• Keine Ergebnisse gefunden

Helium Cooling System for the Mu3e Experiment

N/A
N/A
Protected

Academic year: 2022

Aktie "Helium Cooling System for the Mu3e Experiment"

Copied!
29
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Helium Cooling System for the Mu3e Experiment

Constantin Tormann

On behalf of the Mu3e Collaboration

22.03.2018

(2)

Mu3e Experiment

Search for the charged lepton flavour violating decay µ+e+ee+

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

Stopped muons decay in a solenoidal magnetic field of B=1 T

• Low momentum electrons pe ≤53 MeV/c

→ Need low material budget to reduce multiple scattering

→ Gaseous helium cooling system for pixel detector

(3)

Helium Cooling System

Layer 1 Layer 2

Scintillating Fibre Layer 3

Layer 4

36 cm

(4)

Detector modules

Xx

0 ≈0.1 % for each layer

• V-folds for Layer 3 and Layer 4

→ Additional flow channel

(5)

Helium Cooling System

Layer 1 Layer 2

Scintillating Fibre Layer 3

Layer 4 20 m/s

36 cm

20 m/s

(6)

Helium Cooling System

Layer 1 Layer 2

Scintillating Fibre Layer 3

Layer 4 10 m/s

10 m/s 5m/s

36 cm

(7)

Helium Cooling System

Layer 1 Layer 2

Scintillating Fibre Layer 3

Layer 4 0.5 m/s

10 m/s

10 m/s 5m/s

36 cm

(8)

Helium Cooling System

Layer 1 Layer 2

Scintillating Fibre Layer 3

Layer 4 0.5 m/s

10 m/s

10 m/s 5 m/s

20 m/s 20 m/s

36 cm

(9)

Simulations for Cooling System

• Expected power consumption per chip area P/A= 250 mW/cm2

→ Test more conservative scenario withP/A= 400 mW/cm2

• Temperatures should not exceed 70C

• Helium enters detector with slightly above 0C

Testing cooling system using Computational Fluid Dynamics Simulations.

Inner and Outer double layer are presented separately.

(10)

Inner Double Layer

Temperature of silicon parts with P/A= 400 mW/cm2

(11)

Inner Double Layer

Flow directions in the inner double layers

(12)

Outer Double Layers

Temperature of silicon parts with P/A= 400 mW/cm2

(13)

Thermal Expansion

Thermal linear expansion ∆L=αL0T

Layer 4: L0= 36 cm and αpolyimide = 2×10−5C−1

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Avg.Temperature(°C)

250 mW /cm 2

400 mW /cm 2

-60 -40 -20 0 20 40 60

ThermalLinearExpansion(um)

(14)

Thermal-Mechanical Chip Prototype

First thermal-mechanical prototype of pixel sensor:

• 50 µm thick silicon layer

• 50 µm aluminium-polyimide flexprint

αpolyimide ≈8·αsilicon

→ Study deformation

(15)

Experimental Concept

Initial Temperature

(16)

Experimental Concept

Increased Temperature

(17)

Chip Deformation

T = 30C

(18)

Chip Deformation

T = 50C

(19)

Deformation

2 5 3 0 3 5 4 0 4 5 5 0 5 5

- 5 0 0 - 4 0 0 - 3 0 0 - 2 0 0 - 1 0 0

0

Height displacement h (µm)

T e m p e r a t u r e T ( ° C )

E q u a t i o n y = a + b * x

I n t e r c e p t 4 1 7 ± 3 1

S l o p e - 1 5 , 9 1 ± 0 , 8 6

R e s i d u a l S u m o f S q u a r e s

5 , 1 8 7 0 8

0 1 0 2 0 3 0 4 0

T e m p e r a t u r e d i f f e r e n c e ∆T ( ° C )

(20)

Summary & Outlook

• Temperatures in the detector exceed 70C for conservative scenario of P/A= 400 mW/cm2.

• Uneven temperature distribution induces mechanical stress.

→ Improve cooling system

• Building thermal-mechanical mock-up for future testing of the cooling system.

Validate simulation results

Study deformations of detector

Study vibrations induced by the helium flow

(21)

Deformation Inner Layer

10 15 20 25 30 35 40 45 50 55 60 65 70

250 mW /cm 2

400 mW /cm 2

Temperature(°C)

-20 0 20 40 60 80 100 120

LinearExpansionL(m)

(22)

Tubing system

VL4 CEN

GAP L1/2 VL3 CEN

GAP L3/4 CEN

VL4 DS VL3

DS VL3 CEN VL4 CEN

GAP L1/2

GAP L3/4 CEN

GAP L1/2

VL3 CEN VL3 DS VL4 DS

VL4 CEN

GAP L3/4 CEN GAP

L1/2 VL3 DS VL4 DS

GAP L3/Tile GAP

L3/Tile

GAP L3/Tile

GAP L3/Tile

Beam

Pipe 60 m m

er

TileTile

(23)

Inlet Inner Double Layer

(24)

Inlet Outer Double Layer

Endpiece Layer 4

Endring Blocked Flow

radially outwards

(25)

Pressure Drops

Circuit Duct IN Flange Detector Flange Duct OUT

Gap L1/L2 25 7 <1 9 24

Gap L3/Scifi 6 <1 3 28 -

V-Folds L3 25-50 80-90 25 10-20 25-35

Gap L3/L4 8 25 <1 11 -

V-folds L4 30-50 60-70 10-20 50-70 20

Pressures in millibar. Some flows vent into global volume.

(26)

Volumetric Flows

Flow channel He flow speed Cross-section Volumetric Flow m s−1 cm2 10−3m3s−1

Gap L1/L2 10 12 12

Gap SciFi/L3 5 105 53

V-folds L3 20 0.7×24×2 20

Gap L3/L4 10 60 60

V-folds L3 20 0.7×28×2 23

Total 238 168

(27)

Inlet Outer Double Layer

(28)

Inlet Outer Double Layer

(29)

Inlet Outer Double Layer

by Thomas Mittelstaedt

Referenzen

ÄHNLICHE DOKUMENTE

– detector readout and filter farm (Mainz) – mechanics and cooling (PSI, PI-HD) – experimental infrastructure (PSI) – slow

Gaseous Helium Cooling of a Thin Silicon Pixel Detector for the Mu3e Experiment..

To measure the momentum and vertex position of low momentum electrons (10 - 53 MeV/c) originating from this rare decay with high preci- sion, a tracking detector built from

Thus, besides minimizing the amount of material (and thus the scattering angle θ MS ), a large lever arm is desirable. In muon decays, the electron momenta range from half the muon

High Voltage Monolithic Active Pixel Sensors.. • The

• Minimizes scattering angle in middle hit • Linear approximation around circle solution small Multiple Scattering angles.. Efficiency and resolution Short tracks

The improvements are made possible by a novel experimental design based on high voltage monolithic active pixel sensors for high spatial resolution and fast readout

The measurement with helium showed that cooling of the layers with a heat dissipation of 400 mW / cm 2 caused a temperature increase of around 70 − 75 K compared to the