• Keine Ergebnisse gefunden

A Tracker for the Mu3e Experiment

N/A
N/A
Protected

Academic year: 2022

Aktie "A Tracker for the Mu3e Experiment"

Copied!
46
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

A Tracker for the Mu3e Experiment

Niklaus Berger

Physics Institute, University of Heidelberg Vienna Conference on Instrumentation,

February 2013

(2)

• The Challenge:

Finding one in 10

16

muon decays

• The Technology:

High Voltage Monolithic Active Pixel Sensors

• The Mu3e Detector:

Minimum Material, Maximum Precision

Overview

(3)

• Neutrinos have mass

• Leptons do change flavour

• However: Standard Model

branching ratio for μ → eee < 10-50

The Physics: Charged Lepton Flavour Violation

µ + e +

W +

ν µ ν e

γ

e - e +

*

(4)

• Neutrinos have mass

• Leptons do change flavour

• However: Standard Model

branching ratio for μ → eee < 10-50

• Can be much bigger with new physics

The Physics: Charged Lepton Flavour Violation

µ + χ ~ 0 e +

µ e~

~

γ

e - e +

*/Z

(5)

• We want to find or exclude μ → eee at the 10-16 level

• 4 orders of magnitude over previous experiment (SINDRUM 1988)

The Goal: 10

-16

1940 1960 1980 2000 2020

Year

90%–CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

μ

μ 3e

μN eN

τ μγ

τ

10–16

SINDRUM SINDRUM II

MEG

MEG plan Mu3e Phase I

Mu3e Phase II

(Updated from W.J. Marciano, T. Mori and J.M. Roney, Ann.Rev.Nucl.Part.Sci. 58, 315 (2008))

(6)

• Observe more than 1016 muon decays:

2 Billion muons per second

• Suppress backgrounds by more than 16 orders of magnitude

• Be sensitive for the signal

The Challenges

1940 1960 1980 2000 2020

90%–CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

μ

μ 3e

μN eN

τ μγ

τ

10–16

SINDRUM SINDRUM II

MEG

MEG plan Mu3e Phase I

Mu3e Phase II

(Updated from W.J. Marciano, T. Mori and J.M. Roney, Ann.Rev.Nucl.Part.Sci. 58, 315 (2008))

(7)

e +

e + e -

• μ+ → e+e-e+

• Two positrons, one electron

• From same vertex

• Same time

• Sum of 4-momenta corresponds to muon at rest

• Maximum momentum: ½ mμ = 53 MeV/c

The signal

(8)

• Combination of positrons from ordinary muon decay with electrons from:

- photon conversion, - Bhabha scattering, - Mis-reconstruction

• Need very good timing, vertex and momentum resolution

Accidental Background e

+

e

+

e

-

(9)

• Allowed radiative decay with internal conversion:

μ

+

→ e

+

e

-

e

+

νν

• Only distinguishing feature:

Missing momentum carried by neutrinos

Internal conversion background

µ+ νμ

e+

e- e+ νe

γ*

W+

}

Emiss

}

Etot

Branching Ratio

mμ - Etot (MeV)

0 1 2 3 4 5 6

10-12

10-16 10-18 10-13

10-17 10-15 10-14

10-19

• Need excellent μ3e

momentum resolution

(R. M. Djilkibaev, R. V. Konoplich, Phys.Rev. D79 (2009) 073004)

(10)

• 1 T magnetic field

• Resolution dominated by multiple scattering

• Momentum resolution to first order:

Σ

P

/P ~ θ

MS

• Precision requires large lever arm (large bending angle Ω) and low multiple scattering θMS

Momentum measurement

Ω MS

θ

MS

B

(11)

High voltage monolithic active pixel sensors

• Implement logic directly in N-well in the pixel - smart diode array

• Use a high voltage commercial process (automotive industry)

• Small active region, fast charge collection via drift

• Can be thinned down to < 50 μm

(I.Peric, P. Fischer et al., NIM A 582 (2007) 876 )

Fast and thin sensors: HV-MAPS

(12)

HV-MAPS chips: AMS 180 nm HV-CMOS

• MUPIX2:

Characterization during 2012

Single pixel Time-Over-Threshold Binary pixel matrix

• MUPIX3:

Just bonded

Column logic with address generation Extensive test beam campaign 2013

The MUPIX chips

MUPIX2

36 x 42 pixels

30 x 39 μm pixel size 1.8 mm2 active area MUPIX3

40 x 32 pixels

80 x 92 μm pixel size 9.4 mm2 active area For Mu3e:

256 x 256 pixels

80 x 80 μm pixel size 4 cm2 area, 95% active

(13)

• Measurements with 55Fe source

• Good energy measurement

• Very good signal to noise

Details in theses:

A.K. Perrevoort: Characterization of HV-MAPS for Mu3e (Master thesis, 2012)

H. Augustin: Charakterisierung von HV-MAPS (Bachelor thesis, 2012)

available from www.psi.ch/mu3e

MUPIX 2 Results

ToT [µs]

0 1 2 3 4 5

10-4

10-3

10-2

10-1

1 55Fe peak

Threshold [V]

0.82 0.84 0.86 0.88 0.9 0.92

SNR

0 5 10 15 20 25 30 35 40

Signal to Noise

(14)

• Measurements with LED pulses

• High-Voltage important for fast signal

• Amplification above ~70 V

Details in theses:

A.K. Perrevoort: Characterization of HV-MAPS for Mu3e (Master thesis, 2012)

H. Augustin: Charakterisierung von HV-MAPS (Bachelor thesis, 2012)

available from www.psi.ch/mu3e

MUPIX 2 Results

HV [V]

0 20 40 60 80

Latency [ns]

300 350 400 450 500 550 600 650 700

ToT [µs]

4 5 6 7 8 9 10

11 12

HV [V]

0 20 40 60 80

(15)

MUPIX 2 results

• Test beam at CERN SPS (170 GeV/c pions)

• Timepix telescope

• 2 hours data taking

• Mostly single pixel clusters

• Resolution as expected (pixel size/√12)

• More test beam starting March Resolution for 30 × 40 μm pixels

(16)

Introduction

Y

• X

(17)

• 50 μm silicon

• 25 μm Kapton™ flexprint with aluminium traces

• 25 μm Kapton™ frame as support

• Less than 1‰ of a radiation length per layer

Mechanics

(18)
(19)
(20)

• Add no material:

Cool with gaseous Helium

• ~ 150 mW/cm2 - total 2 kW

• Simulations: Need ~ 1 m/s flow

• First measurements: Need several m/s

• Full scale prototype on the way

Cooling

Details in thesis:

M. Zimmermann: Cooling with Gaseous Helium for the Mu3e Experiment (Bach- elor thesis, 2012)

available from www.psi.ch/mu3e

(21)

• 1 T magnetic field

• Resolution dominated by multiple scattering

• Momentum resolution to first order:

Σ

P

/P ~ θ

MS

• Precision requires large lever arm (large bending angle Ω) and low multiple scattering θMS

Momentum measurement

Ω MS

θ

MS

B

(22)

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

(23)

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

(24)

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

(25)

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

(26)

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

Ω ~ π MS

θMS

B

(27)

Detector Design

Target μ Beam

(28)

Detector Design

Target Inner pixel layers

μ Beam

(29)

Detector Design

Target Inner pixel layers

Outer pixel layers μ Beam

(30)

Detector Design

Target Inner pixel layers

Scintillating fibres

Outer pixel layers μ Beam

(31)

Detector Design

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

μ Beam

(32)

Detector Design

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

(33)

• 280 Million pixels (+ fibres and tiles)

• No trigger

• ~ 1 Tbit/s

• FPGA-based switching network

• O(50) PCs with GPUs

Data Acquisition

Pixel Sensors

up to 108 800 Mbit/s links

FPGA FPGA FPGA

...

...

RO Boards 1 3 Gbit/s

link each

GPU

PC GPU

PC

GPU ... PC

12 10 Gbit/s ...

links per RO Board 4 Inputs each

Data Collection

Server

Mass Storage Gbit Ethernet

Pixel DAQ

(34)

Online software filter farm

• Continuous front-end readout (no trigger)

• ~ 1 Tbit/s

• PCs with FPGAs and Graphics Processing Units (GPUs)

• Online track and event reconstruction

• 109 3D track fits/s achieved

• Data reduction by factor ~1000

• Data to tape < 100 Mbyte/s

Online filter farm

(35)

• 3D multiple scattering track fit

• Simulation results:

280 keV single track momentum 520 keV total mass resolution

Simulated Performance

Hits fitted per track

0 1 2 3 4 5 6 7 8 9

103

104

Reconstructed Momentum [MeV/c]

0 10 20 30 40 50 60

1 10 102

103

Rec. Momentum - Gen. Momentum [MeV/c]

-3 -2 -1 0 1 2 3

1 10 102

103

104 RMS: 0.28 MeV/c

Reconstructed track polar angle

0 0.5 1 1.5 2 2.5 3

1 10 102

103

2] Reconstructed Mass [MeV/c

1020 103 104 105 106 107 108 109 110 200

400 600 800 1000 1200 1400 1600

RMS: 0.52 MeV/c2

: 0.31 MeV/c2

s1

: 0.71 MeV/c2

s2

: 0.37 MeV/c2

sav

(36)

Simulated Performance

2] Reconstructed Mass [MeV/c

101 102 103 104 105 106

Events per muon decay and 0.1 MeV

10-20

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10 µ eeeνν generated

simulated ν

ν

eee µ

Signal BF 10-12

Signal BF 10-13

Signal BF 10-14

Signal BF 10-15

Signal BF 10-16

Signal BF 10-17

(37)

Sensitivity

Phase IA: Starting 2015

Target Inner pixel layers

Outer pixel layers μ Beam

(38)

Sensitivity

Phase IB: 2016+

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

(39)

Sensitivity

Phase II: 2017+

New Beam Line

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

(40)

• Mu3e aims for μ → eee at the 10-16 level

• First large scale use of HV-MAPS

• More ongoing projects:

- Luminosity detector for PANDA - Poster by M. Fritsch - Use at LHC - several groups in ATLAS

- Chip survived 380 MRad (8×1015 neq/cm2)

• Build detector layers thinner than a hair

• Reconstruct 2 billion tracks/s in 1 Tbit/s on ~50 GPUs

• Start data taking in 2015

Conclusion

1940 1960 1980 2000 2020

Year

90%–CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

μ

μ 3e

μN eN

τ μγ

τ

10–16

SINDRUM SINDRUM II MEG

MEG plan Mu3e Phase I

Mu3e Phase II

(41)

Backup Material

(42)

• One loop term and one contact term

• Ratio κ between them

• Common mass scale Λ

• Allows for sensitivity comparisons between μ → eee and μ → eγ

• In case of dominating dipole couplings (κ = 0):

B(μ → eee) = 0.006 (essentially αem) B(μ → eγ)

Comparison with μ → eγ

L

LFV

= A m

μ R

μ

R

σ

μν

e

L

F

μν

+ (μ

L

γ

μ

e

L

) (e

L

γ

μ

e

L

) (κ+1)Λ

2

κ (κ+1)Λ

2

µ+ χ~0 e+

µ e~

~

γ

e- e+

*/Z µ+

e+ e-

e+ Z’

(43)

• Z-Penguins can be important

• Lots of ongoing theory activity

Comparison with μ → eγ

L

LFV

= A m

μ R

μ

R

σ

μν

e

L

F

μν

+ (μ

L

γ

μ

e

L

) (e

L

γ

μ

e

L

) (κ+1)Λ

2

κ (κ+1)Λ

2

µ+ χ~0 e+

µ e~

~

γ

e- e+

*/Z

(44)

Radiation Hardness

• Requirements not as strict as at LHC

• Irradiation at PS

• After 380 MRad (8×1015 neq/cm2)

• Chip still working

(Courtesy Ivan Perić, RESMDD 2012)

(45)

MUPIX electronics

(46)

• Inductively heated sample

• Helium flow cooling

More on Cooling

Referenzen

ÄHNLICHE DOKUMENTE

Flow directions in the inner double layers... Outer

– detector readout and filter farm (Mainz) – mechanics and cooling (PSI, PI-HD) – experimental infrastructure (PSI) – slow

Gaseous Helium Cooling of a Thin Silicon Pixel Detector for the Mu3e Experiment..

To measure the momentum and vertex position of low momentum electrons (10 - 53 MeV/c) originating from this rare decay with high preci- sion, a tracking detector built from

Thus, besides minimizing the amount of material (and thus the scattering angle θ MS ), a large lever arm is desirable. In muon decays, the electron momenta range from half the muon

• Minimizes scattering angle in middle hit • Linear approximation around circle solution small Multiple Scattering angles.. Efficiency and resolution Short tracks

The improvements are made possible by a novel experimental design based on high voltage monolithic active pixel sensors for high spatial resolution and fast readout

The measurement with helium showed that cooling of the layers with a heat dissipation of 400 mW / cm 2 caused a temperature increase of around 70 − 75 K compared to the