007):

Use of fly screens to reduce Campylobacter spp. introduction in broiler houses.

Emerging infectious diseases 13, 1951-1953

10. Literaturverzeichnis 82

HASSAN, H. M. A., M. A. MOHAMED, A. YOUSSEF u. E. HASSAN (2010):

Effect of using organic acids to substitute antibiotic growth promoters on performance and intestinal microflora of broilers.

Asian-Australasian Journal of Animal Sciences 23, 1348-1353

HERES, L., B. ENGEL, H. A. URLINGS, J. A. WAGENAAR u. F. VAN KNAPEN (2004):

Effect of acidified feed on susceptibility of broiler chickens to intestinal infection by Campylobacter and Salmonella.

Veterinary Microbiology 99, 259-267

HERMANS, D., A. MARTEL, A. GARMYN, M. VERLINDEN, M. HEYNDRICKX, I.

GANTOIS, F. HAESEBROUCK u. F. PASMANS (2012a):

Application of medium-chain fatty acids in drinking water increases Campylobacter jejuni colonization threshold in broiler chicks.

Poultry Science 91, 1733-1738

HERMANS, D., A. MARTEL, K. VAN DEUN, M. VERLINDEN, F. VAN IMMERSEEL, A. GARMYN, W. MESSENS, M. HEYNDRICKX, F. HAESEBROUCK u. F. PASMANS (2010):

Intestinal mucus protects Campylobacter jejuni in the ceca of colonized broiler chickens against the bactericidal effects of medium-chain fatty acids.

Poultry Science 89, 1144-1155

HERMANS, D., F. PASMANS, W. MESSENS, A. MARTEL, F. VAN IMMERSEEL, G.

RASSCHAERT, M. HEYNDRICKX, K. VAN DEUN u. F. HAESEBROUCK (2012b):

Poultry as a host for the zoonotic pathogen Campylobacter jejuni.

Vector-Borne and Zoonotic Diseases 12, 89-98

HOLYOAK, C. D., M. STRATFORD, Z. MCMULLIN, M. B. COLE, K. CRIMMINS, A. J.

BROWN u. P. J. COOTE (1996):

Activity of the plasma membrane H(+)-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid.

Applied and Environmental Microbiology 62, 3158-3164

HUME, M. E., D. E. CORRIER, G. W. IVIE u. J. R. DELOACH (1993):

Metabolism of [14 C]propionic acid in broiler chicks.

Poultry Science 72, 786-793

HUYGHEBAERT, G., R. DUCATELLE u. F. V. IMMERSEEL (2011):

An update on alternatives to antimicrobial growth promoters for broilers.

The Veterinary Journal 187, 182-188 IKEDA, N. u. A. V. KARLYSHEV (2012):

Putative mechanisms and biological role of coccoid form formation in Campylobacter jejuni.

European Journal of Microbiology & Immunology 2, 41-49

10. Literaturverzeichnis 83

JANSEN, W., F. REICH u. G. KLEIN (2014):

Large-scale feasibility of organic acids as a permanent preharvest intervention in drinking water of broilers and their effect on foodborne Campylobacter spp. before processing.

Journal of Applied Microbiology 116, 1676-1687 JARBOE, L. R., L. A. ROYCE u. P. LIU (2013):

Understanding biocatalyst inhibition by carboxylic acids.

Frontiers in Microbiology 4, 8

JOHNSON, T. J., J. M. SHANK u. J. G. JOHNSON (2017):

Current and potential treatments for reducing Campylobacter colonization in animal hosts and disease in humans.

Frontiers in Microbiology 8, 14

JÓZEFIAK, D., S. KACZMAREK u. A. RUTKOWSKI (2010):

The effects of benzoic acid supplementation on the performance of broiler chickens.

Journal of Animal Physiology and Animal Nutrition 94, 29-34 JUVEN, B. J. u. J. KANNER (1986):

Effect of ascorbic, isoascorbic and dehydroascorbic acids on the growth and survival of Campylobacter jejuni.

Journal of Applied Bacteriology 61, 339-345

KAAKOUSH, N. O., N. CASTAÑO-RODRÍGUEZ, H. M. MITCHELL u. S. M. MAN

Epidemiological investigation of risk factors for Campylobacter colonization in Norwegian broiler flocks.

Epidemiology and Infection 111, 245-255 KHALAFALLA, F. A. (1990):

Campylobacter jejuni in poultry giblets.

Journal of Veterinary Medicine, Series B 37, 31-34

KHAN, R. U., S. NAZ, Z. NIKOUSEFAT, M. SELVAGGI, V. LAUDADIO u. V.

TUFARELLI (2012):

Effect of ascorbic acid in heat-stressed poultry.

World's Poultry Science Journal 68, 477-490 KHAN, S. H. u. J. IQBAL (2016):

Recent advances in the role of organic acids in poultry nutrition.

10. Literaturverzeichnis 84

Journal of Applied Animal Research 44, 359-369

KIM, J., H. SHIN, H. PARK, H. JUNG, J. KIM, S. CHO, S. RYU u. B. JEON (2019):

Microbiota analysis for the optimization of Campylobacter isolation from chicken carcasses using selective media.

Frontiers in Microbiology 10, 9

KIM, J. W., J.-H. KIM u. D. Y. KIL (2015):

Dietary organic acids for broiler chickens: A review.

Revista Colombiana de Ciencias Pecuarias 28, 109-123 KIM, S. A. u. M. S. RHEE (2013):

Marked synergistic bactericidal effects and mode of action of medium-chain fatty acids in combination with organic acids against Escherichia coli O157:H7.

Applied and Environmental Microbiology 79, 6552-6560

KITTLER, S., S. FISCHER, A. ABDULMAWJOOD, G. GLUNDER u. G. KLEIN (2013):

Effect of bacteriophage application on Campylobacter jejuni loads in commercial broiler flocks.

Applied and Environmental Microbiology 79, 7525-7533

KOMP LINDGREN, P., L. L. MARCUSSON, D. SANDVANG, N. FRIMODT-MØLLER u. D. HUGHES (2005):

Biological cost of single and multiple norfloxacin resistance mutations in Escherichia coli implicated in urinary tract infections.

Antimicrobial Agents and Chemotherapy 49, 2343-2351 KWON, Y. M. u. S. C. RICKE (1998):

Induction of acid resistance of Salmonella typhimurium by exposure to short-chain fatty acids.

Applied and Environmental Microbiology 64, 3458-3463

LAKE, I. R., F. J. COLÓN-GONZÁLEZ, J. TAKKINEN, M. ROSSI, B. SUDRE, J. G.

DIAS, L. TAVOSCHI, A. JOSHI, J. C. SEMENZA u. G. NICHOLS (2019):

Exploring Campylobacter seasonality across Europe using the European surveillance system (TESSy), 2008 to 2016.

Eurosurveillance 24, 12

LEYER, G. J., L. L. WANG u. E. A. JOHNSON (1995):

Acid adaptation of Escherichia coli O157:H7 increases survival in acidic foods.

Applied and Environmental Microbiology 61, 3752-3755

LINKEVICIUS, M., L. SANDEGREN u. D. I. ANDERSSON (2013):

Mechanisms and fitness costs of tigecycline resistance in Escherichia coli.

Journal of Antimicrobial Chemotherapy 68, 2809-2819

10. Literaturverzeichnis 85

LIU, P., A. CHERNYSHOV, T. NAJDI, Y. FU, J. DICKERSON, S. SANDMEYER u. L.

JARBOE (2013):

Membrane stress caused by octanoic acid in Saccharomyces cerevisiae.

Applied Microbiology and Biotechnology 97, 3239-3251

LOFTON, H., N. ANWAR, M. RHEN u. D. I. ANDERSSON (2014):

Fitness of Salmonella mutants resistant to antimicrobial peptides.

Journal of Antimicrobial Chemotherapy 70, 432-440

LUANGTONGKUM, T., Z. SHEN, V. W. SENG, O. SAHIN, B. JEON, P. LIU u. Q.

ZHANG (2012):

Impaired fitness and transmission of macrolide-resistant Campylobacter jejuni in its natural host.

Antimicrobial Agents and Chemotherapy 56, 1300-1308

LV, R., K. WANG, J. FENG, D. D. HEENEY, D. LIU u. X. LU (2020):

Detection and quantification of viable but non-culturable Campylobacter jejuni.

Frontiers in Microbiology 10, 8 MAN, S. M. (2011):

The clinical importance of emerging Campylobacter species.

Nature Reviews Gastroenterology & Hepatology 8, 669-685

MARCUSSON, L. L., N. FRIMODT-MØLLER u. D. HUGHES (2009):

Interplay in the selection of fluoroquinolone resistance and bacterial fitness.

PLoS Pathogens 5, 8

MASTROMATTEO, M., A. CONTE u. M. A. DEL NOBILE (2010):

Combined use of modified atmosphere packaging and natural compounds for food preservation.

Food Engineering Reviews 2, 28-38

METCALF, J. H., A. M. DONOGHUE, K. VENKITANARAYANAN, I. REYES-HERRERA, V. F. AGUIAR, P. J. BLORE u. D. J. DONOGHUE (2011):

Water administration of the medium-chain fatty acid caprylic acid produced variable efficacy against enteric Campylobacter colonization in broilers.

Poultry Science 90, 494-497

MEUNIER, M., M. GUYARD-NICODEME, D. DORY u. M. CHEMALY (2016):

Control strategies against Campylobacter at the poultry production level: biosecurity measures, feed additives and vaccination.

Journal of Applied Microbiology 120, 1139-1173

NEWELL, D. G., K. T. ELVERS, D. DOPFER, I. HANSSON, P. JONES, S. JAMES, J.

GITTINS, N. J. STERN, R. DAVIES, I. CONNERTON, D. PEARSON, G. SALVAT u.

V. M. ALLEN (2011):

10. Literaturverzeichnis 86

Biosecurity-based interventions and strategies to reduce Campylobacter spp. on poultry farms.

Applied and Environmental Microbiology 77, 8605-8614 NEWELL, D. G. u. C. FEARNLEY (2003):

Sources of Campylobacter colonization in broiler chickens.

Applied and Environmental Microbiology 69, 4343-4351 NGULUKUN, S. S. (2017):

Chapter 3 - Taxonomy and physiological characteristics of Campylobacter spp.

In: Campylobacter

Academic Press, S. 41-60

OLIVEIRA, C., T. STAMFORD, N. NETO u. E. SOUZA (2009):

Inhibition of Staphylococcus aureus in broth and meat broth using synergies of phenolics and organic acids.

International Journal of Food Microbiology 137, 312-316 ORHAN, G., A. BAYRAM, Y. ZER u. I. BALCI (2005):

Synergy tests by E test and checkerboard methods of antimicrobial combinations against Brucella melitensis.

Journal of Clinical Microbiology 43, 140-143 PARK, S. F. (2002):

The physiology of Campylobacter species and its relevance to their role as foodborne pathogens.

International Journal of Food Microbiology 74, 177-188

PEARSON, A. D., M. GREENWOOD, T. D. HEALING, D. ROLLINS, M. SHAHAMAT, J. DONALDSON u. R. R. COLWELL (1993):

Colonization of broiler chickens by waterborne Campylobacter jejuni.

Applied and Environmental Microbiology 59, 987-996 PELFRENE, E., Z. SEBRIS u. M. CAVALERI (2020):

Regulatory aspects of the therapeutic use of bacteriophages: Europe.

In: Bacteriophages S. 1-13

PEREZ, G. V. u. A. L. PEREZ (2000):

Organic acids without a carboxylic acid functional group.

Journal of Chemical Education 77, 6

PRINZINGER, R., A. PREßMAR u. E. SCHLEUCHER (1991):

Body temperature in birds.

Comparative Biochemistry and Physiology Part A: Physiology 99, 499-506 REICH, F., V. ATANASSOVA, E. HAUNHORST u. G. KLEIN (2008):

10. Literaturverzeichnis 87

The effects of Campylobacter numbers in caeca on the contamination of broiler carcasses with Campylobacter.

International Journal of Food Microbiology 127, 116-120

REID, A. N., R. PANDEY, K. PALYADA, H. NAIKARE u. A. STINTZI (2008):

Identification of Campylobacter jejuni genes involved in the response to acidic pH and stomach transit.

Applied and Environmental Microbiology 74, 1583-1597

RENSCH, U., M. GREINER, G. KLEIN u. C. KEHRENBERG (2015):

Mathematical modeling to predict the fitness cost associated with triclosan tolerance in Salmonella enterica serovars.

Food Control 53, 9-13

RENSCH, U., G. KLEIN u. C. KEHRENBERG (2013):

Analysis of triclosan-selected Salmonella enterica mutants of eight serovars revealed increased aminoglycoside susceptibility and reduced growth rates.

PloS One 8, 8

RICKE, S. C. (2003):

Perspectives on the use of organic acids and short chain fatty acids as antimicrobials.

Poultry Science 82, 632-639

RIVOAL, K., M. DENIS, G. SALVAT, P. COLIN u. G. ERMEL (1999):

Molecular characterization of the diversity of Campylobacter spp. isolates collected from a poultry slaughterhouse: analysis of cross-contamination.

Letters in Applied Microbiology 29, 370-374 RKI (2020):

Aktuelle Statistik meldepflichtiger Infektionskrankheiten, Deutschland.

Epidemiologisches Bulletin Nr. 3, S. 16

ROBYN, J., G. RASSCHAERT, F. PASMANS u. M. HEYNDRICKX (2015):

Thermotolerant Campylobacter during broiler rearing: Risk factors and intervention.

Comprehensive Reviews in Food Science and Food Safety 14, 81-105 ROHWER, F. (2003):

Global phage diversity.

Cell 113, 141

ROSENQUIST, H., H. M. SOMMER, N. L. NIELSEN u. B. B. CHRISTENSEN (2006):

The effect of slaughter operations on the contamination of chicken carcasses with thermotolerant Campylobacter.

International Journal of Food Microbiology 108, 226-232

ROYCE, L. A., P. LIU, M. J. STEBBINS, B. C. HANSON u. L. R. JARBOE (2013):

The damaging effects of short chain fatty acids on Escherichia coli membranes.

10. Literaturverzeichnis 88

Applied Microbiology and Biotechnology 97, 8317-8327 RUSSELL, J. B. (1992):

Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling.

Journal of Applied Bacteriology 73, 363-370

SAHIN, O., I. I. KASSEM, Z. SHEN, J. LIN, G. RAJASHEKARA u. Q. ZHANG (2015):

Campylobacter in poultry: Ecology and potential interventions.

Avian Diseases 59, 185-200

SEKELJA, M., I. RUD, S. H. KNUTSEN, V. DENSTADLI, B. WESTERENG, T. NÆS u. K. RUDI (2012):

Abrupt temporal fluctuations in the chicken fecal microbiota are explained by its gastrointestinal origin.

Applied and Environmental Microbiology 78, 2941-2948

SELIWIORSTOW, T., J. BARÉ, D. BERKVENS, I. VAN DAMME, M. UYTTENDAELE u. L. DE ZUTTER (2016):

Identification of risk factors for Campylobacter contamination levels on broiler carcasses during the slaughter process.

International Journal of Food Microbiology 226, 26-32

SELIWIORSTOW, T., J. BARÉ, I. VAN DAMME, M. UYTTENDAELE u. L. DE ZUTTER (2015):

Campylobacter carcass contamination throughout the slaughter process of Campylobacter-positive broiler batches.

International Journal of Food Microbiology 194, 25-31

SHAHEEN, B. W., M. E. MILLER u. O. A. OYARZABAL (2007):

In vitro survival at low pH and acid adaptation response of Campylobacter jejuni and Campylobacter coli.

Journal of Food Safety 27, 326-343 SHANE, S. M. (2000):

Campylobacter infection of commercial poultry.

Revue Scientifique et Technique 19, 376-395

SILVA, J., D. LEITE, M. FERNANDES, C. MENA, P. GIBBS u. P. TEIXEIRA (2011):

Campylobacter spp. as a foodborne pathogen: A review.

Frontiers in Microbiology 2, 12

SKÅNSENG, B., M. KALDHUSDAL, B. MOEN, A.-G. GJEVRE, G. S.

JOHANNESSEN, M. SEKELJA, P. TROSVIK u. K. RUDI (2010):

Prevention of intestinal Campylobacter jejuni colonization in broilers by combinations of in-feed organic acids.

Journal of Applied Microbiology 109, 1265-1273

10. Literaturverzeichnis 89

SKARP, C. P. A., M. L. HÄNNINEN u. H. I. K. RAUTELIN (2016):

Campylobacteriosis: The role of poultry meat.

Clinical Microbiology and Infection 22, 103-109

SMIGIC, N., A. RAJKOVIC, D. S. NIELSEN, H. SIEGUMFELDT, M. UYTTENDAELE, F. DEVLIEGHERE u. N. ARNEBORG (2009):

Intracellular pH as an indicator of viability and resuscitation of Campylobacter jejuni after decontamination with lactic acid.

International Journal of Food Microbiology 135, 136-143

SMITH, D. P., J. K. NORTHCUTT, J. A. CASON, A. HINTON, JR., R. J. BUHR u. K.

D. INGRAM (2007):

Effect of external or internal fecal contamination on numbers of bacteria on prechilled broiler carcasses.

Poultry Science 86, 1241-1244

SOLIS DE LOS SANTOS, F., A. M. DONOGHUE, K. VENKITANARAYANAN, M. L.

DIRAIN, I. REYES-HERRERA, P. J. BLORE u. D. J. DONOGHUE (2008):

Caprylic acid supplemented in feed reduces enteric Campylobacter jejuni colonization in ten-day-old broiler chickens.

Poultry Science 87, 800-804

SOLIS DE LOS SANTOS, F., A. M. DONOGHUE, K. VENKITANARAYANAN, J. H.

METCALF, I. REYES-HERRERA, M. L. DIRAIN, V. F. AGUIAR, P. J. BLORE u. D. J.

DONOGHUE (2009):

The natural feed additive caprylic acid decreases Campylobacter jejuni colonization in market-aged broiler chickens.

Poultry Science 88, 61-64

SORO, A. B., P. WHYTE, D. J. BOLTON u. B. K. TIWARI (2020):

Strategies and novel technologies to control Campylobacter in the poultry chain: A review.

Comprehensive Reviews in Food Science and Food Safety 19, 1353-1377 STANLEY, D., M. S. GEIER, H. CHEN, R. J. HUGHES u. R. J. MOORE (2015):

Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences.

BMC Microbiology 15, 51

STANLEY, K. u. K. JONES (2003):

Cattle and sheep farms as reservoirs of Campylobacter.

Journal of Applied Microbiology 94, 104-113 STATHAM, J. A. u. T. A. MCMEEKIN (2008):

The effect of potassium sorbate on the structural integrity of Alteromonas putrefaciens.

Journal of Applied Microbiology 65, 469-476

10. Literaturverzeichnis 90

STERN, N. J., E. A. SVETOCH, B. V. ERUSLANOV, Y. N. KOVALEV, L. I. VOLODINA, V. V. PERELYGIN, E. V. MITSEVICH, I. P. MITSEVICH u. V. P. LEVCHUK (2005):

Paenibacillus polymyxa purified bacteriocin to control Campylobacter jejuni in chickens.

Journal of Food Protection 68, 1450-1453

SVETOCH, E. A., B. V. ERUSLANOV, V. V. PERELYGIN, E. V. MITSEVICH, I. P.

MITSEVICH, V. N. BORZENKOV, V. P. LEVCHUK, O. E. SVETOCH, Y. N. KOVALEV, Y. G. STEPANSHIN, G. R. SIRAGUSA, B. S. SEAL u. N. J. STERN (2008):

Diverse antimicrobial killing by Enterococcus faecium E 50-52 bacteriocin.

Journal of Agricultural and Food Chemistry 56, 1942-1948 SVETOCH, E. A. u. N. J. STERN (2010):

Bacteriocins to control Campylobacter spp. in poultry—A review.

Poultry Science 89, 1763-1768

SZOTT, V., B. REICHELT, T. ALTER, A. FRIESE u. U. ROESLER (2020):

In vivo efficacy of carvacrol on Campylobacter jejuni prevalence in broiler chickens during an entire fattening period.

European Journal of Microbiology and Immunology 10, 8

TER BEEK, A., J. G. E. WIJMAN, A. ZAKRZEWSKA, R. ORIJ, G. J. SMITS u. S. BRUL (2015):

Comparative physiological and transcriptional analysis of weak organic acid stress in Bacillus subtilis.

Food Microbiology 45, 71-82

THERON, M. M. u. J. F. R. LUES (2011):

Organic Acids and food preservation.

CRC Press, Taylor & Francis Group, Boca Raton, 318 THOMPSON, J. L. u. M. HINTON (1997):

Antibacterial activity of formic and propionic acids in the diet of hens on salmonellas in the crop.

British Poultry Science 38, 59-65

THOMPSON, J. S., D. S. HODGE, D. E. SMITH u. Y. A. YONG (1990):

Use of tri-gas incubator for routine culture of Campylobacter species from fecal specimens.

Journal of Clinical Microbiology 28, 2802-2803

VAN BUNNIK, B. A. D., W. E. A. KATSMA, J. A. WAGENAAR, W. F. JACOBS-REITSMA u. M. C. M. DE JONG (2012):

Acidification Of drinking water inhibits indirect transmission, but not direct transmission of Campylobacter between broilers.

Preventive Veterinary Medicine 105, 315-319

10. Literaturverzeichnis 91

VAN DER WIELEN, P. W. J. J., S. BIESTERVELD, S. NOTERMANS, H. HOFSTRA, B. A. P. URLINGS u. F. VAN KNAPEN (2000):

Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth.

Applied and Environmental Microbiology 66, 2536-2540

VAN DEUN, K., F. HAESEBROUCK, F. VAN IMMERSEEL, R. DUCATELLE u. F.

PASMANS (2008):

Short-chain fatty acids and L-lactate as feed additives to control Campylobacter jejuni infections in broilers.

Avian Pathology 37, 379-383

VAN IMMERSEEL, F., J. B. RUSSELL, M. D. FLYTHE, I. GANTOIS, L.

TIMBERMONT, F. PASMANS, F. HAESEBROUCK u. R. DUCATELLE (2006):

The use of organic acids to combat Salmonella in poultry: a mechanistic explanation of the efficacy.

Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses.

Journal of Global Antimicrobial Resistance 20, 170-177

WAGENAAR, J. A., M. A. P. V. BERGEN, M. A. MUELLER, T. M. WASSENAAR u. R.

M. CARLTON (2005):

Phage therapy reduces Campylobacter jejuni colonization in broilers.

Veterinary Microbiology 109, 275-283 WARTH, A. D. (1988):

Effect of benzoic acid on growth yield of yeasts differing in their resistance to preservatives.

Applied and Environmental Microbiology 54, 2091-2095

WILKINSON, D. A., A. J. O’DONNELL, R. N. AKHTER, A. FAYAZ, H. J. MACK, L. E.

ROGERS, P. J. BIGGS, N. P. FRENCH u. A. C. MIDWINTER (2018):

Updating the genomic taxonomy and epidemiology of Campylobacter hyointestinalis.

Scientific Reports 8, 12

WISTRAND-YUEN, E., M. KNOPP, K. HJORT, S. KOSKINIEMI, O. BERG u. D.

ANDERSSON (2018):

Evolution of high-level resistance during low-level antibiotic exposure.

10. Literaturverzeichnis 92

Nature Communications 9, 12

10.1. Rechtstexte und EU-Verordnungen

Verordnung (EU) Nr. 2017/1495 der Kommission vom 23. August 2017 zur Änderung der Verordnung (EG) Nr. 2073/2005 in Bezug auf Campylobacter in Schlachtkörpern von Masthähnchen (Text von Bedeutung für den EWR).

Amtsblatt der Europäischen Union L218 vom 24.8.2017, S. 1-6.

Verordnung (EG) Nr. 2073/2005 der Kommission vom 15. November 2005 über mikrobiologische Kriterien für Lebensmittel (Text von Bedeutung für den EWR).

Amtsblatt der Europäischen Union L338 vom 22.12.2005, S. 1-26.

Verordnung (EG) Nr. 1831/2003 des Europäischen Parlaments und des Rates vom 22. September 2003 über Zusatzstoffe zur Verwendung in der Tierernährung (Text von Bedeutung für den EWR).

Amtsblatt der Europäischen Union L268 vom 18.10.2003, S. 29-44

Durchführungsverordnung (EU) 2017/63 der Kommission vom 14. Dezember 2016 (Text von Bedeutung für den EWR).

Amtsblatt der Europäischen Union L13 vom 17.01.2017, S. 214-242