• Keine Ergebnisse gefunden

24. Wang, L., et al., B7-H4 overexpression contributes to poor prognosis and drug-resistance in triple-negative breast cancer. Cancer Cell Int, 2018. 18: p. 100.

25. Foulkes, W.D., I.E. Smith, and J.S. Reis-Filho, Triple-negative breast cancer. N Engl J Med, 2010. 363(20): p. 1938-48.

26. Rakha, E.A., J.S. Reis-Filho, and I.O. Ellis, Basal-like breast cancer: a critical review. J Clin Oncol, 2008. 26(15): p. 2568-81.

27. McGuire, A., et al., Locoregional Recurrence Following Breast Cancer Surgery in the Trastuzumab Era: A Systematic Review by Subtype. Ann Surg Oncol, 2017. 24(11): p. 3124-3132.

28. Bonotto, M., et al., Measures of outcome in metastatic breast cancer: insights from a real-world scenario. Oncologist, 2014. 19(6): p. 608-15.

29. (EBCTCG), E.B.C.T.C.G., Comparisons between diff erent polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100 000 women in 123

randomised trials. Lancet 2012, 2012. 379: p. 432-44.

30. Javle, M. and N.J. Curtin, The role of PARP in DNA repair and its therapeutic exploitation. Br J Cancer, 2011. 105(8): p. 1114-22.

31. Lord, C.J. and A. Ashworth, BRCAness revisited. Nat Rev Cancer, 2016. 16(2): p. 110-20.

32. Telli, M.L., et al., Homologous Recombination Deficiency (HRD) Score Predicts Response to Platinum-Containing Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer. Clin Cancer Res, 2016. 22(15): p. 3764-73.

33. Telli, M.L., et al., Homologous recombination deficiency (HRD) status predicts response to standard neoadjuvant chemotherapy in patients with triple-negative or BRCA1/2 mutation-associated breast cancer. Breast Cancer Res Treat, 2018. 168(3): p. 625-630.

34. Sharma, P., et al., Germline BRCA mutation evaluation in a prospective triple-negative breast cancer registry: implications for hereditary breast and/or ovarian cancer syndrome testing.

Breast Cancer Res Treat, 2014. 145(3): p. 707-14.

35. Naipal, K.A., et al., Functional ex vivo assay to select homologous recombination-deficient breast tumors for PARP inhibitor treatment. Clin Cancer Res, 2014. 20(18): p. 4816-26.

36. Ma, F., et al., Enriched CD44(+)/CD24(-) population drives the aggressive phenotypes presented in triple-negative breast cancer (TNBC). Cancer Lett, 2014. 353(2): p. 153-9.

37. Peitzsch, C., et al., Cancer stem cells: The root of tumor recurrence and metastases. Semin Cancer Biol, 2017. 44: p. 10-24.

38. Park, S.Y., et al., Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin Cancer Res, 2010. 16(3): p. 876-87.

39. Charafe-Jauffret, E., et al., Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res, 2009. 69(4): p. 1302-13.

40. Ginestier, C., et al., ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 2007. 1(5): p. 555-67.

41. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3983-8.

42. Zhang, P., et al., ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol, 2014. 16(9): p. 864-75.

43. Baumann, M., et al., Cancer stem cells and radiotherapy. Int J Radiat Biol, 2009. 85(5): p. 391-402.

44. Mandal, P.K., C. Blanpain, and D.J. Rossi, DNA damage response in adult stem cells: pathways and consequences. Nat Rev Mol Cell Biol, 2011. 12(3): p. 198-202.

45. Maynard, S., et al., Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis, 2009. 30(1): p. 2-10.

46. Diehn, M., et al., Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature, 2009. 458(7239): p. 780-3.

47. Vitale, I., et al., DNA Damage in Stem Cells. Mol Cell, 2017. 66(3): p. 306-319.

48. Bao, S., et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006. 444(7120): p. 756-60.

49. Bartucci, M., et al., Therapeutic targeting of Chk1 in NSCLC stem cells during chemotherapy.

Cell Death Differ, 2012. 19(5): p. 768-78.

50. Lagadec, C., et al., Radiation-induced reprogramming of breast cancer cells. Stem Cells, 2012.

30(5): p. 833-44.

51. Liu, Y., et al., RAD51 Mediates Resistance of Cancer Stem Cells to PARP Inhibition in Triple-Negative Breast Cancer. Clin Cancer Res, 2017. 23(2): p. 514-522.

52. Balbous, A., et al., A radiosensitizing effect of RAD51 inhibition in glioblastoma stem-like cells.

BMC Cancer, 2016. 16: p. 604.

53. Gilabert, M., et al., Poly(ADP-ribose) polymerase 1 (PARP1) overexpression in human breast cancer stem cells and resistance to olaparib. PLoS One, 2014. 9(8): p. e104302.

54. Creighton, C.J., et al., Residual breast cancers after conventional therapy display

mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A, 2009. 106(33): p.

13820-5.

55. Ciccia, A. and S.J. Elledge, The DNA damage response: making it safe to play with knives. Mol Cell, 2010. 40(2): p. 179-204.

56. Saldivar, J.C., D. Cortez, and K.A. Cimprich, The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat Rev Mol Cell Biol, 2017. 18(10): p. 622-636.

57. Zou, L. and S.J. Elledge, Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science, 2003. 300(5625): p. 1542-8.

58. Byun, T.S., et al., Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev, 2005. 19(9): p. 1040-52.

59. Symington, L.S. and J. Gautier, Double-strand break end resection and repair pathway choice.

Annu Rev Genet, 2011. 45: p. 247-71.

60. Gonzalez Besteiro, M.A. and V. Gottifredi, The fork and the kinase: a DNA replication tale from a CHK1 perspective. Mutat Res Rev Mutat Res, 2015. 763: p. 168-80.

61. Cabrales-Rico, A., et al., Bio-analytical method based on MALDI-MS analysis for the

quantification of CIGB-300 anti-tumor peptide in human plasma. J Pharm Biomed Anal, 2015.

105: p. 107-14.

62. Blackford, A.N. and S.P. Jackson, ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Mol Cell, 2017. 66(6): p. 801-817.

63. Bakr, A., et al., Functional crosstalk between DNA damage response proteins 53BP1 and BRCA1 regulates double strand break repair choice. Radiother Oncol, 2016. 119(2): p. 276-81.

64. Shiotani, B. and L. Zou, Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol Cell, 2009. 33(5): p. 547-58.

65. Saleh-Gohari, N., et al., Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol Cell Biol, 2005. 25(16): p. 7158-69.

66. Gagou, M.E., P. Zuazua-Villar, and M. Meuth, Enhanced H2AX phosphorylation, DNA replication fork arrest, and cell death in the absence of Chk1. Mol Biol Cell, 2010. 21(5): p.

739-52.

67. Petermann, E., M. Woodcock, and T. Helleday, Chk1 promotes replication fork progression by controlling replication initiation. Proc Natl Acad Sci U S A, 2010. 107(37): p. 16090-5.

68. Seiler, J.A., et al., The intra-S-phase checkpoint affects both DNA replication initiation and elongation: single-cell and -DNA fiber analyses. Mol Cell Biol, 2007. 27(16): p. 5806-18.

69. Sorensen, C.S., et al., The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol, 2005. 7(2): p. 195-201.

70. Toledo, L., K.J. Neelsen, and J. Lukas, Replication Catastrophe: When a Checkpoint Fails because of Exhaustion. Mol Cell, 2017. 66(6): p. 735-749.

71. Toledo, L.I., et al., ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell, 2013. 155(5): p. 1088-103.

72. Petermann, E., et al., Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase. Mol Cell Biol, 2006. 26(8): p. 3319-26.

73. Thompson, R., R. Montano, and A. Eastman, The Mre11 nuclease is critical for the sensitivity of cells to Chk1 inhibition. PLoS One, 2012. 7(8): p. e44021.

74. Forment, J.V., et al., Structure-specific DNA endonuclease Mus81/Eme1 generates DNA damage caused by Chk1 inactivation. PLoS One, 2011. 6(8): p. e23517.

75. Yamada, M., et al., ATR-Chk1-APC/CCdh1-dependent stabilization of Cdc7-ASK (Dbf4) kinase is required for DNA lesion bypass under replication stress. Genes Dev, 2013. 27(22): p. 2459-72.

76. Moynahan, M.E. and M. Jasin, Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol, 2010. 11(3): p. 196-207.

77. Schlacher, K., H. Wu, and M. Jasin, A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell, 2012. 22(1): p. 106-16.

78. Liao, H., et al., Mechanisms for stalled replication fork stabilization: new targets for synthetic lethality strategies in cancer treatments. EMBO Rep, 2018. 19(9).

79. Heyer, W.D., K.T. Ehmsen, and J. Liu, Regulation of homologous recombination in eukaryotes.

Annu Rev Genet, 2010. 44: p. 113-39.

80. Borgmann, K., et al., DNA Repair. Recent Results Cancer Res, 2016. 198: p. 1-24.

81. Llorente, B., C.E. Smith, and L.S. Symington, Break-induced replication: what is it and what is it for? Cell Cycle, 2008. 7(7): p. 859-64.

82. Jeggo, P.A., V. Geuting, and M. Lobrich, The role of homologous recombination in radiation-induced double-strand break repair. Radiother Oncol, 2011. 101(1): p. 7-12.

83. Lieber, M.R., et al., The mechanism of vertebrate nonhomologous DNA end joining and its role in V(D)J recombination. DNA Repair (Amst), 2004. 3(8-9): p. 817-26.

84. Ceccaldi, R., B. Rondinelli, and A.D. D'Andrea, Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol, 2016. 26(1): p. 52-64.

85. Karanam, K., et al., Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol Cell, 2012. 47(2): p. 320-9.

86. Sorensen, C.S., et al., Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell, 2003.

3(3): p. 247-58.

87. Helleday, T., et al., DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst), 2007. 6(7): p. 923-35.

88. Pommier, Y., Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer, 2006.

6(10): p. 789-802.

89. Sakofsky, C.J., et al., Break-induced replication is a source of mutation clusters underlying kataegis. Cell Rep, 2014. 7(5): p. 1640-1648.

90. Neelsen, K.J. and M. Lopes, Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol, 2015. 16(4): p. 207-20.

91. Mijic, S., et al., Replication fork reversal triggers fork degradation in BRCA2-defective cells.

Nat Commun, 2017. 8(1): p. 859.

92. Kolinjivadi, A.M., et al., Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent

Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments. Mol Cell, 2017. 67(5): p. 867-881 e7.

93. Thangavel, S., et al., DNA2 drives processing and restart of reversed replication forks in human cells. J Cell Biol, 2015. 208(5): p. 545-62.

94. Petermann, E., et al., Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell, 2010.

37(4): p. 492-502.

95. Rodriguez, A.A., et al., DNA repair signature is associated with anthracycline response in triple negative breast cancer patients. Breast Cancer Res Treat, 2010. 123(1): p. 189-96.

96. Verlinden, L., et al., The E2F-regulated gene Chk1 is highly expressed in triple-negative estrogen receptor /progesterone receptor /HER-2 breast carcinomas. Cancer Res, 2007.

67(14): p. 6574-81.

97. Albiges, L., et al., Chk1 as a new therapeutic target in triple-negative breast cancer. Breast, 2014. 23(3): p. 250-8.

98. Alshareeda, A.T., et al., Clinical and biological significance of RAD51 expression in breast cancer: a key DNA damage response protein. Breast Cancer Res Treat, 2016. 159(1): p. 41-53.

99. Woditschka, S., et al., DNA double-strand break repair genes and oxidative damage in brain metastasis of breast cancer. J Natl Cancer Inst, 2014. 106(7).

100. Wiegmans, A.P., et al., Rad51 supports triple negative breast cancer metastasis. Oncotarget, 2014. 5(10): p. 3261-72.

101. Cailleau, R., et al., Breast tumor cell lines from pleural effusions. J Natl Cancer Inst, 1974.

53(3): p. 661-74.

102. Liu, H., et al., PPARgamma ligands and ATRA inhibit the invasion of human breast cancer cells in vitro. Breast Cancer Res Treat, 2003. 79(1): p. 63-74.

103. Holliday, D.L. and V. Speirs, Choosing the right cell line for breast cancer research. Breast Cancer Res, 2011. 13(4): p. 215.

104. Yoneda, T., et al., A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res, 2001. 16(8): p. 1486-95.

105. Pollari, S., et al., Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res Treat, 2011. 125(2): p. 421-30.

106. Soule, H.D., et al., A human cell line from a pleural effusion derived from a breast carcinoma.

J Natl Cancer Inst, 1973. 51(5): p. 1409-16.

107. Nakanishi, K., et al., Homology-directed Fanconi anemia pathway cross-link repair is dependent on DNA replication. Nat Struct Mol Biol, 2011. 18(4): p. 500-3.

108. Dikomey, E.B.K.K.M.M.W.P.C.R.T., Strahlenempfindlichkeit von Tumorzellen. Onkologie, Grundlagen -Diagnostik-Therapie-Entwicklung, ecomed Medizin, 2012, 2012.

109. Warren, A.J., A.E. Maccubbin, and J.W. Hamilton, Detection of mitomycin C-DNA adducts in vivo by 32P-postlabeling: time course for formation and removal of adducts and biochemical modulation. Cancer Res, 1998. 58(3): p. 453-61.

110. Palom, Y., et al., Structure of adduct X, the last unknown of the six major DNA adducts of mitomycin C formed in EMT6 mouse mammary tumor cells. Chem Res Toxicol, 2000. 13(6): p.

479-88.

111. A, K.D., et al., Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature, 2007. Vol 448: p. 213-217.

112. Guzi, T.J., et al., Targeting the replication checkpoint using SCH 900776, a potent and functionally selective CHK1 inhibitor identified via high content screening. Mol Cancer Ther, 2011. 10(4): p. 591-602.

113. Okita, N., et al., DNA damage-induced CHK1 autophosphorylation at Ser296 is regulated by an intramolecular mechanism. FEBS Lett, 2012. 586(22): p. 3974-9.

114. Flygare, J., F. Benson, and D. Hellgren, Expression of the human RAD51 gene during the cell cycle in primary human peripheral blood lymphocytes. Biochim Biophys Acta, 1996. 1312(3):

p. 231-6.

115. Kaneko, Y.S., et al., Cell-cycle-dependent and ATM-independent expression of human Chk1 kinase. Oncogene, 1999. 18(25): p. 3673-81.

116. Moynahan, M.E., T.Y. Cui, and M. Jasin, Homology-directed dna repair, mitomycin-c

resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res, 2001. 61(12): p. 4842-50.

117. Lisby, M. and R. Rothstein, DNA damage checkpoint and repair centers. Curr Opin Cell Biol, 2004. 16(3): p. 328-34.

118. Rodriguez, R., M.E. Gagou, and M. Meuth, Apoptosis induced by replication inhibitors in Chk1-depleted cells is dependent upon the helicase cofactor Cdc45. Cell Death Differ, 2008. 15(5):

p. 889-98.

119. Maugeri-Sacca, M., M. Bartucci, and R. De Maria, DNA damage repair pathways in cancer stem cells. Mol Cancer Ther, 2012. 11(8): p. 1627-36.

120. Ahmed, S.U., et al., Selective Inhibition of Parallel DNA Damage Response Pathways Optimizes Radiosensitization of Glioblastoma Stem-like Cells. Cancer Res, 2015. 75(20): p.

4416-28.

121. Carruthers, R.D., et al., Replication Stress Drives Constitutive Activation of the DNA Damage Response and Radioresistance in Glioblastoma Stem-like Cells. Cancer Res, 2018. 78(17): p.

5060-5071.

122. Lagadec, C., et al., Oxygen levels do not determine radiation survival of breast cancer stem cells. PLoS One, 2012. 7(3): p. e34545.

123. Ray, A., et al., Enhanced Directional Migration of Cancer Stem Cells in 3D Aligned Collagen Matrices. Biophys J, 2017. 112(5): p. 1023-1036.

124. Parplys, A.C., et al., High levels of RAD51 perturb DNA replication elongation and cause unscheduled origin firing due to impaired CHK1 activation. Cell Cycle, 2015. 14(19): p. 3190-202.

125. Magwood, A.C., et al., Endogenous levels of Rad51 and Brca2 are required for homologous recombination and regulated by homeostatic re-balancing. DNA Repair (Amst), 2013. 12(12):

p. 1122-33.

126. Gartel, A.L., C. Feliciano, and A.L. Tyner, A new method for determining the status of p53 in tumor cell lines of different origin. Oncol Res, 2003. 13(6-10): p. 405-8.

127. Hannay, J.A., et al., Rad51 overexpression contributes to chemoresistance in human soft tissue sarcoma cells: a role for p53/activator protein 2 transcriptional regulation. Mol Cancer Ther, 2007. 6(5): p. 1650-60.

128. Huang, Y., et al., Role for caspase-mediated cleavage of Rad51 in induction of apoptosis by DNA damage. Mol Cell Biol, 1999. 19(4): p. 2986-97.

129. Slupianek, A., et al., BCR/ABL regulates mammalian RecA homologs, resulting in drug resistance. Mol Cell, 2001. 8(4): p. 795-806.

130. Reinke, E.N., et al., Translational regulation of GPx-1 and GPx-4 by the mTOR pathway. PLoS One, 2014. 9(4): p. e93472.

131. Morita, T., et al., A mouse homolog of the Escherichia coli recA and Saccharomyces cerevisiae RAD51 genes. Proc Natl Acad Sci U S A, 1993. 90(14): p. 6577-80.

132. Kim, P.M., et al., Overexpression of human RAD51 and RAD52 reduces double-strand break-induced homologous recombination in mammalian cells. Nucleic Acids Res, 2001. 29(21): p.

4352-60.

133. Paffett, K.S., et al., Overexpression of Rad51 inhibits double-strand break-induced

homologous recombination but does not affect gene conversion tract lengths. DNA Repair (Amst), 2005. 4(6): p. 687-98.

134. Zhang, Y., et al., Targeting radioresistant breast cancer cells by single agent CHK1 inhibitor via enhancing replication stress. Oncotarget, 2016. 7(23): p. 34688-702.

135. Frizzell, K.M. and W.L. Kraus, PARP inhibitors and the treatment of breast cancer: beyond BRCA1/2? Breast Cancer Res, 2009. 11(6): p. 111.

136. Esashi, F., et al., CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature, 2005. 434(7033): p. 598-604.

137. Saleh-Gohari, N. and T. Helleday, Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res, 2004. 32(12): p. 3683-8.

138. Richardson, C., et al., Rad51 overexpression promotes alternative double-strand break repair pathways and genome instability. Oncogene, 2004. 23(2): p. 546-53.

139. Yanez, R.J. and A.C. Porter, Differential effects of Rad52p overexpression on gene targeting and extrachromosomal homologous recombination in a human cell line. Nucleic Acids Res, 2002. 30(3): p. 740-8.

140. Lambert, S. and B.S. Lopez, Characterization of mammalian RAD51 double strand break repair using non-lethal dominant-negative forms. EMBO J, 2000. 19(12): p. 3090-9.

141. Lee, S.A., et al., Recovery of deficient homologous recombination in Brca2-depleted mouse cells by wild-type Rad51 expression. DNA Repair (Amst), 2009. 8(2): p. 170-81.

142. Mladenova, V., E. Mladenov, and G. Iliakis, Novel Biological Approaches for Testing the Contributions of Single DSBs and DSB Clusters to the Biological Effects of High LET Radiation.

Front Oncol, 2016. 6: p. 163.

143. Schlacher, K., et al., Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell, 2011. 145(4): p. 529-42.

144. Zadorozhny, K., et al., Fanconi-Anemia-Associated Mutations Destabilize RAD51 Filaments and Impair Replication Fork Protection. Cell Rep, 2017. 21(2): p. 333-340.

145. Zhao, H. and H. Piwnica-Worms, ATR-mediated checkpoint pathways regulate

phosphorylation and activation of human Chk1. Mol Cell Biol, 2001. 21(13): p. 4129-39.

146. Guervilly, J.H., G. Mace-Aime, and F. Rosselli, Loss of CHK1 function impedes DNA damage-induced FANCD2 monoubiquitination but normalizes the abnormal G2 arrest in Fanconi anemia. Hum Mol Genet, 2008. 17(5): p. 679-89.

147. Yarden, R.I., et al., BRCA1-dependent Chk1 phosphorylation triggers partial chromatin disassociation of phosphorylated Chk1 and facilitates S-phase cell cycle arrest. Int J Biochem Cell Biol, 2012. 44(11): p. 1761-9.

148. Strumberg, D., et al., Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5'-phosphorylated DNA double-strand breaks by replication runoff. Mol Cell Biol, 2000. 20(11): p. 3977-87.

149. Pommier, Y., Camptothecins and topoisomerase I: a foot in the door. Targeting the genome beyond topoisomerase I with camptothecins and novel anticancer drugs: importance of DNA replication, repair and cell cycle checkpoints. Curr Med Chem Anticancer Agents, 2004. 4(5):

p. 429-34.

150. Gaboriau, D.C., et al., Protein stability versus function: effects of destabilizing missense mutations on BRCA1 DNA repair activity. Biochem J, 2015. 466(3): p. 613-24.

151. Jones, C.B., et al., Sensitivity to camptothecin of human breast carcinoma and normal endothelial cells. Cancer Chemother Pharmacol, 1997. 40(6): p. 475-83.

152. Josse, R., et al., ATR inhibitors VE-821 and VX-970 sensitize cancer cells to topoisomerase i inhibitors by disabling DNA replication initiation and fork elongation responses. Cancer Res, 2014. 74(23): p. 6968-79.

153. Li, D., et al., Enhanced drug-induced apoptosis associated with P-glycoprotein overexpression is specific to antimicrotubule agents. Pharm Res, 2003. 20(1): p. 45-50.

154. Flatten, K., et al., The role of checkpoint kinase 1 in sensitivity to topoisomerase I poisons. J Biol Chem, 2005. 280(14): p. 14349-55.

155. Parplys, A.C., et al., DNA damage by X-rays and their impact on replication processes.

Radiother Oncol, 2012. 102(3): p. 466-71.

156. Ray Chaudhuri, A., et al., Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol, 2012. 19(4): p. 417-23.

157. Arnaudeau, C., et al., RAD51 supports spontaneous non-homologous recombination in mammalian cells, but not the corresponding process induced by topoisomerase inhibitors.

Nucleic Acids Res, 2001. 29(3): p. 662-7.

158. McCabe, N., et al., Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res, 2006. 66(16): p. 8109-15.

159. Frankum, J., et al., Complementary genetic screens identify the E3 ubiquitin ligase CBLC, as a modifier of PARP inhibitor sensitivity. Oncotarget, 2015. 6(13): p. 10746-58.

160. Kim, H., et al., Targeting the ATR/CHK1 Axis with PARP Inhibition Results in Tumor Regression in BRCA-Mutant Ovarian Cancer Models. Clin Cancer Res, 2017. 23(12): p. 3097-3108.

161. DelloRusso, C., et al., Functional characterization of a novel BRCA1-null ovarian cancer cell line in response to ionizing radiation. Mol Cancer Res, 2007. 5(1): p. 35-45.

162. Taggart, L.E., et al., The role of mitochondrial function in gold nanoparticle mediated radiosensitisation. Cancer Nanotechnol, 2014. 5(1): p. 5.

163. Karimi-Busheri, F., et al., Senescence evasion by MCF-7 human breast tumor-initiating cells.

Breast Cancer Res, 2010. 12(3): p. R31.

164. Wurster, S., et al., PARP1 inhibition radiosensitizes HNSCC cells deficient in homologous recombination by disabling the DNA replication fork elongation response. Oncotarget, 2016.

7(9): p. 9732-41.

165. Mladenov, E., I. Tsaneva, and B. Anachkova, Activation of the S phase DNA damage checkpoint by mitomycin C. J Cell Physiol, 2007. 211(2): p. 468-76.

166. Niedernhofer, L.J., A.S. Lalai, and J.H. Hoeijmakers, Fanconi anemia (cross)linked to DNA repair. Cell, 2005. 123(7): p. 1191-8.

167. Huang, J., et al., The DNA translocase FANCM/MHF promotes replication traverse of DNA interstrand crosslinks. Mol Cell, 2013. 52(3): p. 434-46.

168. Yassmine M.N. Akkari, R.L.B., Carol A. Reifsteck, Susan B. Olson and Markus Grompe, DNA Replication is Required To Elicit Cellular Responses to Psoralen-Induced DNA Interstrand Cross-Links. Molecular and Cellular Biology, 2000. 20: p. 8283-8289.

169. Lio, Y.C., et al., Human Rad51C deficiency destabilizes XRCC3, impairs recombination, and radiosensitizes S/G2-phase cells. J Biol Chem, 2004. 279(40): p. 42313-20.

170. Moynahan, M.E., A.J. Pierce, and M. Jasin, BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell, 2001. 7(2): p. 263-72.

171. Zhao, L., et al., The Fanconi anemia pathway sensitizes to DNA alkylating agents by inducing JNK-p53-dependent mitochondrial apoptosis in breast cancer cells. Int J Oncol, 2014. 45(1): p.

129-38.

172. Bhattacharyya, A., et al., The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem, 2000. 275(31): p. 23899-903.

173. Kocher, S., et al., Radiation-induced double-strand breaks require ATM but not Artemis for homologous recombination during S-phase. Nucleic Acids Res, 2012. 40(17): p. 8336-47.

174. Mansour, W.Y., et al., Hierarchy of nonhomologous end-joining, single-strand annealing and gene conversion at site-directed DNA double-strand breaks. Nucleic Acids Res, 2008. 36(12):

p. 4088-98.

175. Ray Chaudhuri, A., et al., Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature, 2016. 535(7612): p. 382-7.

176. Zellweger, R., et al., Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J Cell Biol, 2015. 208(5): p. 563-79.

177. Min, W., et al., Poly(ADP-ribose) binding to Chk1 at stalled replication forks is required for S-phase checkpoint activation. Nat Commun, 2013. 4: p. 2993.

178. Jazayeri, A., et al., ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol, 2006. 8(1): p. 37-45.

179. Wang, X., et al., Chk1-mediated phosphorylation of FANCE is required for the Fanconi anemia/BRCA pathway. Mol Cell Biol, 2007. 27(8): p. 3098-108.

180. Guervilly, J.H., et al., USP1 deubiquitinase maintains phosphorylated CHK1 by limiting its DDB1-dependent degradation. Hum Mol Genet, 2011. 20(11): p. 2171-81.

181. Maya-Mendoza, A., et al., High speed of fork progression induces DNA replication stress and genomic instability. Nature, 2018. 559(7713): p. 279-284.

182. Syljuasen, R.G., et al., Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol, 2005. 25(9): p. 3553-62.

183. Li, W., et al., Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep, 2017. 7(1): p. 13856.

184. Graham, T.R., et al., Reciprocal regulation of ZEB1 and AR in triple negative breast cancer cells. Breast Cancer Res Treat, 2010. 123(1): p. 139-47.

185. Zhang, P., Y. Sun, and L. Ma, ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle, 2015. 14(4): p. 481-7.

186. Spaderna, S., et al., The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res, 2008. 68(2): p. 537-44.