• Keine Ergebnisse gefunden

Gaseous Helium Cooling of a Thin Silicon Pixel Detector for the Mu3e Experiment

N/A
N/A
Protected

Academic year: 2022

Aktie "Gaseous Helium Cooling of a Thin Silicon Pixel Detector for the Mu3e Experiment"

Copied!
17
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Gaseous Helium Cooling of a Thin Silicon Pixel Detector for the Mu3e Experiment

Adrian Herkert

on behalf of the Mu3e collaboration

Institute of Physics Heidelberg University

09.03.2015

(2)

The Mu3e Experiment

Search for the decay µ+ →e+ee+

Goal:

Sensitivity for the branching ratio of 10−16 Requirements:

High muon decay rates

High momentum, vertex, and time resolution of the tracking detector

Met by:

Low material budget in the acceptance region

Use of HV-MAPS

(3)

The Mu3e Experiment

Detector Concept

Target Inner pixel layers

Scintillating f bres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

B = 1 T

Pixel detector:

4 cylindrical layers of HV-MAPS

Timing detectors:

Scintillating fibres (σt<1 ns)

Scintillating tiles (σt100 ps)

A. Herkert PI Heidelberg Cooling of the Mu3e Detector Page 3

(4)

The Pixel Tracker

Optimized for Low Material Budget

HV-MAPS

50µm

Flexprint

25µm Kapton

25µm aluminum traces

Support structure

25µm Kapton

Xx

0 ≈0.1 %

(5)
(6)

Cooling Concept

μBeam

H2O Cooling H2O Cooling

FPGAs

Inactive region:

Water cooling system integrated in beampipe

Acceptance region:

Gaseous helium cooling (global + local)

(7)

Cooling Concept

μBeam

H2O Cooling H2O Cooling He

FPGAs

Inactive region:

Water cooling system integrated in beampipe Acceptance region:

Gaseous helium cooling (global + local)

A. Herkert PI Heidelberg Cooling of the Mu3e Detector Page 6

(8)

Experimental Cooling Tests

Cooling of One Detector Station with Global Gas Flow

(9)

Experimental Cooling Tests

Cooling of One Detector Station with Global Air Flow

0 5 10 15 20 25 30 35 40

10 20 30 40 50 60 70 80 90

v= 2.6 m/s v= 2.8 m/s v= 3.0 m/s v= 3.2 m/s v= 3.5 m/s v= 3.7 m/s

T [°C]

Position [cm]

P/A = 150 mW/cm^2

A. Herkert PI Heidelberg Cooling of the Mu3e Detector Page 8

(10)

Experimental Cooling Tests

Cooling of One Detector Station with Global Helium Flow

Flow channel Helium container

He He

Air H2O

HO

(11)

CFD Simulations

Cooling of One Detector Station with Global Gas Flow

P/A = 150 mW/cm2

v = 3 m/s

Air Helium

A. Herkert PI Heidelberg Cooling of the Mu3e Detector Page 10

(12)

Cooling of One Detector Station with Global Gas Flow - Summary

20 40 60 80 100 120

TmaxC]

Air=simulation He=simulation Air=measurement He=measurement Layer=4

P/A===100=mW/cm2

(13)

Local Cooling System

Cooling from both sides simultaneously

Supplying helium directly to pixel layers of each individual detector station

A. Herkert PI Heidelberg Cooling of the Mu3e Detector Page 12

(14)

Local Cooling Tests with Helium

15 20 25 30 35 40 45 50 55

TW[°C]

LayerW3Ww/oWlocalWcooling LayerW4Ww/oWlocalWcooling LayerW3Ww/WlocalWcooling LayerW4Ww/WlocalWcooling P/AW=W250WmW/cm^2 vglobal=W2.3Wm/s vlocal=W20Wm/s

(15)

Further Simulations

A. Herkert PI Heidelberg Cooling of the Mu3e Detector Page 14

(16)

Summary

The proposed cooling concept seems to be suitable for the Mu3e experiment

Outlook

Simulation of the cooling of the full Mu3e detector

Investigation of potential flow induced vibrations

(17)

x/X

0

for Different Components of One Tracker Layer

Component Tickness [µm] x/X0 [%]

Support structure 25 0.018

Flex-print 25 0.018

Aluminum traces 12 0.013

HV-MAPS 50 0.053

Adhesive 10 0.003

Full layer 122 0.105

A. Herkert PI Heidelberg Cooling of the Mu3e Detector Page 16

Referenzen

ÄHNLICHE DOKUMENTE

Figure 4.8: Orientation of the MuPix chips on layers 1 &amp; 2 with the detector in yellow, periphery in red and blue cooling flow..

Flow directions in the inner double layers... Outer

Precise timing, good momentum and vertex resolution required Good momentum and total. energy

o Integrated cooling Beam pipe supports detectors..

Zimmermann: Cooling with Gaseous Helium for the Mu3e Experiment (Bach- elor thesis, 2012). available from

The measurement with helium showed that cooling of the layers with a heat dissipation of 400 mW / cm 2 caused a temperature increase of around 70 − 75 K compared to the

Particularly important for the cooling system is the scintillating fibre detector, because it divides the helium volume between the outer and inner double pixel layer into two

On each side, the flex print cables from both sensors end at the bottom of the support structure, where they are connected to the scintillating fibre board (scifi board).. Figure