• Keine Ergebnisse gefunden

Background in the Mu3e Experiment Searching for Lepton Flavour Violation

N/A
N/A
Protected

Academic year: 2022

Aktie "Background in the Mu3e Experiment Searching for Lepton Flavour Violation"

Copied!
28
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Background in the Mu3e Experiment

Searching for Lepton Flavour Violation

Ann-Kathrin Perrevoort

on behalf of the Mu3e Collaboration

Physikalisches Institut, Heidelberg

International School of Subnuclear Physics, Erice 2015

(2)

The Mu3e Experiment

Indirect search for the lepton flavour violating decayµ+e+ee+

In this talk

Introduction to Mu3e

Detector Concept

Background Studies

A. Perrevoort (Heidelberg) Mu3e ISSP Erice 2015 2 / 14

(3)

The Mu3e Experiment

Charged Lepton Flavour Violating Decayµ+ e+ee+

Lepton Flavour conserved in Standard Model

. . . butνoscillations

Expectation from lepton mixing: BRµeee∼(∆mν)4<1054

(4)

The Mu3e Experiment

Charged Lepton Flavour Violating Decayµ+ e+ee+

Observation ofµ →eee is a clear sign for New Physics

SUSY, extra heavy vector bosons (Z’), . . .

Mu3e is sensitive to one in 1015µdecays

Current limit: BRµeee<1.0⋅1012at 90 % CL[SINDRUM, 1988]

A. Perrevoort (Heidelberg) Mu3e ISSP Erice 2015 4 / 14

(5)

Signal Decay µ → eee

Signature forµdecay at rest Common vertex

Coincident in time

Ee=mµc2

∑⃗pe =0

Ee=(053)MeV

Multiple Coulomb scattering limits momentum resolution

(6)

Background

Accidental Combinations

e+

e+ e-

e+

e- e+

(e+)

Overlays of Michel decay, Bhabha scattering, photon conversion, . . .

No common vertex Not coincident

Eemµc2

∑⃗pe0

Increases withbeam intensity

A. Perrevoort (Heidelberg) Mu3e ISSP Erice 2015 6 / 14

(7)

Background

Internal Conversion Decayµ eeeνν

BRµ+e+ee+νµνe =(3.4±0.4)⋅105[Nucl.Phys.B260, 1985]

Common vertex Coincident in time

Ee<mµc2

∑⃗pe0

→Missing energy due to neutrinos Need very good momentum resolution

(8)

The Mu3e Detector

Tracking detector:

50 µm Si pixel sensors (HV-MAPS) + Lightweight mechanics

+ Timing detector:

+Scintillating fibres and tiles

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

Paul-Scherrer Institute (CH) Polarizedµbeam with 108µ/s

Full Geant4-based simulation

A. Perrevoort (Heidelberg) Mu3e ISSP Erice 2015 8 / 14

(9)

The Mu3e Detector

Tracking detector:

50 µm Si pixel sensors (HV-MAPS) + Lightweight mechanics

+ Timing detector:

+Scintillating fibres and tiles

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

Paul-Scherrer Institute (CH)

Polarizedµbeam with 108µ/s Full Geant4-based simulation

(10)

Mu3e Simulation

Physics Processes

Background decays

Michel decayµ → eνν Radiative decayµ → eγνν Internal conversionµ → eeeνν Signalµ → eee

3-body decay Other effects

Multiple Coulomb scattering Bhabha scattering

A. Perrevoort (Heidelberg) Mu3e ISSP Erice 2015 9 / 14

(11)

Internal Conversion Decay µ → eee νν in Simulation

Γµeeeνν∝∣Tµeeeνν2ρ

Matrix element by Djilkibaev and Konoplich[Phys.Rev.D79, 2009]

Only unpolarized muons

(12)

Internal Conversion Decay µ → eee νν in Simulation

10.80.60.40.2 0 0.2 0.4 0.6 0.8 1 0

0.02 0.04 0.06 0.08 0.1

Polarized Unpolarized

cos

Acceptance cut:

mvis>90MeV; pT>10MeV;|cos |<0.8

d / (d|cos |=0.1)

High-energy positrons in acceptance

θ

e

μ polarisation μ beam

μ

Γµeeeνν∝∣Tµeeeνν2ρ

New calculations by A. Signer et al. (PSI) take polarisation into account

A. Perrevoort (Heidelberg) Mu3e ISSP Erice 2015 10 / 14

(13)

Internal Conversion Decay µ → eee νν in Simulation

Branching Ratio

m - Etot(MeV)

0 1 2 3 4 5 6

10-12

10-16

10-18 10-13

10-17 10-15 10-14

10-19

Djilkibaev, Konoplich Phys.Rev.D79(2009)

Suppressµ → eeeννby cuts on electron energy Etot=∑Ee

µeee

ÐÐÐÐ→mµc2

(14)

Internal Conversion Decay µ → eee νν in Simulation

0 1 2 3 4 5 6

19

10

18

10

17

10

16

10

15

10

14

10

13

10

12

10

mμ

-E

tot

[MeV]

Branchi ng Rati o

Internal Conversion Decay A. Signer et al.

Suppressµ → eeeννby cuts on electron energy Etot=∑Ee

µeee

ÐÐÐÐ→mµc2

A. Perrevoort (Heidelberg) Mu3e ISSP Erice 2015 11 / 14

(15)

Internal Conversion Decay µ → eee νν in Simulation

Branching Ratio

m - Etot(MeV)

0 1 2 3 4 5 6

10-12

10-16

10-18 10-13

10-17 10-15 10-14

10-19

Djilkibaev, Konoplich Phys.Rev.D79(2009)

Suppressµ → eeeννby cuts on electron energy Etot=∑Ee

µeee

ÐÐÐÐ→mµc2

(16)

Sensitivity Studies

Reconstructed mass for signal and background events

2] Reconstructed Mass [MeV/c 96 98 100 102 104 106 108 110

2 Events per 100 keV/c

10-4

10-3

10-2

10-1

1 10

Internal Conversion Background

eee at 10-12

µ

eee at 10-13

µ

eee at 10-14

µ

eee at 10-15

µ

+ Michel e+

e-

Bhabha e+

Mu3e: 1·1015 μ on Target; Rate 108 μ/s

SIMULATION

A. Perrevoort (Heidelberg) Mu3e ISSP Erice 2015 12 / 14

(17)

Summary

Mu3e

Precision experiment searching for LFV decayµ → eee Aiming at a sensitivity of BR∼10−15

Simulation

Full description of the experiment All background processes considerµ polarization

Next steps

Higher order corrections for background Sensitivity studies for different models beyond SM

(18)

Status

Tests of HV-MAPS prototype

Mechanical prototype

Current status

Research proposal approved in 2013 Technical design report in preparation (Q1 2016)

Research and development of subsystems Preparation of detector construction Outlook

Commissioning and first data in 2017

A. Perrevoort (Heidelberg) Mu3e ISSP Erice 2015 14 / 14

(19)
(20)

History of LFV Searches in µ and τ Decays

1940 1960 1980 2000 2020

Year

90%CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

e

3e

N eN

3

10–16

SINDRUM SINDRUM II MEG

MEG II Mu3e Phase I

Mu3e Phase II Comet/Mu2e

Adapted from Marciano et al. [Ann.Rev.Nucl.Part.Sci.58, 2008]

A. Perrevoort (Heidelberg) Mu3e ISSP Erice 2015 2 / 10

(21)

Loop and Tree Level Contributions

LLFV=[(κ+m1µ)Λ2µRσµνeLFµν]

γpenguin+[(κ+κ1)Λ2(µLγµeL)(eLγµeL)]

tree

Adapted from A. de Gouv ˆea [Nucl.Phys.B188 2009]

(22)

Mu3e Simulation

Radiative Muon Decayµ eγνν

BRµeγνν=(1.0.4)% forEγmin>10 MeV Use BR calculated by Kuno et al. [Rev.Mod.Phys 73, 2001]

0 0.2 0.4 0.6 0.8 1

10-5 10-4 10-3 10-2 10-1 1 10 102 103 104

105 1.0/y

Polarized BR Unpolarized BR

Generated distribution

histo for test1

y dBrad

Distribution of photon momentumy=2pmµγ

Divergence forEγ →0 Generateγ momentum distributed according to∼ E1γ Accept/reject events based on BR

Assign minimumEγmin, typ.

10 MeV

Scale BR using MC integration forEγmin≠10 MeV

A. Perrevoort (Heidelberg) Mu3e ISSP Erice 2015 4 / 10

(23)

Pixel Sensors

P-substrate N-well

Particle E field

I. Peri´c, NIM A 582 (2007)

High Voltage Monolithic Active Pixel Sensors

• High voltage of>50 V

• Fast charge collection via drift

• Depletion zone of∼10 µm Thinning possible (≲50 µm)

• Integrated readout electronics

• Pixel size 80×80µm2 Thin and highly granular

(24)

Lightweight Mechanics

• 50 µm silicon sensor

• 25 µm Kapton flexprint with aluminum traces

• 25 µm Kapton support structure

→ ∼1 ‰ of radiation length

A. Perrevoort (Heidelberg) Mu3e ISSP Erice 2015 6 / 10

(25)

Muon Beam at PSI

Paul-Scherrer Institute in Switzerland 2.2 mA proton beam 590 MeV

Secondary beamlines: µ+with 28 MeV/c

108muons/s at existing beamline 109muons/s at future beamline

→Phase I

Phase II

(26)

Phase II Detector

Reach BR∼1016with a muon rate of 109µ/s

A. Perrevoort (Heidelberg) Mu3e ISSP Erice 2015 8 / 10

(27)

Simulation of 50 ns of Beam Time (Phase II)

Tracks per readout frame of 50 ns Exploiting time resolution of scintillating fibres (1 ns) and tiles (0.1 ns)

(28)

Readout Concept

...

4860 Pixel Sensors

up to 56 1250 Mbit/s links

FPGA FPGA FPGA

...

82 FPGAs

RO Board

RO Board

RO Board

RO Board 1 6 Gbit/s

link each

Group A Group B Group C Group D

GPU PC

GPU PC

GPU PC 12 PCs

Subfarm A ...

12 10 Gbit/s links per RO Board 8 Inputs each

GPU PC

GPU PC

GPU PC 12 PCs

Subfarm D 4 Subfarms

~ 4000 Fibres

FPGA FPGA

...

16 FPGAs

~ 7000 Tiles

FPGA FPGA

...

14 FPGAs

RO Board

RO Board

RO Board

RO Board Group A Group B Group C Group D

RO Board

RO Board

RO Board

RO Board Group A Group B Group C Group D

Data Collection

Server

Mass Storage Gbit Ethernet

A. Perrevoort (Heidelberg) Mu3e ISSP Erice 2015 10 / 10

Referenzen

ÄHNLICHE DOKUMENTE

Figure 4.8: Orientation of the MuPix chips on layers 1 &amp; 2 with the detector in yellow, periphery in red and blue cooling flow..

• Switch the data stream between front-end FPGAs and the filter farm. • Merge the data of sub-detectors and the data from

Store time stamp and row address of 1 st hit in column in end-of-column cell Delete hit flag.. LdCol

voltage monolithic active pixel sensors for precise tracking at high rates and scintillating fibres for high resolution time measurements.. Theory In the Standard Model

Thin pixel silicon tracker and scintillating fibre timing detector. A μ →

Using a commercial 180 nm CMOS process originating in the automotive industry, high voltage monolithic active pixel sensors housing the pixel electronics inside a deep N-well can

On each side, the flex print cables from both sensors end at the bottom of the support structure, where they are connected to the scintillating fibre board (scifi board).. Figure

The experiment is built in a modular principle consisting of silicon pixel sensors for the vertex and momentum measurement and of scintillator fibers and tiles that deliver