• Keine Ergebnisse gefunden

Searching for Lepton-Flavour Violation with the Mu3e Experiment

N/A
N/A
Protected

Academic year: 2022

Aktie "Searching for Lepton-Flavour Violation with the Mu3e Experiment"

Copied!
61
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Searching for Lepton-Flavour Violation with the Mu3e Experiment

Ann-Kathrin Perrevoort

Physics Institute, Heidelberg University

NuFACT Uppsala September 25, 2017

(2)

Charged Lepton Flavour Violation in µ → eee

Expectation from neutrino mixing:

BRµ→eee ∼ (∆mm22ν

W )2 <1054

Observation of µ →eee is a clear sign for New Physics

(3)

Signal and Background

Signal Background

Signalµ+ e+ee+ Combinatorial background

Internal conversion µ+ e+ee+νµνe

Common vertex

Coincident

Ee=mµ

pe=0

No common vertex

Not coincident

Eemµ

pe0

Common vertex

Coincident

Ee<mµ

pe0

(4)

The Mu3e Experiment

SINDRUM Mu3e

BRµeee<1.0⋅1012 at 90%CL [1988]

Sensitivity of one in 1015(1016) µ decays

High muon stopping rates

Phase I: 108µ/s

Phase II:>109µ/s

Background suppression

Very good vertex and time resolution

Excellent momentum resolution

(5)

Muon Beam

Paul-Scherrer Institute

2.2 mA proton beam with 590 MeV Secondary beamlines:

sub-surface µ+ with 28 MeV

108muons/s at existing beamline πE5 109muons/s at future beamline HiMB

(under investigation)

(6)

Experimental Area

Target E Infrastructure platform I Infrastructure

platform II

Access walkway

Detector control and filter farm barracks Controlled

access door

MEG II

Existing πE5 front access

Mu3e Removable access stairway

(7)

Experimental Area

(8)

Multiple Coulomb Scattering

Ω MS

θMS

B

Decay electrons have low momentum<53 MeV/c

Momentum resolution is dominated by multiple scattering

σp

pθMS with θMS1px

X0

→ reduce material thickness x

→ increase opening angleΩ

(9)

Multiple Coulomb Scattering

Ω ~ π MS

θMS

B

Decay electrons have low momentum<53 MeV/c

Momentum resolution is dominated by multiple scattering

σp

pθMS with θMS1p

x X0

→ reduce material thickness x

→ increase opening angleΩ atΩ≈πσpp ∼O(θ2MS)

(10)

Multiple Coulomb Scattering

Decay electrons have low momentum<53 MeV/c

Momentum resolution is dominated by multiple scattering

σp

pθMS with θMS1p

x X0

→ reduce material thickness x

→ increase opening angleΩ atΩ≈πσpp ∼O(θ2MS)

(11)

The Detector in Phase I

Target Inner pixel layers

Outer pixel layers Recurl pixel layers

Scintillator tiles μ Beam

Tracking detector:

Thin Si pixel sensors (HV-MAPS) Stopping rate of 108µ/s

B-field of 1 T

+ Timing detector:

Scintillating fibres and tiles Length: 110 cm

Diameter: 18 cm

(12)

Pixel Tracker

Measure low momentum electron tracks with excellent precision Minimize material to reduce multiple Coulomb scattering:

Thin Si pixel sensors

Flexible printed circuit boards

Kapton support structure

→ 1.16 radiation lengths

Cooling with gaseous helium

(13)

Pixel Sensors: HV-MAPS

High Voltage Monolithic Active Pixel Sensors

AMS 180 nm HV-CMOS process

N-well in p-substrate

Reverse bias of∼80 V

Fast charge collection via drift

Depletion zone of∼ (1020)µm Thinning possible (50µm)

Integrated readout electronics

Signal amplification and shaping in N-well

Digitisation and zero-suppression in periphery

Pixel size 80×80µm2 Sensor size 2×2cm2

P-substrate N-well

Particle E field

I. Peri´c, NIM A 582 (2007)

(14)

Pixel Sensors: MuPix Prototype

MuPix7: HV-MAPS prototype for Mu3e

32×40 pixels `a 103×80µm2

2.9×3.2mm2 of active area

50µm thin

‘System-on-chip’

Zero-suppressed hit addresses and timestamps

(15)

Pixel Sensors: MuPix Prototype

MuPix7: HV-MAPS prototype for Mu3e

32×40 pixels `a 103×80µm2

2.9×3.2mm2 of active area

50µm thin

‘System-on-chip’

Zero-suppressed hit addresses and timestamps

Efficiency >99%

Timing resolution <20 ns

Threshold [V]

0.7 0.71 0.72 0.73 0.74 0.75

Efficiency

0.95 0.96 0.97 0.98 0.99 1

Efficiency Noise 99 %

Preliminary

Noiserate per pixel [1/s]

1 10 1 10 102 103 104

600

500 400 300 200 100 0

Entries [1/run]

102 103 104

Time diff erence between hit and scintillator time [ns]

σ= 14.3 ns

Time difference between hit and scintillator time [ns]

(16)

Pixel Sensors: MuPix Prototype

Latest prototype: MuPix8

→ Arrived in August

First large MuPix sensor: 2×1cm2

128×200 pixels `a 81×80µm2

Analogue pulse information

Different substrates:

20Ωcm and 80Ωcm

(17)

Pixel Sensors: MuPix Prototype

column 0 20 40 60 80 100 120

row

0 20 40 60 80 100 120 140 160 180

0 200 400 600 800 1000 1200

Preliminary hitmap of a Sr-90 source

Latest prototype: MuPix8

→ Arrived in August

First large MuPix sensor: 2×1cm2

128×200 pixels `a 81×80µm2

Analogue pulse information

Different substrates:

20Ωcm and 80Ωcm

(18)

Pixel Sensors: MuPix Prototype

Latest prototype: MuPix8

→ Arrived in August

First large MuPix sensor: 2×1cm2

128×200 pixels `a 81×80µm2

Analogue pulse information

Different substrates:

20Ωcm and 80Ωcm MuPix9 submitted in August

Small-scale prototype

Slow control, serial powering

(19)

Cooling

Cooling with gaseous helium Power consumption of Si pixel sensors is 250 mW/cm2

SciFi

Pixel Layers

Scintillating Tiles

water cooled beam pipe water cooled beam pipe

Scintillating Tiles Pixel Layers

gaseous helium

(20)

Cooling

Cooling with gaseous helium Power consumption of Si pixel sensors is 250 mW/cm2

(21)

Timing Detector

Suppression of combinatorial background by a factor of 100

200 300 400 500 600 700 800 900 1000 1100 fibre detector time resolution [ps] 

0 20 40 60 80 100 120

timing background (Bhabha+Michel) suppression

both timing detectors only fibres

(22)

Scintillating Fibres

Entries 24772

Mean 0.05009 ±0.008864 Std Dev 1.394 ±0.006268 Integral 2.474e+04

/ ndf

χ2 327.1 / 54

p0 191.7 ±7.7

p1 0.09037 ±0.03579 p2 2.363 ±0.047

p3 2596 ±26.8

p4 0.05652 ±0.00492 p5 0.5724 ±0.0056

10

5 0 5 10

Counts

0 500 1000 1500 2000 2500

3000 Entries 24772

Mean 0.05009 ±0.008864 Std Dev 1.394 ±0.006268 Integral 2.474e+04

/ ndf

χ2 327.1 / 54

p0 191.7 ±7.7

p1 0.09037 ±0.03579 p2 2.363 ±0.047

p3 2596 ±26.8

p4 0.05652 ±0.00492 p5 0.5724 ±0.0056

3 layers of fibres with ∅∼250µm and length of 28 to 30 cm

Round and square fibres under investigation

Photon detection at both ends with LHCb SiPM column array

Readout with custom-designed MuTRiG

Prototype with 3 layers of square multiclad fibres:

σt= (572±6)ps and ϵ≳95%

(23)

Scintillating Tiles

Mezzanine Board Connector 448 Channel

Module

Endring Cooling

Pipe

Scintillator Tiles

MuTRiG PCB SiPM Flexprint

Time Difference [ps]

-400 -200 0 200 400

# Entries

0 5 10 15 20 25 30

103

×

TWC No TWC ) ps

× 2 = (56 σ

) ps

× 2 = (70 σ

6.5×6.5×5.0mm3 tiles with individual SiPMs

Custom-designed MuTRiG:

TDC ASIC for SiPM readout

Prototype yields time resolution

∼70 ps and efficiencyϵ≳99.7%

(24)

Simulation Results for Phase I

2 Events per 0.2 MeV/c

4

10

3

10

2

10

1

10 1 10 102

at 10-12

eee µ at 10-13

eee µ at 10-14

eee µ at 10-15

eee µ ν

ν

eee µ

Bhabha +Michel

muons/s muon stops at 108

1015

Mu3e Phase I

(25)

Simulation Results for Phase I

Data taking days

0 50 100 150 200 250 300

eee)µBR(

15

10

14

10

13

10

12

10

11

10

10-15

× 2

SES 90% C.L. 95% C.L.

Mu3e Phase I 108 muon stops/s 19.7% signal efficiency

SINDRUM 1988

(26)

Summary

Mu3e Search for LFV decayµ →eee with a sensitivity of BR<1016 Low-material tracking detector

High muon rates

Thin Si pixel sensors

Scintillating fibres and tiles

Phase I Prospected single-event sensitivity of 2⋅1015 in 300 days of data taking Phase II Ultimate sensitivity with detector upgrade

and high intensity muon beamline

(27)

Status

Finalizing detector design for phase I

Preparing for construction and commissioning Pixel MuPix8 is first large scale prototype

In the lab and running

MuPix10 could be used for module building (2nd half of 2018)

Timing Very successful prototypes for tiles and fibres

MuTRiG is being characterized

Mechanics Challenging due to tight spacial constraints Integration well advanced

Magnet Expected 1st half of 2019

Technical design report to be published soon

Mezzanine Board Connector 448 Channel

Module Cooling

Pipe

(28)
(29)

Appendix

The Phase II Detector

Target Inner pixel layers

Outer pixel layers Recurl pixel layers

Scintillator tiles μ Beam

Thin timing detector

Increase muon stopping rate to 2⋅109µ/s

Additional recurl stations increase acceptance for recurler Smaller beam profile ⇒smaller target radius

(30)

Appendix

History of cLFV Searches in µ and τ Decays

1940 1960 1980 2000 2020

Year

90%CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

e 3e

N eN

3

10–16

SINDRUM SINDRUM II MEG

MEG II Mu3e Phase I

Mu3e Phase II Comet/Mu2e μ

μ μ

μ μ

γ

γ τ τ

(31)

Appendix

Charged Lepton Flavour Violation

OeeSLL= (ePLµ)(ePLe)

Crivellin, Davidson, Pruna, Signer [arXiv:1611.03409]

-10-7 -10-8 -10-9 -10-10 10-9

10-8 10-7 10-6 10-5 10-4 10-3 10-2

10-1 SINDRUM (1988) Mu3e (BR1015) Mu3e (BR1016)

10-10 10-9 10-8 10-7 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 MEG (2016)

MEG II (BR4·1014)

CDL

CSLLee

Λ =mZ/GeV

OLD=emµ(eσµνPLµ)Fµν

(32)

Appendix

Tracking in MS-dominated Environment

(33)

Appendix

Signal Decay µ → eee

Signature forµ decay at rest Common vertex

Coincident in time

Ee=mµc2

pe=0

Ee= (0−53)MeV

Multiple Coulomb scattering limits momentum resolution σp∝√

x

(34)

Appendix

Background: Combinatorial Background

e+

e+ e-

e+

e- e+

+

Overlays of Michel decay µ → eνν, Bhabha scattering, photon conversion, . . .

No common vertex Not coincident

Eemµc2

pe≠0

Increases with beam intensity

(35)

Appendix

Background: µ → eeeνν

BRµ+e+ee+νµνe = (3.4±0.4)⋅10−5[Nucl.Phys.B260, 1985]

Common vertex Coincident in time

Ee<mµc2

pe≠0

→Missing energy due to neutrinos Need very good momentum resolution

(36)

Appendix

Background: µ → eeeνν

0 5 10 15 20 40 60

10-18 10-16 10-14 10-12 10-10 10-8

0.85 0.9 0.95 1

E//MeV

dB dE/ Kfactor

no cuts onE/ E/ ≤20 MeV E/ ≤10 MeV E/ ≤5 MeV K factor

NLO calculations for µ → eeeνν: Pruna, Signer, Ulrich [arXiv:1611.03617]

(37)

Appendix

Background: µ → eeeνν

10−15 10−14 10−13 10−12 10−11 10−10 10−9 10−8

0.6 0.7 0.8 0.9

101 102 103 104 105

error band×10 dB/dm123[MeV1]

µ→e(e+eµν¯e

BNLO/BLO

m123[MeV]

10−20 10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4

0.7 0.8 0.9

1 10 100

error band×10

B(

/ Emax

)

µ→e(e+eµν¯e

BNLO/BLO

E/max[MeV]

NLO calculations for µ → eeeνν: Fael, Greub arXiv:[1611.03726]

(38)

Appendix

Magnet and Detector Cage

(39)

Appendix

Target

Extended hollow double-cone target made of 75µm to 85µm mylar foil 10 cm long with a radius of 19 mm High stopping muon stopping rate Vertex separation over a large surface Low distortion for ‘escaping’ electrons

(40)

Appendix

Lightweight Mechanics

50µm silicon sensor

80µm Flexible printed circuit board (FPC)

25µm Kapton support structure

→ ∼0.1%of radiation length

Aluminium 14 um

Aluminium 14 um Glue 5 um Glue 5 um Polyimide 25 um Polyimide 10 um

Polyimide 10 um MuPix 50 um

Kapton frame 25 um

Bus signals Power distribution Sensor signals Ground SpTAB pads Dielectric spacer layer

{

FPC

Mechanical support

Sensor

Glue 5 um Glue 5 um

(41)

Appendix

Pixel Sensors: HV-MAPS

Pixel Periphery State Machine

readout state machine

VCO

&

PLL

8b/10b

encoder serializer LVDS ...

other pixels

sensor CSA

comparator tune

DAC

threshold baseline source

follower

test-pulse injection

readout 2nd amplifier

integrate charge

amplification

line driver

digital output AC coupling

via CR filter per pixel threshold adjustment

Hit finding, digitisation, zero-suppression and readout on-chip Continuous and fast readout at 1.25 Gbit/s

(42)

Appendix

Data Acquisition

2844 Pixel Sensors

up to 45 1.25 Gbit/s links

FPGA FPGA FPGA

...

86 FPGAs 1 6 Gbit/s

link each

GPU

PC GPU

PC GPU

12 PCs PC 12 10 Gbit/s

links per

8 Inputs each

3072 Fibre Readout Channels

FPGA FPGA

...

12 FPGAs

6272 Tiles

FPGA FPGA

...

14 FPGAs

Data Mass

Gbit Ethernet

Switching

Board Switching

Board Switching

Board

Front-end(inside magnet)

Switching Board

(43)

Appendix

Data Acquisition

Triggerless data acquisition Front-end board

Slow control

Buffer and merge data

Time-sorting Readout board

Switch between front-end and filterfarm

Merge data of sub-detectors GPU filterfarm

Fast track finding and online reconstruction

Reduce data rate by a factor of 80

~3000 Pixel Sensors

up to 45 1.25 Gbit/s links

FPGA FPGA FPGA

...

Switching Boards

Data Collection

Server

Mass Storage Gbit Ethernet

86 FPGAs

1 6 Gbit/s link each

12 10 Gbit/s links per board

8 Inputs each

GPU PC

GPU PC

GPU 12 PCs PC Front-end boards

Switching boards

Filterfarm

(44)

Appendix

MuPix Telescope

Tests of new prototypes and system integration

4 or 8 planes of MuPix7

Scintillating tiles

Readout via Altera Stratix IV development boards

Test beam at PSI, DESY, SPS, MAMI

(45)

Appendix

MuPix7 Results

Testbeam at DESY: 4 GeV e+beam; using DESY Duranta telescope

row-axis [mm]

0 0.5 1 1.5 2 2.5 3

column-axis [mm]

0 0.5 1 1.5 2 2.5 3

efficiency_pixeluv Entries 900390 Mean x 1.557 Mean y 1.803

RMS x 0.922

RMS y 0.8324

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

efficiency_pixeluv Entries 900390 Mean x 1.557 Mean y 1.803

RMS x 0.922

RMS y 0.8324

Mupix7, 735 mV threshold, HV = -85 V

(46)

Appendix

MuPix7 Results

Testbeam at DESY: 4 GeV e+beam; DUT rotated by 60° wrt to beam axis

Efficiency

0.984 0.986 0.988 0.99 0.992 0.994 0.996 0.998 1

Efficiency Noise 99 %

Preliminary

Noiserate per pixel [1/s]

1 10 102

(47)

Appendix

Timing Information

Tracks expected within readout frame of 50 ns

Matching with time information of scintillating fibres and tiles

(48)

Appendix

Reconstruction

h1

ϕ01 ϕ12

x y

d01

d12

ϕM S

c1 c2

rT ,01

rT ,12

h0

h2

3D multiple scattering fit for track reconstruction

Spatial uncertainties of hit positions are ignored as MS dominates

Hits in 3 layers form a ‘triplet’

Join triplets by minimizing MS angles

Subsequent vertex fit with 3 trajectories of correct charge

(49)

Appendix

Short Tracks: 4 Hits

(50)

Appendix

Short Tracks

[rad]

λ

1.5 1 0.5 0 0.5 1 1.5

p [MeV]

0 10 20 30 40 50 60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

[MeV/c]

pmc

0 10 20 30 40 50

[MeV/c]pσ

0 0.5 1 1.5 2 2.5 3

(51)

Appendix

Long Tracks: 6 Hits

(52)

Appendix

Long Tracks: 8 Hits

(53)

Appendix

Long Tracks

[rad]

λ

1.5 1 0.5 0 0.5 1 1.5

p [MeV]

0 10 20 30 40 50 60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Efficiency.

[MeV/c]

pmc

0 10 20 30 40 50

[MeV/c]pσ

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Momentum resolution.

(54)

Appendix

Vertex Resolution and Mass Resolution of Signal Events

[mm]

target

2 d

1.5 10.5 0 0.5 1 1.5 2 0

20 40 60 80 100 120

103

×phase I, 3 recurlers

RMS = (0.4272 ± 0.0003) mm µ = (-0.0030 ± 0.0003) mm σ = (0.2778 ± 0.0002) mm

2] [MeV/c mrec

96 100 104 108 112

0 50 100 150 200 250

103

×

phase I, 3 recurlers

RMS = (1.2105± 0.0007) MeV/c2 µ = (105.299± 0.003) MeV/c2 σ = (0.618± 0.003) MeV/c2

(55)

Appendix

µ → eee: Phase Space

2] [MeV

2ee

m

0 2 4 6 8 10 12×103

]2[MeV

2 ee

m

0 2 4 6 8 10 12

103

×

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 103

×

Generated

2] [MeV

2ee

m

0 2 4 6 8 10 12×103

]2[MeV

2 ee

m

0 2 4 6 8 10 12

103

×

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 103

×

Truth information

after reconstruction and vertex fit

(56)

Appendix

µ → eee: Effective Operator em

µ

A

L

µ

L

σ

µν

e

R

F

µν

2] [MeV

2ee

m

0 2 4 6 8 10 12×103

]2[MeV

2 ee

m

0 2 4 6 8 10 12

103

×

1 10 102

103

Generated

2] [MeV

2ee

m

0 2 4 6 8 10 12×103

]2[MeV

2 ee

m

0 2 4 6 8 10 12

103

×

1 10 102

103

Truth information

(57)

Appendix

µ → eee: Effective Operator ( µ

L

e

R

)( e

L

e

R

)

2] [MeV

2ee

m

0 2 4 6 8 10 12×103

]2[MeV

2 ee

m

0 2 4 6 8 10 12

103

×

0 0.2 0.4 0.6 0.8 1 1.2

103

×

Generated

2] [MeV

2ee

m

0 2 4 6 8 10 12×103

]2[MeV

2 ee

m

0 2 4 6 8 10 12

103

×

0 0.2 0.4 0.6 0.8 1 1.2

103

×

Truth information

after reconstruction and vertex fit

(58)

Appendix

µ → eee: Effective Operators

Efficiency for reconstructing a µ → eee decay Dipole operator

emµALµLσµνeRFµν

Dipole Phase Space Scalar 4-Fermion

Efficiency

0 0.05 0.1 0.15 0.2 0.25 0.3

4-fermion scalar operator

(µLeR)(eLeR)

(59)

Appendix

Searching for µ → e X with Mu3e

Emission of unobserved neutral, light boson in µ+ → e+X0

Familon: Goldstone boson of SSB of flavour symmetry [Wilczek, 1982]

Search for a peak on the e+ momentum spectrum

μ+

e+

X0

[MeV]

Ee

10 20 30 40 50

0 0.2 0.4 0.6 0.8 1

Michel spectrum μ->eX signal

(60)

Appendix

Searching for µ → e X with Mu3e

Sensitivity to µ → e X for 1⋅1015 muon stops using a toy MC study

Familon Mass [MeV]

30 40 50 60 70 80 90

Branching Fraction

9 10

8 10

7 10

6 10

5 10

4

10 90% CL

4-hit 6-&8-hit TWIST

TWIST results by courtesy of R. Bayes [arXiv:1409.0638]

(61)

Appendix

Mu3e Collaboration

Founding members:

University of Geneva Heidelberg University

Karlsruhe Institute of Technology JGU Mainz

Paul Scherrer Institute ETH Z¨urich

University of Z¨urich In the process of joining:

University of Bristol University of Liverpool University College London University of Oxford

Referenzen

ÄHNLICHE DOKUMENTE

Figure 4.8: Orientation of the MuPix chips on layers 1 &amp; 2 with the detector in yellow, periphery in red and blue cooling flow..

In summary, the Mu3e detector must provide excellent vertex and timing resolution as well as an average momentum resolu- tion better than 0.5 MeV/c with a large geometrical

The Mu3e detector consists of two double layers of high voltage monolithic active pixel sensors (HV-MAPS) around a target double cone..

voltage monolithic active pixel sensors for precise tracking at high rates and scintillating fibres for high resolution time measurements.. Theory In the Standard Model

Thin pixel silicon tracker and scintillating fibre timing detector. A μ →

❏ Converters compensate for voltage drops and extra power losses after conversion. Ribbons of 3 layers of 250 μm thin scintillating fibres in the

Using a commercial 180 nm CMOS process originating in the automotive industry, high voltage monolithic active pixel sensors housing the pixel electronics inside a deep N-well can

The measurement with helium showed that cooling of the layers with a heat dissipation of 400 mW / cm 2 caused a temperature increase of around 70 − 75 K compared to the