• Keine Ergebnisse gefunden

The Mu3e Experiment

N/A
N/A
Protected

Academic year: 2022

Aktie "The Mu3e Experiment"

Copied!
63
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Mu3e Experiment The

Niklaus Berger

PI Palaver,

April 2013

(2)

• The Challenge:

Finding one in 10

16

muon decays

• The Technology:

High Voltage Monolithic Active Pixel Sensors

• The Mu3e Detector:

Minimum Material, Maximum Precision

Overview

(3)

Niklaus Berger – PI Palaver, April 2013 – Slide 3

All there, works beautifully, but...

• Why three generations?

• Why the mixing patterns between generations?

• Is there more to it?

(the dark universe...)

The Standard Model of Elementary Particles

e

-

ν

e

μ

-

ν

μ

τ

-

ν

τ

u c t

d s b

γ g Z W

+/-

Higgs

(4)

All there, works beautifully, but...

• Why three generations?

• Why the mixing patterns between generations?

• Is there more to it?

(the dark universe...)

The Standard Model of Elementary Particles

e

-

ν

μ

-

ν

τ

-

u c t

d s b

γ g Z W

+/-

Higgs

Leptons

(5)

Niklaus Berger – PI Palaver, April 2013 – Slide 4

Lepton Bookkeeping

Normal Muon Decay:

μ

-

e

-

ν

e

ν

μ

(6)

Lepton Bookkeeping

Normal Muon Decay:

μ

-

Muon number 1

e

-

Electron number 1

ν

e

Electron number -1

ν

μ

Muon number 1

(7)

Niklaus Berger – PI Palaver, April 2013 – Slide 4

Lepton Bookkeeping

Normal Muon Decay:

μ

-

Muon number 1

e

-

Electron number 1

ν

e

Electron number -1

ν

μ

Muon number 1 Before:

Muons 1 Elektrons 0

After:

Muons 1

Electrons 0

(8)

Cooked books?

ν

e

Electron number 1 ν

μ

Muon number 1

(9)

Niklaus Berger – PI Palaver, April 2013 – Slide 6

Cooked books?

How about charged leptons (Muons)?

μ

+

Muon number -1

e

+

Electron number -1

Before:

Muons -1 Electrons 0

After:

Muons 0 Electrons -1

e

-

Electron number 1 e

+

Electron number -1

(10)

This

(charged lepton flavour violation)

has never been seen

(11)

Niklaus Berger – PI Palaver, April 2013 – Slide 8

• Neutrinos have mass

• Leptons do change flavour

• However: Standard Model

branching ratio for μ → eee < 10-50

Charged Lepton Flavour Violation

µ + e +

W +

ν µ ν e

γ

e - e +

*

(12)

• Neutrinos have mass

• Leptons do change flavour

• However: Standard Model

branching ratio for μ → eee < 10-50

• Can be much bigger with new physics

Charged Lepton Flavour Violation

µ + χ ~ 0 e +

µ e~

~

γ

e - e +

*/Z

(13)

Niklaus Berger – PI Palaver, April 2013 – Slide 10

• We want to find or exclude μ → eee at the 10-16 level

• 4 orders of magnitude over previous experiment (SINDRUM 1988)

The Goal: 10

-16

1940 1960 1980 2000 2020

Year

90%–CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

μ

μ 3e

μN eN

τ μγ

τ

10–16

SINDRUM SINDRUM II

MEG

MEG plan Mu3e Phase I

Mu3e Phase II

(Updated from W.J. Marciano, T. Mori and J.M. Roney, Ann.Rev.Nucl.Part.Sci. 58, 315 (2008))

(14)

Search with SINDRUM (1988)

Less than one in 10

12

muon decays is to three electrons Corresponding to one gray hair in the population of

Baden-Württemberg

(15)

Niklaus Berger – PI Palaver, April 2013 – Slide 12

Our goal

Check whether more than one in 10

16

muon decays is to three electrons

Corresponding to one gray hair in all humans that ever

lived

(16)

• Observe more than 10

16

muon decays:

2 Billion muons per second

• Suppress backgrounds by more than 16 orders of magnitude

• Be sensitive for the signal

The Challenges

(17)

Niklaus Berger – PI Palaver, April 2013 – Slide 14

Muons from PSI

• The Paul Scherrer Institut (PSI) in Villigen, Switzerland has the world’s most

powerful DC proton beam (2.2 mA at 590 MeV)

• Pions and then muons are produced in rotating carbon targets

(18)

e +

e + e -

• μ+ → e+e-e+

• Two positrons, one electron

• From same vertex

• Same time

• Sum of 4-momenta corresponds to muon at rest

• Maximum momentum: ½ mμ = 53 MeV/c

The signal

(19)

Niklaus Berger – PI Palaver, April 2013 – Slide 16

• Combination of positrons from ordinary muon decay with electrons from:

- photon conversion, - Bhabha scattering, - Mis-reconstruction

• Need very good timing, vertex and momentum resolution

Accidental Background e

+

e

+

e

-

(20)

• Allowed radiative decay with internal conversion:

μ

+

→ e

+

e

-

e

+

νν

• Only distinguishing feature:

Missing momentum carried by neutrinos

Internal conversion background

µ+ νμ

e+

e- e+ νe

γ*

W+

}

Emiss

}

Etot

Branching Ratio

m - E (MeV)

0 1 2 3 4 5 6

10-12

10-16 10-18 10-13

10-17 10-15 10-14

10-19

• Need excellent μ3e

momentum resolution

(R. M. Djilkibaev, R. V. Konoplich,

(21)

Niklaus Berger – PI Palaver, April 2013 – Slide 18

• 1 T magnetic field

• Resolution dominated by multiple scattering

• Momentum resolution to first order:

Σ

P

/P ~ θ

MS

• Precision requires large lever arm (large bending angle Ω) and low multiple scattering θMS

Momentum measurement

Ω MS

θ

MS

B

(22)

High voltage monolithic active pixel sensors

• Implement logic directly in N-well in the pixel - smart diode array

• Use a high voltage commercial process (automotive industry)

• Small active region, fast charge collection via drift

• Can be thinned down to < 50 μm

• Invented by Ivan Peric at ZITI Mannheim

(I.Peric, P. Fischer et al., NIM A 582 (2007) 876 )

Fast and thin sensors: HV-MAPS

(23)

Niklaus Berger – PI Palaver, April 2013 – Slide 20

HV-MAPS chips: AMS 180 nm HV-CMOS

• MUPIX2:

Characterization during 2012

Single pixel Time-Over-Threshold Binary pixel matrix

• MUPIX3:

Column logic with address generation

Extensive test beam campaign 2013

The MUPIX chips

MUPIX2

36 x 42 pixels

30 x 39 μm pixel size 1.8 mm2 active area MUPIX3

40 x 32 pixels

80 x 92 μm pixel size 9.4 mm2 active area For Mu3e:

256 x 256 pixels

80 x 80 μm pixel size 4 cm2 area, 95% active

(24)

• Measurements with 55Fe source

• Good energy measurement

• Very good signal to noise

Details in theses:

A.K. Perrevoort: Characterization of HV-MAPS for Mu3e (Master thesis, 2012)

H. Augustin: Charakterisierung von HV-MAPS (Bachelor thesis, 2012)

MUPIX 2 Results

ToT [µs]

0 1 2 3 4 5

10-4

10-3

10-2

10-1

1 55Fe peak

SNR

5 10 15 20 25 30 35 40

Signal to Noise

(25)

Niklaus Berger – PI Palaver, April 2013 – Slide 22

(26)

MUPIX3 Set-up

(27)

Niklaus Berger – PI Palaver, April 2013 – Slide 24

Introduction

Y

• X

(28)

• 50 μm silicon

• 25 μm Kapton™ flexprint with aluminium traces

• 25 μm Kapton™ frame as support

• Less than 1‰ of a radiation length per layer

Mechanics

(29)

Niklaus Berger – PI Palaver, April 2013 – Slide 26

(30)
(31)
(32)
(33)

Niklaus Berger – PI Palaver, April 2013 – Slide 30

• Add no material:

Cool with gaseous Helium

• ~ 150 mW/cm2 - total 2 kW

• Simulations: Need ~ 1 m/s flow

• First measurements: Need several m/s

• Full scale prototype on the way

Cooling

Details in thesis:

M. Zimmermann: Cooling with Gaseous Helium for the Mu3e Experiment

(Bachelor thesis, 2012)

available from www.psi.ch/mu3e

(34)
(35)

Niklaus Berger – PI Palaver, April 2013 – Slide 32

• 1 T magnetic field

• Resolution dominated by multiple scattering

• Momentum resolution to first order:

Σ

P

/P ~ θ

MS

• Precision requires large lever arm (large bending angle Ω) and low multiple scattering θMS

Momentum measurement

Ω MS

θ

MS

B

(36)

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

(37)

Niklaus Berger – PI Palaver, April 2013 – Slide 33

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

(38)

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

(39)

Niklaus Berger – PI Palaver, April 2013 – Slide 33

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

(40)

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

Ω ~ π MS

θMS

B

(41)

Niklaus Berger – PI Palaver, April 2013 – Slide 34

Detector Design

Target μ Beam

(42)

Detector Design

Target Inner pixel layers

μ Beam

(43)

Niklaus Berger – PI Palaver, April 2013 – Slide 34

Detector Design

Target Inner pixel layers

Outer pixel layers μ Beam

(44)

Detector Design

Target Inner pixel layers

Scintillating fibres

Outer pixel layers μ Beam

(45)

Niklaus Berger – PI Palaver, April 2013 – Slide 34

Detector Design

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

μ Beam

(46)

Detector Design

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

(47)

Niklaus Berger – PI Palaver, April 2013 – Slide 35

• 280 Million pixels (+ fibres and tiles)

• No trigger

• ~ 1 Tbit/s

• FPGA-based switching network

• O(50) PCs with GPUs

Data Acquisition

Pixel Sensors

up to 108 800 Mbit/s links

FPGA FPGA FPGA

...

...

RO Boards 1 3 Gbit/s

link each

GPU

PC GPU

PC

GPU ... PC

12 10 Gbit/s ...

links per RO Board 4 Inputs each

Data Collection

Server

Mass Storage Gbit Ethernet

Pixel DAQ

(48)

Online software filter farm

• Continuous front-end readout (no trigger)

• ~ 1 Tbit/s

• PCs with FPGAs and Graphics Processing Units (GPUs)

• Online track and event reconstruction

• 109 3D track fits/s achieved

• Data reduction by factor ~1000

• Data to tape < 100 Mbyte/s

Online filter farm

(49)

Niklaus Berger – PI Palaver, April 2013 – Slide 37

Simulated Performance

2] Reconstructed Mass [MeV/c

101 102 103 104 105 106

Events per muon decay and 0.1 MeV

10-20

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10 µ eeeνν generated

simulated ν

ν

eee µ

Signal BF 10-12

Signal BF 10-13

Signal BF 10-14

Signal BF 10-15

Signal BF 10-16

Signal BF 10-17

(50)

Sensitivity

Target Inner pixel layers

Outer pixel layers μ Beam

(51)

Niklaus Berger – PI Palaver, April 2013 – Slide 38

Sensitivity

Phase IB: 2016+

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

(52)

Sensitivity

Phase II: 2017+

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

(53)

Niklaus Berger – PI Palaver, April 2013 – Slide 39

A collaboration has formed and submitted a research proposal to PSI

• University of Geneva

• University of Heidelberg: PI and KIP

• Paul Scherrer Institut (PSI)

• University of Zurich

• ETH Zurich

Also in contact with other interested groups

Collaboration

(54)

• Mu3e aims for μ → eee at the 10-16 level

• First large scale use of HV-MAPS

• Build detector layers thinner than a hair

• Reconstruct 2 billion tracks/s in 1 Tbit/s on ~50 GPUs

• Start taking first data in 2015

Conclusion

1940 1960 1980 2000 2020

Year

90%–CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

μ

μ 3e

μN eN

τ μγ

τ

10–16

SINDRUM SINDRUM II MEG

MEG plan Mu3e Phase I

Mu3e Phase II

(55)

Niklaus Berger – PI Palaver, April 2013 – Slide 41

Backup Material

(56)

• One loop term and one contact term

• Ratio κ between them

• Common mass scale Λ

• Allows for sensitivity comparisons between μ → eee and μ → eγ

• In case of dominating dipole couplings (κ = 0):

B(μ → eee) = 0.006 (essentially αem) B(μ → eγ)

Comparison with μ → eγ

L

LFV

= A m

μ R

μ

R

σ

μν

e

L

F

μν

+ (μ

L

γ

μ

e

L

) (e

L

γ

μ

e

L

) (κ+1)Λ

2

κ (κ+1)Λ

2

µ+ χ~0 e+

µ e~

~

γ

e- e+

*/Z µ+

e+ e-

e+ Z’

(57)

Niklaus Berger – PI Palaver, April 2013 – Slide 43

• Z-Penguins can be important

• Lots of ongoing theory activity

Comparison with μ → eγ

L

LFV

= A m

μ R

μ

R

σ

μν

e

L

F

μν

+ (μ

L

γ

μ

e

L

) (e

L

γ

μ

e

L

) (κ+1)Λ

2

κ (κ+1)Λ

2

µ+ χ~0 e+

µ e~

~

γ

e- e+

*/Z

(58)

Radiation Hardness

• Requirements not as strict as at LHC

• Irradiation at PS

• After 380 MRad (8×1015 neq/cm2)

• Chip still working

(59)

Niklaus Berger – PI Palaver, April 2013 – Slide 45

MUPIX electronics

(60)

• Inductively heated sample

• Helium flow cooling

More on Cooling

(61)

Niklaus Berger – PI Palaver, April 2013 – Slide 47

• 3D multiple scattering track fit

• Simulation results:

280 keV single track momentum 520 keV total mass resolution

Simulated Performance

Hits fitted per track

0 1 2 3 4 5 6 7 8 9

103

104

Reconstructed Momentum [MeV/c]

0 10 20 30 40 50 60

1 10 102

103

Rec. Momentum - Gen. Momentum [MeV/c]

-3 -2 -1 0 1 2 3

1 10 102

103

104 RMS: 0.28 MeV/c

Reconstructed track polar angle

0 0.5 1 1.5 2 2.5 3

1 10 102

103

2] Reconstructed Mass [MeV/c

1020 103 104 105 106 107 108 109 110 200

400 600 800 1000 1200 1400 1600

RMS: 0.52 MeV/c2

: 0.31 MeV/c2

s1

: 0.71 MeV/c2

s2

: 0.37 MeV/c2

sav

(62)

MUPIX 2 results

• Test beam at CERN SPS (170 GeV/c pions)

• Timepix telescope

• 2 hours data taking

• Mostly single pixel clusters

• Resolution as expected (pixel size/√12)

• March test beam data (DESY, electrons) currently being analysed

• Next beam week in June Resolution for 30 × 40 μm pixels

(63)

Niklaus Berger – PI Palaver, April 2013 – Slide 49

• Measurements with LED pulses

• High-Voltage important for fast signal

• Amplification above ~70 V

Details in theses:

A.K. Perrevoort: Characterization of HV-MAPS for Mu3e (Master thesis, 2012)

H. Augustin: Charakterisierung von HV-MAPS (Bachelor thesis, 2012)

available from www.psi.ch/mu3e

MUPIX 2 Results

HV [V]

0 20 40 60 80

Latency [ns]

300 350 400 450 500 550 600 650 700

ToT [µs]

4 5 6 7 8 9 10

11 12

HV [V]

0 20 40 60 80

Referenzen

ÄHNLICHE DOKUMENTE

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz

– detector readout and filter farm (Mainz) – mechanics and cooling (PSI, PI-HD) – experimental infrastructure (PSI) – slow

To measure the momentum and vertex position of low momentum electrons (10 - 53 MeV/c) originating from this rare decay with high preci- sion, a tracking detector built from

Thus, besides minimizing the amount of material (and thus the scattering angle θ MS ), a large lever arm is desirable. In muon decays, the electron momenta range from half the muon

In summary, the Mu3e detector must provide excellent vertex and timing resolution as well as an average momentum resolu- tion better than 0.5 MeV/c with a large geometrical

The Mu3e detector consists of two double layers of high voltage monolithic active pixel sensors (HV-MAPS) around a target double cone..

• Minimizes scattering angle in middle hit • Linear approximation around circle solution small Multiple Scattering angles.. Efficiency and resolution Short tracks

The improvements are made possible by a novel experimental design based on high voltage monolithic active pixel sensors for high spatial resolution and fast readout