• Keine Ergebnisse gefunden

The Mu3e Experiment

N/A
N/A
Protected

Academic year: 2022

Aktie "The Mu3e Experiment"

Copied!
66
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

The Mu3e Experiment

Niklaus Berger

Physics Institute, University of Heidelberg Charged Lepton Flavour Violation Workshop,

Lecce, May 2013

(2)

• The Question:

Can we observe charged lepton flavour violation?

• The Challenge:

Finding one in 10

16

muon decays

• The Mu3e Detector:

Minimum Material, Maximum Precision

Overview

(3)

The hunt for

charged lepton flavour violation

(4)

History of LFV experiments

90%–CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

μ

μ 3e

μN eN

τ μγ

τ

10–16

SINDRUM SINDRUM II

MEG

MEG plan Mu3e Phase I

Mu3e Phase II Comet/Mu2e

(Updated from W.J. Marciano,

(5)

LFV Muon Decays: Experimental Situation

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

MEG (PSI) SINDRUM II (PSI) SINDRUM (PSI)

B(μ

+

→ e

+

γ) < 5.7 ∙ 10

-13

(2013) B(μ

-

Au → e

-

Au) < 7 ∙ 10

-13

(2006) B(μ

+

→ e

+

e

-

e

+

) < 5.7 ∙ 10

-13

(1988)

running

(6)

LFV Muon Decays: Standard Model

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

Branching ratios suppressed by ∝ m (Δm

2ν

)

2

≈ 10

-50

(7)

LFV Muon Decays: Susy Loops

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

Coherent conversion in

nucleus field for Q

2

(γ) ~ 0 Suppressed by extra

vertex w.r.t. μ → eγ

(8)

LFV Muon Decays: Susy Loops

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

Coherent conversion in Suppressed by extra

SUSY - like many BSM models - naturally induces LFV

(9)

LFV Muon Decays: Susy Loops

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

Coherent conversion in

nucleus field for Q

2

(γ) ~ 0 Suppressed by extra vertex w.r.t. μ → eγ

SUSY - like many BSM models - naturally induces LFV LFV in μ

+

→ e

+

γ implies LFV also in μ

-

N → e

-

N and

μ

+

→ e

+

e

-

e

+

(10)

LFV Muon Decays: Tree diagrams

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

e.g. Leptoquarks e.g. extra Z’, LFV Higgs etc.

Not allowed

(11)

from dimensional analysis:

BR ∝ mμ4 λ4

Z-Penguin diagrams in μ

+

→ e

+

e

-

e

+

BR ∝ mμ4 mZ4

No decoupling in some models

(12)

LFV Muon Decays: Experimental signatures

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

Kinematics

• 2-body decay

• Monoenergetic e+, γ

• Back-to-back

Kinematics

• Quasi 2-body decay

• Monoenergetic e-

• Single particle detected

Kinematics

• 3-body decay

• Invariant mass constraint

• Σ pi = 0

(13)

LFV Muon Decays: Experimental signatures

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

Kinematics

• 2-body decay

• Monoenergetic e+, γ

• Back-to-back Background

• Accidental background

Kinematics

• Quasi 2-body decay

• Monoenergetic e-

• Single particle detected Background

• Decay in orbit

• Antiprotons, pions

Kinematics

• 3-body decay

• Invariant mass constraint

• Σ pi = 0 Background

• Radiative decay

• Accidental background

(14)

LFV Muon Decays: Experimental signatures

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

Kinematics

• 2-body decay

• Monoenergetic e+, γ

• Back-to-back Background

• Accidental background

Kinematics

• Quasi 2-body decay

• Monoenergetic e-

• Single particle detected Background

• Decay in orbit

Kinematics

• 3-body decay

• Invariant mass constraint

• Σ pi = 0 Background

• Radiative decay

Con tinuous Be am

Con tinuous Be am Pul sed Be

am

(15)

New physics in μ

+

→ e

+

e

-

e

+

Tree diagrams

• Higgs triplet model

• Extra heavy vector bosons (Z’)

• Extra dimensions (Kaluza-Klein tower) Loop diagrams

• Supersymmetry

• Little Higgs models

• Seesaw models

• GUT models (leptoquarks)

• and much more...

(16)

Comparison with μ

+

→ e

+

γ

L

LFV

= A m

μ R

μ

R

σ

μν

e

L

F

μν

+ (μ

L

γ

μ

e

L

) (e

L

γ

μ

e

L

) (κ+1)Λ

2

κ (κ+1)Λ

2

• One loop term and one contact term

• Ratio κ between them

• Common mass scale Λ

• Allows for sensitivity comparisons between μ → eee and μ → eγ

• In case of dominating dipole couplings (κ = 0):

B(μ → eee) = 0.006 (essentially αem) B(μ → eγ)

(17)

Searching for

μ

+

→ e

+

e

-

e

+

at the 10

-16

level

(18)

The Mu3e experiment at PSI

Search for μ

+

→ e

+

e

-

e

+

Aim for sensitivity

• 10-15 in phase I

• 10-16 in phase II

Project approved in January 2013

(19)

• DPNC, Geneva University

• Physics Institute, Heidelberg University

• KIP, Heidelberg University

• ZITI Mannheim, Heidelberg University

• Paul Scherrer Institute

• Physics Institute, Zürich University

• Institute for Particle Physics, ETH Zürich

The Mu3e Collaboration

(20)

• We want to find or exclude μ → eee at the 10-16 level

• 4 orders of magnitude over previous experiment (SINDRUM 1988)

The Goal: 10

-16

90%–CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

μ

μ 3e

μN eN

τ μγ

τ

10–16

SINDRUM SINDRUM II

MEG

MEG plan Mu3e Phase I

Mu3e Phase II

(Updated from W.J. Marciano, T. Mori and J.M. Roney,

(21)

• Observe more than 1016 muon decays:

2 Billion muons per second

• Suppress backgrounds by more than 16 orders of magnitude

• Be sensitive for the signal

The Challenges

1940 1960 1980 2000 2020

Year

90%–CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

μ

μ 3e

μN eN

τ μγ

τ

10–16

SINDRUM SINDRUM II

MEG

MEG plan Mu3e Phase I

Mu3e Phase II

(Updated from W.J. Marciano, T. Mori and J.M. Roney, Ann.Rev.Nucl.Part.Sci. 58, 315 (2008))

(22)

Muons from PSI

DC muon beams at PSI:

• πE5 beamline: ~ 108 muons/s

(MEG experiment, Mu3e phase I)

(23)

Muons from PSI

DC muon beams at PSI:

• πE5 beamline: ~ 108 muons/s

(MEG experiment, Mu3e phase I)

• SINQ (spallation neutron source) target could even provide

~ 5 × 1010 muons/s High intensity muon beamline (HIMB) proposal

• The μ → eee experiment (final stage) requires 2 × 109 muons/s focused and collimated on a ~2 cm spot

(24)

• Muon rates in excess of 1010/s in acceptance

• 2∙109/s needed for μ → eee at 10-16

• Not before 2017

The High-Intensity Muon Beamline (HIMB)

Protons

Muons

SINQ Target Neutra Area

Access Shaft Access

Shaft

Pb + Zr + D2O

Vacuum Al

D2O

25 cm

(25)

e +

e + e -

• μ+ → e+e-e+

• Two positrons, one electron

• From same vertex

• Same time

• Sum of 4-momenta corresponds to muon at rest

• Maximum momentum: ½ mμ = 53 MeV/c

The signal

(26)

• Combination of positrons from ordinary muon decay with electrons from:

- photon conversion, - Bhabha scattering, - Mis-reconstruction

• Need very good timing, vertex and momentum resolution

Accidental Background e

+

e

+

e

-

(27)

• Allowed radiative decay with internal conversion:

μ

+

→ e

+

e

-

e

+

νν

• Only distinguishing feature:

Missing momentum carried by neutrinos

Internal conversion background

µ+ νμ

e+

e- e+ νe

γ*

W+

}

Emiss

}

Etot

Branching Ratio

mμ - Etot (MeV)

0 1 2 3 4 5 6

10-12

10-16 10-18 10-13

10-17 10-15 10-14

10-19

• Need excellent μ3e

momentum resolution

(R. M. Djilkibaev, R. V. Konoplich, Phys.Rev. D79 (2009) 073004)

(28)

Building the

Mu3e Experiment

(29)

• 1 T magnetic field

• Resolution dominated by multiple scattering

• Momentum resolution to first order:

Σ

P

/P ~ θ

MS

• Precision requires large lever arm (large bending angle Ω) and low multiple scattering θMS

Momentum measurement

Ω MS

θ

MS

B

(30)

High voltage monolithic active pixel sensors

• Implement logic directly in N-well in the pixel - smart diode array

• Use a high voltage commercial process (automotive industry)

• Small active region, fast charge collection via drift

• Can be thinned down to < 50 μm

(I.Peric, P. Fischer et al., NIM A 582 (2007) 876 )

Fast and thin sensors: HV-MAPS

(31)

HV-MAPS chips: AMS 180 nm HV-CMOS

• MUPIX2:

Characterization during 2012

Single pixel Time-Over-Threshold Binary pixel matrix

• MUPIX3:

Just bonded

Column logic with address generation Extensive test beam campaign 2013

The MUPIX chips

MUPIX2

36 x 42 pixels

30 x 39 μm pixel size 1.8 mm2 active area MUPIX3

40 x 32 pixels

80 x 92 μm pixel size 9.4 mm2 active area For Mu3e:

256 x 256 pixels

80 x 80 μm pixel size 4 cm2 area, 95% active

(32)

• Measurements with 55Fe source

• Good energy measurement

• Very good signal to noise

Details in theses:

A.K. Perrevoort: Characterization of HV-MAPS for Mu3e (Master thesis, 2012)

H. Augustin: Charakterisierung von HV-MAPS (Bachelor thesis, 2012)

MUPIX 2 Results

ToT [µs]

0 1 2 3 4 5

10-4

10-3

10-2

10-1

1 55Fe peak

SNR

5 10 15 20 25 30 35 40

Signal to Noise

(33)

• Measurements with LED pulses

• High-Voltage important for fast signal

• Amplification above ~70 V

Details in theses:

A.K. Perrevoort: Characterization of HV-MAPS for Mu3e (Master thesis, 2012)

H. Augustin: Charakterisierung von HV-MAPS (Bachelor thesis, 2012)

available from www.psi.ch/mu3e

MUPIX 2 Results

HV [V]

0 20 40 60 80

Latency [ns]

300 350 400 450 500 550 600 650 700

ToT [µs]

4 5 6 7 8 9 10

11 12

HV [V]

0 20 40 60 80

(34)

MUPIX 2 results

• Test beam at CERN SPS (170 GeV/c pions)

• Timepix telescope

• 2 hours data taking

• Mostly single pixel clusters

• Resolution as expected (pixel size/√12)

• More test beam data under study Resolution for 30 × 40 μm pixels

(35)

Introduction

Y

• X

(36)

• 50 μm silicon

• 25 μm Kapton™ flexprint with aluminium traces

• 25 μm Kapton™ frame as support

• Less than 1‰ of a radiation length per layer

Mechanics

(37)
(38)
(39)

• Add no material:

Cool with gaseous Helium

• ~ 150 mW/cm2 - total 2 kW

• Simulations: Need ~ 1 m/s flow

• First measurements: Need several m/s

• Full scale prototype on the way

Cooling

Details in thesis:

M. Zimmermann: Cooling with Gaseous Helium for the Mu3e Experiment

(Bachelor thesis, 2012)

available from www.psi.ch/mu3e

(40)

Introduction

Y

• X

(41)

• 1 T magnetic field

• Resolution dominated by multiple scattering

• Momentum resolution to first order:

Σ

P

/P ~ θ

MS

• Precision requires large lever arm (large bending angle Ω) and low multiple scattering θMS

Momentum measurement

Ω MS

θ

MS

B

(42)

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

(43)

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

(44)

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

(45)

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

(46)

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

Ω ~ π MS

θMS

B

(47)

Detector Design

Target μ Beam

(48)

Detector Design

Target Inner pixel layers μ Beam

(49)

Detector Design

Target Inner pixel layers

Outer pixel layers μ Beam

(50)

Detector Design

Target Inner pixel layers

Scintillating fibres

Outer pixel layers μ Beam

(51)

Detector Design

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

μ Beam

(52)

Detector Design

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

(53)

• 3-5 layers of 250 μm scintillating fibres

• Read-out by silicon photomultipliers (SiPMs) and custom ASIC

• Timing resolution O(1 ns)

Timing Detector: Scintillating Fibres

x hitpos [mm]

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

y hitpos [mm]

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

0 10 20 30 40 50 60 70 80 90

(54)

Timing Detector: Scintillating tiles

• ~ 1 cm3 scintillating tiles

• Read-out by silicon photomultipliers (SiPMs) and custom ASIC

• Timing resolution O(100 ps)

p

(55)

• 280 Million pixels (+ fibres and tiles)

• No trigger

• ~ 1 Tbit/s

• FPGA-based switching network

• O(50) PCs with GPUs

Data Acquisition

Pixel Sensors

up to 108 800 Mbit/s links

FPGA FPGA FPGA

...

...

RO Boards 1 3 Gbit/s

link each

GPU

PC GPU

PC

GPU ... PC

12 10 Gbit/s ...

links per RO Board 4 Inputs each

Data Collection

Server

Mass Storage Gbit Ethernet

Pixel DAQ

(56)

Online software filter farm

• Continuous front-end readout (no trigger)

• ~ 1 Tbit/s

• PCs with FPGAs and Graphics Processing Units (GPUs)

• Online track and event reconstruction

• 109 3D track fits/s achieved

• Data reduction by factor ~1000

• Data to tape < 100 Mbyte/s

Online filter farm

(57)

• 3D multiple scattering track fit

• Simulation results:

280 keV single track momentum 520 keV total mass resolution

Simulated Performance

Hits fitted per track

0 1 2 3 4 5 6 7 8 9

103

104

Reconstructed Momentum [MeV/c]

0 10 20 30 40 50 60

1 10 102

103

Rec. Momentum - Gen. Momentum [MeV/c]

-3 -2 -1 0 1 2 3

1 10 102

103

104 RMS: 0.28 MeV/c

Reconstructed track polar angle

0 0.5 1 1.5 2 2.5 3

1 10 102

103

2] Reconstructed Mass [MeV/c

1020 103 104 105 106 107 108 109 110 200

400 600 800 1000 1200 1400 1600

RMS: 0.52 MeV/c2

: 0.31 MeV/c2

σ1

: 0.71 MeV/c2

σ2

: 0.37 MeV/c2

σav

(58)

Simulated Performance

2] Reconstructed Mass [MeV/c

101 102 103 104 105 106

Events per muon decay and 0.1 MeV

10-20

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10 µ eeeνν generated

simulated ν

ν

eee µ

Signal BF 10-12

Signal BF 10-13

Signal BF 10-14

Signal BF 10-15

Signal BF 10-16

Signal BF 10-17

(59)

Sensitivity

Phase IA: Starting 2015

Target Inner pixel layers

Outer pixel layers μ Beam

(60)

Sensitivity

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

(61)

Sensitivity

Phase II: 2017+

New Beam Line

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

(62)

• Mu3e aims for μ → eee at the 10-16 level

• First large scale use of HV-MAPS

• Build detector layers thinner than a hair

• Timing at the 100 ps level

• Reconstruct 2 billion tracks/s in 1 Tbit/s on ~50 GPUs

• Start data taking in 2015

• 2 billion muons/s from HIMB after 2017

Conclusion

1940 1960 1980 2000 2020

Year

90%–CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

μ

μ 3e

μN eN

τ μγ

τ

10–16

SINDRUM SINDRUM II MEG

MEG plan Mu3e Phase I

Mu3e Phase II

(63)

Backup Material

(64)

Radiation Hardness

• Requirements not as strict as at LHC

• Irradiation at PS

• After 380 MRad (8×1015 neq/cm2)

• Chip still working

(65)

MUPIX electronics

(66)

A general effective Lagrangian

Tensor terms (dipole)

L

μ → eee

= 2 G

F

( m

μ

A

R

μ

R

σ

μν

e

L

F

μν

+ m

μ

A

L

μ

L

σ

μν

e

R

F

μν

+ g

1

R

e

L

) (e

R

e

L

) + g

2

L

e

R

) (e

L

e

R

)

+ g

3

R

γ

μ

e

R

) (e

R

γ

μ

e

R

) + g

4

L

γ

μ

e

L

) (e

L

γ

μ

e

L

)

+ g

5

R

γ

μ

e

R

) (e

L

γ

μ

e

L

) + g

6

L

γ

μ

e

L

) (e

R

γ

μ

e

R

) + H. C. )

e.g. supersymmetry

Four-fermion terms scalar

vector

e.g. Z’

(Y. Kuno, Y. Okada,

Referenzen

ÄHNLICHE DOKUMENTE

Tracks per readout frame of 50 ns Exploiting time resolution of scintillating fibres (1 ns) and tiles

To measure the momentum and vertex position of low momentum electrons (10 - 53 MeV/c) originating from this rare decay with high preci- sion, a tracking detector built from

Thus, besides minimizing the amount of material (and thus the scattering angle θ MS ), a large lever arm is desirable. In muon decays, the electron momenta range from half the muon

High Voltage Monolithic Active Pixel Sensors.. • The

voltage monolithic active pixel sensors for precise tracking at high rates and scintillating fibres for high resolution time measurements.. Theory In the Standard Model

As high momentum tracks (large bending radius) contribute with a large weight to the total energy measurement, a design is proposed, which measures high momentum tracks at p T &gt;

The improvements are made possible by a novel experimental design based on high voltage monolithic active pixel sensors for high spatial resolution and fast readout

Using a commercial 180 nm CMOS process originating in the automotive industry, high voltage monolithic active pixel sensors housing the pixel electronics inside a deep N-well can