• Keine Ergebnisse gefunden

Sensit ivit y (90% CL)

N/A
N/A
Protected

Academic year: 2022

Aktie "Sensit ivit y (90% CL)"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

3 electron

www.psi.ch/mu3e

[MeV]

mee

0 20 40 60 80 100 120

dN/N per 1 MeV

3

10 2

10 1

10

1 both

All tracks: mee

= 20 MeV mA'

= 45 MeV mA'

= 70 MeV mA'

[GeV]

mA' 2

10 101 1 10

2 ε

8

10 7

10 6

10 5

10 4

10

(g-2)e

KLOE 2013 KLOE 2015

KLOE 2016 KLOE 2014 WASA

HADES PHENIX σ

2

µ± (g-2)

favored

E774

E141

APEX

A1 NA48/2

BABAR

2009

BABAR

2014

BESIII

Mu3e Phase I

Mu3e Phase II

Mu3e: Work in progress

adapted from 1705.04265

2] [MeV

2ee

0 2 4 6 8 m10 12×103

]2 [MeV

2 eem

0 2 4 6 8 10 12×103

0 100 200 300 400 500 600 700 800 900

4-fermion interaction

Se nsitiv ity to μee e Eff ective Field Theor y A pp roach Sensit ivit y in Phase I

[MeV]

mX

0 10 20 30 40 50 60 70 80 90

Branching Fraction at 90% CL

9

10 8

10 7

10 6

10 5

10 4

10 3

10 Mu3e Phase I SIM: 2.6×1015µstops

TWIST 2014

Mu3e online reco. (ext.calib.) Mu3e online reco. (sim. calib.)

Mu3e: Work in progress

Sensit ivit y in Phase I Famil ons

2] [MeV

2ee

0 2 4 6 8 m10 12×103

]2[MeV

2 eem

0 2 4 6 8 10 12×103

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4103

×

2] [MeV

2ee

0 2 4 6 8 m10 12×103

]2 [MeV

2 eem

0 2 4 6 8 10 12×103

0 100 200 300 400 500 600 700

2] [MeV

2ee

0 2 4 6 8 m10 12×103

]2[MeV

2 eem

0 2 4 6 8 10 12×103

1 10 102

103

2] [MeV

2ee

0 2 4 6 8 m10 12×103

]2[MeV

2 eem

0 2 4 6 8 10 12×103

1 10 102

103

2] [MeV

2ee

0 2 4 6 8 m10 12×103

]2[MeV

2 eem

0 2 4 6 8 10 12×103

0 50 100 150 200 250

Dipole interaction

10 20 30 40 50

0 0.2 0.4 0.6 0.8 1

Michel spectrum (leading order) μ→eX signal (mX=60MeV)

pe[MeV]

entries/dpe[a.u.]

[MeV]

mee

0 20 40 60 80 100 120

N per 1 MeV

1 10 102

103

104

105

106

107

108 All tracks: mbothee

Combined background Internal conversion Bhabha

Background

SM μ eeeνν, Bhabha scattering, γ conversion

Sensit ivit y (90% CL)

Simulation Simulation

After reconstruction

ε=11%

Br≥8.510-15 ε=19%

Br≥4.610-15 ε=17%

Br≥5.210-15 Phase space

Familon is a neutral light pseudo-Goldstone boson from an additional broken flavour symmetry,

emitted in flavour-changing processes e.g. μ eX

Wilczek, PRL 49 (1982) 1549

Michel edge is preferred

means of calibration Limited

acceptance at low pT

Signal

A' ee resonance in μ eeeνν

by Echenard et al., JHEP 01 (2015) 113

SM background μ→eeeνν (Br = 3.4⋅10-5)

→ suppress by good momentum resolution

Pruna et al., (2016) arXiv:1611.03617

Backg rou nd

Combinations of Michel decays with Bhabha

scattering, photon conversion, ...

→ suppress by good vertex and timing resolution

μeeeνν @ NLO

Mu3e

s from a common vertex with ΣPe = (mμ, 0)

Signat ure

Lepton-flavour violating (LFV) decay μ→eee in the Standard Model (SM) possible via neutrino mixing, but suppressed to a branching ratio Br < 10-54

Observation of μ→eee ⇒ Physics beyond SM e.g. SUSY, GUT, extended electro-weak sector

Standard Model mixing)

De cay μeee

Supersymmetry

Mot iv at ion

Test μ → eee with a sensitivity of

Br ≤ 10 -16

Challenges

- -

High muon rates > 108μ/s to 109μ/s Excellent momentum resolution

despite low momentum of electrons Extremely low material budget

(low multiple scattering)

Long detector tube (L = 1.1m to 2m, Ø = 16cm) in solenoidal magnetic field of 1T

→ high acceptance for recurling tracks

μ stop on extended hollow double cone target

→ vertex separation

8 9

28 MeV/c μ beam at PSI Phase I: 10 μ/s

Phase II: 10 μ/s

Triggerless DAQ system &

online reconstruction on GPU based filter farm

→ reduce data rate

Lightweight tracking detector Thinned Si pixel

sensors (~50μm)

Mechanical support made of Kapton Readout via Aluminium- Kapton Flexprint

→0.1% of X0 per layer + Cooling by gaseous He

High Voltage

Monolithic Active Pixel Sensors

-- -

Reverse bias of ~85V Fast charge collection

Integrated readout electronics

developed by Ivan Perić (KIT) NIM A582 (2007) 876-885

Phase I detector design

De te ct or De sign Su mmary

Searching for New Physics with

The Mu3e Experiment

Niklaus Berger

1)

and Ann-Kathrin Perrevoort

2)

on behalf of the Mu3e Collaboration

3)

PRISMA+ Cluster of Excellence and Institute of Nuclear Physics, JGU Mainz Nikhef, Amsterdam, formerly Physics Institute, Heidelberg University

Paul Scherrer Institute (PSI), Uni Bristol, Uni Geneva, Uni Heidelberg, KIT Karlsruhe, Uni Liverpool, UCL London, JGU Mainz, Uni Oxford, ETH Zürich, Uni Zürich

2)

1)

3)

The Mu3e Experiment at PSI is designed to search for the lepton-flavour violating decay of a positive muon to two positrons and an electron with a branching ratio sensitivity of order 10

-15

(phase I) and order 10

-16

(phase II). The

detector is based on ultra-thin high-voltage monolithic active pixel sensors combined with scintillating fibres and tiles for precise timing measurement. We present sensitivity studies performed for the Mu3e detector, both for

the main signal decay in different models of new physics, as well as for electron-positron resonances, motivated by dark photon models, and two-body decays of the muon, motivated by Familon models .

Scintillating fibres

→ Timing < 500 ps σ Scintillating tiles

→ Timing < 70 ps σ

1T superconducting magnet Winding completed

2] [MeV/c mrec

96 98 100 102 104 106 108 110

2 Events per 0.2 MeV/c

4

10 3

10 2

10 1

10

1 10 102

at 10-12

eee

µ

at 10-13

eee

µ

at 10-14

eee

µ

at 10-15

eee

µ ν

eeeν

µ

Bhabha +Michel

muons/s muon stops at 108

1015

Mu3e Phase I

Background-free operation:

Measure or exclude BR(μ→eee) ≥ 5.2 ‧ 10-15 @ 90% C.L.

Type of interaction determines kinematics and affects signal reconstruction efficiency

Decay distributions

differential BRs by Kuno et al., Rev.Mod.Phys.73 (2001) 151; Crivellin et al., JHEP 05 (2017) 117

After reconstruction

Re sonances in e + e - Dar k Phot ons in Muon Decay Sensist ivit y (90% C.L.)

Phase I: 2.6·1015μ Phase II: 5.5·1016μ

Simulation Simulation

Dark Photon A´

interacting with SM particles via kinetic mixing

Background:

SM µ → eeeυυ, Bhabha scattering, γ conversion Signal:

A´ → e+e- resonance in µ → eeeυυ

L by Echenard et al., JHEP 01 (2015) 113

LFV Two-Bod y De cays μeX Familons Sensit ivit y in Phase I

Familon is a neutral light pseudo-Goldstone boson from an additional broken flavour symmetry

emitted in flavour-changing processes, e.g. µ→eX

Wilczek, PRL 49 (1982) 1549

Signature:

Narrow peak on smooth pe spectrum from SM µ decays

Full track information cannot be stored:

Search for peaks in momentum histograms of the

online reconstruction (limited momentum resolution)

Michel edge is preferred means of calibration

Limited acceptance at low pT

10 cm

Referenzen

ÄHNLICHE DOKUMENTE

(tracking alone not sufficient to reject accidental background).. magnet) Commissioning earliest 2018..

Tracks per readout frame of 50 ns Exploiting time resolution of scintillating fibres (1 ns) and tiles

HV-MAPS: High Voltage Monolithic Active Pixel Sensors fast: small active region, charge collection via drift (O(10ns)) thin: &lt; 50 µm. zero-suppressed data: addresses

HiMB – High-intensity Muon Beam Concept muon rates in excess of 10 10 m / s possible use spallation neutron source target window as a high-intensity source of surface muons

Andre Schöning, PI-Heidelberg 2 PSI2013 Workshop, Sept 12, 2013 upgrade.. History of LFV Decay experiments History of LFV

The Mu3e detector consists of two double layers of high voltage monolithic active pixel sensors (HV-MAPS) around a double cone target, trackers for the recurling electrons and

Thin pixel silicon tracker and scintillating fibre timing detector. A μ →

Using a commercial 180 nm CMOS process originating in the automotive industry, high voltage monolithic active pixel sensors housing the pixel electronics inside a deep N-well can