• Keine Ergebnisse gefunden

Scintillating Fibers for High Resolution Time Measurements?

N/A
N/A
Protected

Academic year: 2022

Aktie "Scintillating Fibers for High Resolution Time Measurements?"

Copied!
18
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Scintillating Fibers for High Resolution Time Measurements?

Simon Corrodi

on behalf of the Mu3e Fibre Group

BTTB5, 25 th January, 2017, Barcelona

(2)

Scintillation: Organic Plastic Scintillators

Polystyrene (PS) + dopants (scintillator, wavelength shifter)

or Polyvinlyltoluene (PVT)

solvent particle

dE/dx

scintillator

~10g/l

wavelength shifter

non- radiativ

fl uorescence

UV visible

"Förster" "Stokes"

S0 S*

S**

excitation internal degradation

T0 T*

vibrational states combined transition

scintillation

Stokes-shift

(decay not to S 0 ) makes fibres transparent.

scintillation: O (1 ns)

2 / 18

(3)

(Scintillating) Fibers

part

material

n

core:

polystyrene (PS)

1.59 cladding I:

polymethyl methacrylate

1.49

“plexiglas” (PMMA)

cladding II:

fluorinated polymer (FP)

1.42

n=1.49 n=1.42

particle

lost photon captured photon

n=1.59 26.7º

17.6º

PMMA FP

d=3-4% D d=1-2% D D

45.7º

Θ total reflection = arcsin n

cladding

n

core

Kuraray: SCSF-81M

400 450 500 550 600

� nm�

10cm 30cm

100cm 300cm

Kuraray Saint-Gobain

SCSF-81M BCF-12

decay time [ns] 2.7 3.4 attenuation [m] > 3.5 2.7 yield [phot/keV] ∼ 8 ∼ 8

3 / 18

(4)

Scintillating Fibers

round

Mu3e prototype, 4 layers 250 µm.

squared

MEG II proposal:

“active target”.

hexagonal

CERN RD7 1989, bundle out of 60 µm.

ε capture4 1 π 2 π

R

0 α

R

0

d ϕ d Θ

α

ε ≥ [%] cladding single double

round 3.1 5.4

square 4.4 7.3

4 / 18

(5)

Scintillating Fibres Summary

particle 15cm

dE/dx

dE

dx (

160 MeVe

) d fibre yield ε cap d att ε detection

200 keV mm 210 µm ∼ 8 keV ph 5.4 % 95 % 30 % ≈ 5 photon statistics

0.0 0.5 1.0 1.5 2.0 2.5 3.0

time [ns]

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.08 250µm: 5 photons

1mm:  20 photons

PDE: ≈ exp

−t · (τ / n )

−1

×

pathlength in fibres

pathlength/distance

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

counts

0 200 400 600 800 1000

first cladding second cladding glue

PDE: “ flat

′′

: d

hit-det

· 12 % ·

c

n

−1

≈ 7 ps · d [cm]

5 / 18

(6)

Silicon Photomultipliers

Arrays of avalanch photo diodes (APD) in Geiger mode.

Qenching Resistors GAPD Pixels UBias

Signal Sum

pixel: 10-100 µm, sensors: 1-6 mm, arrays ...

- gain up to 10

8

- photon detection

efficiency 30 − 50%

- moderate HV, compact, B-field resistant

- dark counts O (MHz) Single

FibreArrayCellWidth

FibreArrayCellPitch

- most information - fan-out needed - max channels

Fan-Out & Columns

FibreArrayCellWidth

FibreArrayCellPitch

FibreArrayCellHeight

- collect more light in the same cells - optimization on

event structure

Columns

FibreArray CellWidth

FibreArrayCellPitch

FibreArrayCellHeight

- easy: no fan-out - granularity of

SiPM ∼ fibres

6 / 18

(7)

The Mu3e Experiment

7 / 18

(8)

Mu3e: Scintillating Fibres for Timing

Multiple Coulomb Scattering

1 2r 2s 3r 3s 4r 4s

layers 0.00

0.01 0.02 0.03 0.04 0.05 0.06 0.07

scattering (θ0) [rad]

10 MeV/c 15 MeV/c 25 MeV/c 35 MeV/c 45 MeV/c 55 MeV/c

0.25 0.470.5thickness [mm]0.68 0.75 0.9 1.0

Requirements

- high track efficiency

(∼99 %)

- excellent timing

(<1 ns)

- low material budget

(X/X0≤0.5 %)

- moderate granularity

Used Fibre Configuration - 3-4 fibre-layers

- catch first photons (both sides) - readout outside of acceptance - 250 µm fibres, SiPM columns

8 / 18

(9)

Prototypes (4 layers, 250 µ m)

Squared Fibres (PSI)

50 cm long fibres additional Al coating Saint Gobain BCF-12 Hamamatsu S13360-1350CS

Round Fibres (GE, ZH)

16

36 cm long fibres optional TiO

2

in glue Kuraray SCSF-81M Hamamastu S12571-050P

. . . . SiPM column arrays (LHCb)

9 / 18

(10)

Square Results

Time Resolution

p3 p4 p5 -0.05916 526.3 1.525 ±±0.03307±40.80.056

/2 (ns) -t2

t1

-10 -5 0 5 10

Events/200 ps

0 100 200 300 400 500 600 700 800

p3 526.3 ±40.8

p4 -0.05916 ±0.03307

p5 1.525 ±0.056

σ = (t l − t r )/2 = 700 ps

Number of Photons:

Nphe

0 10 20 30 40

Entries

0 50 100 150 200 250 300

area.ch25/0.95+area.ch26/0.97+area.ch9/0.84+area.ch10/0.95+area.ch17/0.94+area.ch18/0.95 {fmod(time_le.ch30-time_le.ch31,19.75)<10&&time_le.ch30>0&&area.ch30>3&&(area.ch9/0.84+area.ch17/0.94+area.ch25/0.95)>0.5&&(area.ch10/0.95+area.ch18/0.95+area.ch26/0.97)>0.5}

Summed photons from both sides.

Efficiency:

ε single [%] OR AND 0.5 phe 97 71 1.5 phe 79 34

ε triple [%] OR AND

0.5 phe >99 95

1.5 phe 97 67

10 / 18

(11)

Round Results

Time Resolution

)/2 [ns]

- t2 (t1

10 5 0 5 10

events/98 ps

0 100 200 300 400 500 600 700 800

σ = (t l − t r )/2 = 1.0 ns

Number of Photons:

photons

1 2 3 4 5 6 7 8 9 10

Events

0 5000 10000 15000 20000 25000

30000 direct measurement

attenuated measurement

One side, different distances (6.5 cm and 49.5 cm).

Efficiency:

ε single [%] OR AND

0.5 phe 65 ± 9 70*

1.5 phe 90*

. . . . SiPM column array and STiC

hDeltaT36-48 p2 1405 p5 4326

deltaT [ps]

20000

15000100005000 0 5000100001500020000 200

400 600 800 1000 1200 1400

hDeltaT36-48 p2 1405 p5 4326 delta time ch 36 and 48

σ = (t l − t r )/ √ 2

= 1.0 ns

*SPS proton data

11 / 18

(12)

Readout: pre-amplifiers & DRS4 evaluation (PSI)

Custom pre-amplifiers

up to 8 DRS4 v5 4-channel evaluation board daisy chain

full waveforms

- 5 Gsps, up to 2048 values - common trigger

- DAQ: O (100 Hz)

- jitter per board ≈ 130 ps

Many more:

VME TDC, QDC; STiC, TOFASIC, NINO*, PETA*, KLausS, TRIROC, ...

12 / 18

(13)

Readout ASIC: STiC/MuSTiC (KIP Heidelberg)

Timing Threshold Energy Threshold

Timing Trigger Energy Trigger

XOR Output

Time Energy

Coarse Counter 622 MHz

Fine Counter 32 x 50 ps Bins

0 16 31

TCC ECC

TFC

Discriminator OutputTDCAnalogue Input

1.6 ns Hysteresis

fibre detectors: timing threshold

STiC3.1 available

64 chs, max 2.6 Mevents/s/chip used DAQ: 700 kevents/s/chip - jitter: O (30 ps)

- self triggering

MuTRiG development

32 chs, max 1.1 Mevents/s/ch + external trigger

operation only with timing threshold

13 / 18

(14)

Scintillating Fibres for High Resolution Time Measurements?

Scintillating Fibres?

material?

X / X

0

< ∼ 1 %

granularity?

single particle?

fibres!

σ

T

O (500 ps)

probably something

thicker

probably better solutions

no

yes

no

yes

14 / 18

(15)

Appendix

15 / 18

(16)

Scintillating Fibre Trackers

LHCb upgrade

LHCb tracker upgrade TDR.

6 layers: 250 µm fibres

NA61/Shine

fixed target experiment tracking of incoming beam

configuration resolution σ x ε single layer ∼ 130 µm 90 %

5 layers ∼ 160 µm 95 %

common

- high hit efficiency

(∼99 %)

- low material budget

(X/X

0≤1 %)

- readout outside of acceptance - tracking – high granularity

- time resolution: resolve banch

(25 ns)

16 / 18

(17)

Crosstalk

Al coating no additional Al

Nph3

0 2 4 6 8 10 12 14

2Nphe

0 2 4 6 8 10 12 14

0 50 100 150 200 250

×10

with additional Al

Nphe3

0 2 4 6 8 10 12 14

2Nphe

0 2 4 6 8 10 12 14

0 100 200 300 400 500 600

- significant cross-talk reduction - ∼ 60 % yield increase (diffuse)

material n light loss

bare Al

optical cement 1.56 ∼ 40 % ≤ 1 % Araldite rapid ∼ 1.5 ∼ 30 % ≤ 1 % optical grease 1.465 ∼ 20 % ≤ 1 %

TiO 2 in glue

- crosstalk-reduction (ribbon dependent) - 10-20 % yield increase

(diffuse)

- ∼ 10 % cluster size reduction

. . . . Fibre mediate dark counts

SiPM SiPM

1m 1mm

t [ns]

50 40 30 20 10 0 10 20 30 40 50

Counts

0 5000 10000 15000 20000 25000

1 m 3 m

17 / 18

(18)

References

slide 2: “Wikipedia Benzene Article.” https://en.wikipedia.org/wiki/Benzene.

slide 2: “MPPC and MPPC module for precision measurement“, HAMAMATSU PHOTONICS K.K., 2016.

slide 3: Kuraray Co., Ltd., Plastic Scintillating Fibers.

slide 3: Saint-Gobain Ceramics & Plastics, Inc, Scintillating Optical Fibers.

slide 4: E. Ripiccini, “An active target for the MEG experiment”, dissertation, Sapienza Roma, 2015.

slide 4: C. D’Ambrosio, ”A short Overview on Scintillators”, CERN Academic Training Programme, 2005.

slide 16: “LHCb Scintillating Fibre Tracker Engineering Design Review Report: Fibres, Mats and Modules.”, LHCb-PUB-2015-008, 2015.

slide 16: “LHCb Tracker Upgrade Technical Design Report”, CERN/LHCC 2014-001, LHCb TDR 15, 2014.

slide 16: A. Damyanova at. al., ”A Scintillating Fibre System Readout by SiPMs for Precise Time and Position Measurements”, PhotoDet2015. slide 13: W.Shen, KIP Heidelberg.

slide 12: R. Gredig, ”Scintillating Fiber Detector for the Mu3e Experiment”, dissertation, University Zurich, 2016.

slide 12 PETA : I. Sacco et. al, “PETA4: a multi-channel TDC/ADC ASIC for SiPM read-out”, JINST, 8 C12013, 2013.

slide 12 M. Rolo et. al., “A 64-channel ASIC for TOFPET applications”, IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), pages 1460–1464, 2012.

slide 12 NINO: F. Anghinolfi et. al., “NINO: AnUltrafast Low-Power Frond-End Amplifier Discriminator for the Time-of-Flight Detector in the ALICE Experiment”, IEEE transactions on nuclear science, 51, 2004.

slide 12 TRIROC: S. Ahmad et. al., “Triroc: A Multi-Channel SiPM Read-Out ASIC for PET/PET-ToF Application”, Nuclear Science, IEEE Transactions on, 62(3) 664–668, June, 2015.

slide 12 KLauS: K. Briggl et. al., “KLauS: an ASIC for silicon photomultiplier readout and its application in a setup for production testing of scintillating tiles”, JINST, 9 C02013, 2014.

slide 12 MuTRiG: H. Chen et. al., ”MuTRiG: a mixed signal Silicon Photomultiplier readout ASIC with high timing resolution and gigabit data link”, JINST 12 C01043, 2017.

18 / 18

Referenzen

ÄHNLICHE DOKUMENTE

Test Measurements with the Technical Prototype for the Mu3e Tile Detector. Konrad Briggl, Huangshan Chen, Hannah Klingenmeyer, Yonathan Munwes, Wei Shen, Tiancheng Zhong

Flow directions in the inner double layers... Outer

6 th Beam Telescopes and Test Beams Workshop 2018 Lukas Gerritzen.. on behalf of the Mu3e

Zimmermann: Cooling with Gaseous Helium for the Mu3e Experiment (Bach- elor thesis, 2012). available from

voltage monolithic active pixel sensors for precise tracking at high rates and scintillating fibres for high resolution time measurements.. Theory In the Standard Model

Large Prototype 32 fibers arranged in four layers and read out indivdually by SiPMs on both fiber ends Key points: ² Fiber quality control geometry and visible defects ²

Particularly important for the cooling system is the scintillating fibre detector, because it divides the helium volume between the outer and inner double pixel layer into two

On each side, the flex print cables from both sensors end at the bottom of the support structure, where they are connected to the scintillating fibre board (scifi board).. Figure