• Keine Ergebnisse gefunden

μ → eee A novel experiment searching for the lepton flavour violating decay

N/A
N/A
Protected

Academic year: 2022

Aktie "μ → eee A novel experiment searching for the lepton flavour violating decay"

Copied!
39
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

A novel experiment searching for the lepton flavour violating decay

μ → eee

Niklaus Berger

Physics Institute, University of Heidelberg

NuFACT, August 2011

(2)

Why

searching for lepton flavour violation?

Where

can lepton flavour violation come from?

Why

do it in μ → eee?

How

to reach a sensitivity of BR(μ → eee) < 10-16?

O ve rv ie w

(3)

In the Standard Model, lepton flavour is conserved

Neutrino oscillations!

What about charged leptons?

Charged lepton-flavour violation through

• neutrino oscillations heavily suppressed (BR < 10-50)

Clear sign for new physics

W hy s ear chi ng f or L FV

µ

-

e

-

W

-

ν

µ

ν

e

γ

e

-

e

+

*

(4)

Lepton decays μ

• → eγ

μ

• → eee

τ

• → lγ τ

• → lll l = μ, e τ

• → lh

W he re t o s ear ch f or L FV ?

Meson decays φ, K

• → ll’

J/ψ, D

• → ll’

Υ, B

• → ll’

Conversion on Nucleus μN

• → eN

Fixed target experiments (proposed)

eN

• → μN

eN

• → τN

μN

• → τN

Collider experiments ep

• → μ(τ) X (HERA) Z’

• → ll’ (LHC) χ

0,± → ll’ X (LHC)

LFV

(5)

Purely leptonic LFV BR(μ

• → eγ) < 2.4 × 10-12 (MEG)

< 10-13 (MEG, projected) BR(τ

• → e(μ)γ) <~ 4×10-8 (B-Factories) BR(μ

• → eee) < 10-12 (SINDRUM) < 10-16 (This talk) BR(Z

• → eμ) < 10-6 (LEP) Semi-hadronic LFV

BR(K

• → πeμ) <~ 10-11 BR(μN

• → eN) <~ 10-12 (SINDRUM 2)

<~ 10-14 (DeeMe, projected)

< down to 10-17 (projected: Mu2e, COMET, Prism)

Ex pe rime nt al S ta tus

arxiv:1107.5547

(6)

Models for physics beyond the standard model often naturally induce LFV, either through loops or exchange of heavy intermediates

Supersymmetric models

• with GUT with Seesaw

Models with Leptoquarks

Models with additional Higgs particles

• Higgs triplet model

Models with a Z’ or large extra

• dimensions

M ode ls f or L FV

(7)

Supersymmetry with slepton mixing

Lepton mixing is large; would naturally

• expect large slepton mixing

M ode ls f or L FV : S U SY

µ - χ ~ 0 e -

µ e~

~

γ

e - e +

*

(8)

Niklaus Berger – NuFact, August 2011 – Slide 8

For these models:

• BR(μ → eee) = 0.006 × BR(μ → eγ) Points: SUSY LHC parameters

( L. Calibbi, A. Faccia, A. Masiero, S.K. Vempati, Phys.Rev. D74 (2006) 116002)

LF V w ith S U SY SO(10) GU T

1e-07 1e-06 1e-05 1e-04 0.001 0.01 0.1 1 10 100

1e-08 1e-06 1e-04 0.01 1 100

Now SuperB SuperF

MEG Now

BRµγ)×107

BR (µ e γ) ×1011 µ e γ vs. τ µ γ at tanβ = 10

PMNS UCKMe3= 0 .07 PMNS Ue3= 0

1e-06 1e-05 1e-04 0.001 0.01 0.1 1 10 100 1000

1e-06 1e-04 0.01 1 100 10000

Now SuperB SuperF

MEG Now

BRµγ)×107

µ e γ vs. τ µ γ at tanβ = 40

PMNS UCKMe3= 0 .07 PMNS Ue3= 0

Mu3E

Mu3E

PMNS θ13 = 0.07 PMNS θ13 = 0.07 PMNS θ13 = 0

PMNS θ13 = 0 CKM

CKM

(9)

Constrained Minimal Supersymmetric

• Model with Seesaw neutrino masses and leptogenesis

General feature: Strong dependence

• on θ13

(S. Antusch, E. Arganda, M.J. Herrero, A.M. Teixeira, JHEP 0611 (2006) 090)

LF V w ith c MS SM S ee sa w

10-18 10-17 10-16 10-15 10-14 10-13 10-12 10-11 10-10 10-9

0 2 4 6 8 10

BR (µ 3 e)

θ13 (°)

mN = (1010,1011,1014 ) GeV mν1 = 10-5 eV

θi = 0

SPS 1a SPS 1b SPS 2 SPS 3 SPS 4 SPS 5

(10)

Leptoquarks can lead to μ

• → eee at

one-loop order

Expect enhancement with regards to

• μ → eγ, where a GIM-like suppression is at work

Complementary to conversion

• experiments: access to all quark flavours Access to Leptoquark masses

• up to ~ 5 TeV

(K.S. Babu and J. Julio, Nucl.Phys. B841 (2010) 130)

LF V w ith L ep toq uar ks

µ e

e e γ/Z

qi

S S

µ

e e

e

qi

S

qj S

(11)

Dependence on neutrino mass hierarchy

• and θ13

LF V i n H ig gs t riplet mode ls

Hierarchical case

Br

Ue3 µ

µ eee

µ e conversion

1012

1013

1014

1015

1016

1017 0.2 0.1 0 0.1 0.2

MEG

Mu3E

(M. Kakizaki, Y. Ogura, F. Shima, Phys.Lett. B566 (2003) 210)

(12)

Dependence on neutrino mass hierarchy

• and θ13

LF V i n H ig gs t riplet mode ls

Degenerate case

Br

Ue3 µ

µ eee

µ e conversion

1012

1013

1014

1015

1016

10170.2 0.1 0 0.1 0.2

MEG

Mu3E

Hierarchical case

Br

Ue3

µ

µ eee

µ e conversion

1012

1013

1014

1015

1016

10170.2 0.1 0 0.1 0.2

MEG

Mu3E

Inverted-hierarchical case

Br

Ue3 µ

µeee

µ e conversion

1012

1013

1014

1015

1016

10170.2 0.1 0 0.1 0.2

MEG

Mu3E

(M. Kakizaki, Y. Ogura, F. Shima, Phys.Lett. B566 (2003) 210)

(13)

Models with a Z’ with flavour

• off-diagonal couplings

Models with large extra dimensions

• (Kaluza-Klein states)

Tr ee -L ev el L FV

µ

e e

e

Z’

(14)

Model B(μ → eee)/ B(μ → eγ)

(predicted) B(μ → eee) (experimental

constraint) mSugra with seesaw ~ 10 -2 < 2.5 × 10 -14 SUSY with SO(10) GUT ~ 10 -2 < 2.5 × 10 -14

SUSY + Higgs ~ 10 -2 < 2.5 × 10 -14

Z’, Kaluza-Klein > 1 < 10 -12

Little Higgs 0.1 - 1 < 10 -12

Higgs Triplet 10 -3- 10 3 < 10 -12

Pr ed iction s: μ → eee v s. μ → eγ

µ- χ~0 e-

µ e~

~

γ

e- e+

*

µ

e e

e Z’

(15)

A g ene ral eff ecti ve La gr angi an

Tensor terms (dipole)

L

μ → eee

= 2 G

F

( m

μ

A

R

μ

R

σ

μν

e

L

F

μν

+ m

μ

A

L

μ

L

σ

μν

e

R

F

μν

+ g

1

R

e

L

) (e

R

e

L

) + g

2

L

e

R

) (e

L

e

R

)

+ g

3

R

γ

μ

e

R

) (e

R

γ

μ

e

R

) + g

4

L

γ

μ

e

L

) (e

L

γ

μ

e

L

)

+ g

5

R

γ

μ

e

R

) (e

L

γ

μ

e

L

) + g

6

L

γ

μ

e

L

) (e

R

γ

μ

e

R

) + H. C. )

µ- χ~0 e-

µ e~

~

γ

e- e+

*

µ

e e

e Z’

e.g. supersymmetry

Four-fermion terms scalar

vector

e.g. Higgs, Z’, doubly charged Higgs....

(Y. Kuno, Y. Okada,

Rev.Mod.Phys. 73 (2001) 151)

(16)

Retain only one loop term and one

• contact term

Ratio κ between them

Common mass scale Λ

Allows for sensitivity comparisons

• between μ → eee and μ → eγ In case of dominating dipole

• couplings (κ = 0):

B(μ → eee) = 0.006 (essentially αem) B(μ → eγ)

And a si m ple r La gr angi an L

LFV

= A m

μ R

μ

R

σ

μν

e

L

F

μν

+ (μ

L

γ

μ

e

L

) (e

L

γ

μ

e

L

) (κ+1)Λ

2

κ

(κ+1)Λ

2

(17)

Muons are plentiful and clean

Complementary to μ

• → eγ and

conversion on nuclei

Advances in detector technology allow

• for high rate & high precision experiments

Three body decay offers more constraints

• and options to study LFV mechanism and CP violation in case of a discovery

A search for

• μ → eee with a sensitivity of 10-16 has a large potential to discover LFV or to set very stringent bounds on new physics

W hy μ → eee ?

(18)

An experiment searching for

μ → eee

(19)

Need a lot of muons

Use the world’s highest intensity DC

• muon beam at PSI Up to 10

9 muons per second

Need to control backgrounds at the 10-16 level

Need excellent vertex and timing

• resolution to get rid of accidentals

Need excellent momentum resolution to

• get rid of μ → eeeνν decays

Thin pixel silicon tracker and scintillating fibre timing detector

A μ → eee e xpe rime nt

(20)

The Paul Scherrer Institut (PSI) in Villigen,

• Switzerland has the world’s most powerful DC proton beam

(2.2 mA at 590 MeV)

Pions and then muons are produced in

• rotating carbon targets

Muon s a t P SI

(21)

DC muon beams at PSI:

μE1 beamline: ~ 5 × 10

8 muons/s

πE5 beamline: ~ 10

8 muons/s

(MEG experiment) μE4 beamline: ~ 10

9 muons/s

SINQ (spallation neutron source) target

• could even provide

~ 5 × 1010 muons/s

The μ

• → eee experiment (final stage) would require 109 muons/s focused and collimated on a ~2 cm spot

Muon s a t P SI

(22)

Accidental coincidences of a decay

• positron with an electron-positron pair from Bhabha scattering or photon

conversion

Can be suppressed by excellent timing

• and vertex resolution and a large target area

Use a hollow double cone target à la

• SINDRUM made of aluminium

Bac kgr ou nd s

(23)

The most severe background is the

• internal conversion process μ → eeeνν Branching fraction 3.4 × 10

-5

Need excellent momentum resolution to

• reject this background

M ain bac kgr ou nd

µ νμ

e

e e νe

γ*

W

}

Emiss

}

Etot

(MeV) - E tot

mµ

0 1 2 3 4 5 6

Branching Ratio

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

(R. M. Djilkibaev, R. V. Konoplich, Phys.Rev. D79 (2009) 073004)

(24)

SINDRUM (1988) Σ

p/p (50 MeV/c) = 5.1%

Σ

p/p (20 MeV/c) = 3.6%

Σ

θ (20 MeV/c) = 28 mrad Vertex: Σ

d ≈ 1 mm

X

0 (MWPC) =0.08 - 0.17% per layer MEG (2010)

Σ

p/p (53 MeV/c) = 0.6 % Σ

θ (53 MeV/c) = 11 mrad Σ

φ (53 MeV/c) = 7 mrad Vertex: Σ

r ≈ 1.1 mm, Σz ≈ 2.0 mm

Aim for similar angular and momentum reso- lution, high rates and better vertex resolution

Pr ev ious muon dec ay e xpe rime nt s

e+

γ e

(25)

109 electrons/s disfavour a gas detector Use silicon

Fast readout

Need best possible momentum and vertex resolution

Get vertex precision by using a pixel

• sensor

Momentum resolution dominated by

• multiple scattering

Reduce multiple scattering by making

• sensor thin

Tr ac king det ect or f or μ → eee

(26)

Technology Thickness Speed Readout

ATLAS pixel 260 μm 25 ns extra RO chip

DEPFET (Belle II) 50 μm slow (frames) extra RO chip

MAPS 50 μm slow (diffusion) fully integrated

HV-MAPS > 30 μm O(100 ns) fully integrated

Si lic on det ect or t ec hnolohie s

(27)

High voltage monolithic active pixel sensors

Implement logic directly in N-well in the

• pixel - smart diode array

Use a high voltage commercial

• process (automotive industry) Small active region, fast charge

• collection

Can be thinned down to < 50 μm

Low power consumption

(I.Peric, P. Fischer et al., NIM A 582 (2007) 876 (ZITI Mannheim, Uni Heidelberg))

H V- M A PS

P-substrate N-well

Particle E field

(28)

Module size 6 × 1 cm (inner layers)

• 6 × 2 cm (outer layers) Pixel size 80 × 80 μm

Goal for thickness: 50 μm

1 bit per pixel, zero suppression with

• tune DAC on chip Power: 150 mW/cm

2

Data output 800 Mbit/s

Time stamps every 100 ns (10 MHz clock

• for low power consumption, air cooling) Prototypes successfully tested:

AMS 350 nm process

Radiation tolerant

Low noise: S/N > 40

AMS 180 nm sensors being tested

Se ns or S pecs

(29)

Support sensors on Kapton

TM prints, with

aluminium signal and power lines

Four layers in two groups in a ~ 1.5 Tesla

• field

Total material few ‰ of X

0, few layers

Add a scintillating fibre tracker to reduce

• combinatorics through timing

Po ssi ble t rac ke r l ayout

8 cm

20mm 12x2 (10x60 mm2) 30mm 18x2 (10x60 mm2) 80mm 24x3 (20x60 mm2) 130mm 40x4 (20x60 mm2)

B(magnet)=1.4 Tesla 15 MeV

20 MeV 30 MeV

(30)

The silicon detector is read out with

• 10 MHz (power consumption)

Hundred electron tracks in one frame

Can be resolved by scintillating fibre

• tracker

Resolution ~ 100 ps - on average one

• electron

Ti mi ng

(31)

Track electrons from with p = 15 -53 MeV/c Acceptance depends on the model

Generally better for four-fermion (red)

• than for photon penguin graphs Low minimum momentum required

Ac ce pt anc e

L

μ → eee

= 2 G

F

( m

μ

A

R

μ

R

σ

μν

e

L

F

μν

+ m

μ

A

L

μ

L

σ

μν

e

R

F

μν

+ g

1

R

e

L

) (e

R

e

L

) + g

2

L

e

R

) (e

L

e

R

)

+ g

3

R

γ

μ

e

R

) (e

R

γ

μ

e

R

) + g

4

L

γ

μ

e

L

) (e

L

γ

μ

e

L

)

+ g

5

R

γ

μ

e

R

) (e

L

γ

μ

e

L

) + g

6

L

γ

μ

e

L

) (e

R

γ

μ

e

R

) + H. C. )

(32)

(All very preliminary)

Performance depends on background

• rejection

Background rejection for μ

• → eeeνν

depends on momentum resolution For Σ

E = 0.3 - 0.6 MeV, sensitivity even below 10-16 possible

Simulations indicate that we can reach

• this with 50 μm sensors

Pe rfor manc e s tud ie s

μ → eeeνν

(33)

Interesting idea at an early stage

Work on sensors and mechanics as well as

• track reconstruction at Heidelberg University

(S. Bachmann, C. Dressler, P. Fischer,

M. Kiehn, R. Narayan, I. Peric, S. Rabeneck- er, A. Schöning, D. Wiedner, B. Windel- band, N. Berger)

Looking for collaborators, several groups

• interested, maybe you too?

LOI planned for 2011

St at us of t he pr oject

(34)

Lepton flavour violation might be just

• around the corner

Novel concept for an experiment search-

• ing for μ → eee

Technologies: HV monolithic pixel sensor

• and fibre tracker Sensitivity of 10

-16 seems feasible

First pixel tracker prototype in 2012?

After more than 20 years, time has come

• to repeat the very successful SINDRUM experiment

Su m mar y

(35)
(36)

Backup Material

(37)

Can derive μ

• → eee branching ratio from fitting neutrino masses and constraints from μ → e conversion on nuclei

(K.S. Babu and J. Julio, Nucl.Phys. B841 (2010) 130)

Sensitive to multi-TeV leptoquarks

LF V w ith L ep toq uar ks

(TeV)

ω2/3

2 4 6 8 M 10

BR(μ eee)×15 10

10-4

10-3

10-2

10-1

1 10 102

103

BR(μ → eee) < 10-16

(38)

Little Higgs models allow for μ → eee

LF V i n Li ttle H ig gs M ode ls

µ

e

e e Z

Ni

νj X

µ

e

e e Z/Z’/γ

Ni

ф ф

µ

e e

e Z

Ni

X

e

µ

e e

Ni X

e

Nj

X

(39)

Niklaus Berger – NuFact, August 2011 – Slide 39

Simplest Little Higgs Model

Conversion experiments

• provide strongest constraints Access to scales > 50 TeV

• (curves)

(F. del Aguila, J.I. Illana, M.D. Jenkins, JHEP 1103 (2011) 080)

LF V i n Li ttle H ig gs M ode ls

.

.

50

10 1

Β)

106 108 1010 1012 1014

1016 50

10 1

.

Β)

Β(µ Ti e Ti)

106 108 1010 1012 1014

1016 104 108

1012 1016

50 10

1

.

.

ΒTieTi)

Β(µ ee¯e)

106 108 1010 1012 1014 1016 1018 106 108 1010 1012 1014 1016

Referenzen

ÄHNLICHE DOKUMENTE

Tracks per readout frame of 50 ns Exploiting time resolution of scintillating fibres (1 ns) and tiles

HV-MAPS: High Voltage Monolithic Active Pixel Sensors fast: small active region, charge collection via drift (O(10ns)) thin: &lt; 50 µm. zero-suppressed data: addresses

Precise spatial resolution for vertexing and momentum reconstruction Silicon pixel sensor. Momentum resolution dominated by multiple scattering in range of interest (~10-53

voltage monolithic active pixel sensors for precise tracking at high rates and scintillating fibres for high resolution time measurements.. Theory In the Standard Model

Using a commercial 180 nm CMOS process originating in the automotive industry, high voltage monolithic active pixel sensors housing the pixel electronics inside a deep N-well can

Particularly important for the cooling system is the scintillating fibre detector, because it divides the helium volume between the outer and inner double pixel layer into two

On each side, the flex print cables from both sensors end at the bottom of the support structure, where they are connected to the scintillating fibre board (scifi board).. Figure

The experiment is built in a modular principle consisting of silicon pixel sensors for the vertex and momentum measurement and of scintillator fibers and tiles that deliver