• Keine Ergebnisse gefunden

The Mu3e Experiment at PSI The Mu3e Experiment at PSI

N/A
N/A
Protected

Academic year: 2022

Aktie "The Mu3e Experiment at PSI The Mu3e Experiment at PSI"

Copied!
67
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Andre Schöning, PI-Heidelberg 1 PSI2013 Workshop, Sept 12, 2013

The Mu3e Experiment at PSI The Mu3e Experiment at PSI

PSI2013 Workshop, September 12, 2013

André Schöning

Physikalisches Institut, Universität Heidelberg

on behalf of the Mu3e collaboration

@

(2)

Andre Schöning, PI-Heidelberg 2 PSI2013 Workshop, Sept 12, 2013 upgrade

History of LFV Decay experiments

History of LFV Decay experiments

(3)

Andre Schöning, PI-Heidelberg 3 PSI2013 Workshop, Sept 12, 2013

LFV Muon Decays: Experimental Situation LFV Muon Decays: Experimental Situation

μ

+

e

-

e

+

e

+

μ +

e

+

γ

μ -

e

-

Al

13+

μ + → e + e + e - μ - N→ e - N

μ + → e + γ

MEG (PSI) SINDRUM II (PSI) SINDRUM (PSI)

B(μ

+

→ e

+

e

+

e

-

) ≤ 10

-12

(1988) B(μ Au → e Au) ≤ 7·10

-13

(2006) B(μ

+

→ e

+

e

+

e

-

) ≤ 10

-12

(1988) B(μ

+

→ e

+

γ ) ≤ 5.7·10

-13

(2013)

just finished data taking

→ upgrade

(4)

Andre Schöning, PI-Heidelberg 4 PSI2013 Workshop, Sept 12, 2013

LFV Muon Decays in the SM LFV Muon Decays in the SM

μ

+

e

-

e

+

e

+

μ +

e

+

γ

μ -

e

-

Al

13+

μ + → e + e + e - μ + → e + γ

Al

SM: LFV loops

branching ratios suppressed by ∝ (Δ m

2ν

)

2

m

W4

≈ 10

−50

μ - N→ e - N

(5)

Andre Schöning, PI-Heidelberg 5 PSI2013 Workshop, Sept 12, 2013

LFV Muon Decays from SUSY loops LFV Muon Decays from SUSY loops

μ

+

e

-

e

+

e

+

μ +

e

+

γ

μ -

e

-

Al

13+

μ + → e + e + e - μ + → e + γ

Al

SUSY loops

coherent conversion in nucleus field for Q

2

(γ )~0

suppressed by ~1/150 with respect to μ

+

→ e

+

γ

SUSY and many other BSM models induce naturally LFV

μ - N→ e - N

(6)

Andre Schöning, PI-Heidelberg 6 PSI2013 Workshop, Sept 12, 2013

LFV “Exotic” Tree Diagrams LFV “Exotic” Tree Diagrams

μ

+

e

-

e

+

e

+

μ +

e

+

γ

μ -

e

-

Al

13+

μ + → e + e + e - μ + → e + γ

e.g. Leptoquarks extra Z', LFV Higgs, etc.

q q

LQ

not allowed

μ e

μ

μ - N→ e - N

(7)

Andre Schöning, PI-Heidelberg 7 PSI2013 Workshop, Sept 12, 2013

Lepton Flavor Violating Decay: μ + →e + e + e - Lepton Flavor Violating Decay: μ + →e + e + e -

Exotic Physics

Supersymmetry

Little Higgs Models Seesaw Models

GUT models (Leptoquarks) many other models

loop diagrams tree diagram

Higgs Triplet Model

New Heavy Vector bosons (Z')

Extra Dimensions (KK towers)

(8)

Andre Schöning, PI-Heidelberg 8 PSI2013 Workshop, Sept 12, 2013

Mu3e Experiment Mu3e Experiment

DPNC Geneva University

Physics Institute, University Heidelberg KIP, University Heidelberg

ZITI Mannheim, University Heidelberg Paul Scherrer Institute

Physics Institute, University Zurich Institute for Particle Physics, ETH Zurich

Search for μ + → e + e + e - at PSI

Aiming for a sensitivity of

BR(μ → e e e ) < 10

-15

BR(μ → e e e ) < 10

-16

(phase I) (phase II) before end of decade

→ project approved in Jan 2013 by PSI

Requires > 10

9

muons per second → high rate experiment (~LHC)

(9)

Andre Schöning, PI-Heidelberg 9 PSI2013 Workshop, Sept 12, 2013

X

X

Phase I (2015+): ~10

8

muons/s Phase II (>2017): >10

9

muons/s

PSI Facility for Mu3e

High-intensity Muon Beamline poster by A.Knecht, P.-R. Kettle et al.

(HiMB)

(10)

Andre Schöning, PI-Heidelberg 10 PSI2013 Workshop, Sept 12, 2013

Backgrounds Backgrounds

e

+

e

+

e

-

i

E

i

= m

μ

i

p

i

= 0

Irreducible BG: radiative decay with internal conversion

e

+

e

+

e

-

ν ν

B( μ

+

→ e

+

e

+

e

-

νν ) = 3.4 ·10

- 5

looks like Signal

(11)

Andre Schöning, PI-Heidelberg 11 PSI2013 Workshop, Sept 12, 2013

Backgrounds Backgrounds

Irreducible BG: radiative decay with internal conversion

e

+

e

+

e

-

ν ν

missing energy from two neutrinos

steeply falling!

R.M.Djilkibaev, R.V.Konoplich PRD79 (2009)

B( μ

+

→ e

+

e

+

e

-

νν ) = 3.4 ·10

- 5

very good momentum +

total energy resolution required!

(12)

Andre Schöning, PI-Heidelberg 12 PSI2013 Workshop, Sept 12, 2013

Accidental Backgrounds Accidental Backgrounds

Overlays of two ordinary muon decays with a (fake) electron

Electrons from: Bhabha scattering, photon conversion, mis-reconstruction

Need excellent:

Vertex resolution Timing resolution

Kinematic reconstruction

(13)

Andre Schöning, PI-Heidelberg 13 PSI2013 Workshop, Sept 12, 2013

Mu3e Experimental Proposal

Mu3e Experimental Proposal

(14)

Andre Schöning, PI-Heidelberg 14 PSI2013 Workshop, Sept 12, 2013

Mu3e Baseline Design

(15)

Andre Schöning, PI-Heidelberg 15 PSI2013 Workshop, Sept 12, 2013

Mu3e Baseline Design

(16)

Andre Schöning, PI-Heidelberg 16 PSI2013 Workshop, Sept 12, 2013

Mu3e Baseline Design

(17)

Andre Schöning, PI-Heidelberg 17 PSI2013 Workshop, Sept 12, 2013

Mu3e Baseline Design

Phase IA Design

(18)

Andre Schöning, PI-Heidelberg 18 PSI2013 Workshop, Sept 12, 2013

Mu3e Baseline Design

(19)

Andre Schöning, PI-Heidelberg 19 PSI2013 Workshop, Sept 12, 2013

Mu3e Baseline Design

(20)

Andre Schöning, PI-Heidelberg 20 PSI2013 Workshop, Sept 12, 2013

Mu3e Baseline Design

Phase IB Design

(21)

Andre Schöning, PI-Heidelberg 21 PSI2013 Workshop, Sept 12, 2013

Mu3e Baseline Design

Long cylinder!

~15 cm

~150 cm

not to scale!

(22)

Andre Schöning, PI-Heidelberg 22 PSI2013 Workshop, Sept 12, 2013

Mu3e Baseline Design

Long cylinder!

~15 cm

~150 cm

not to scale

B = 1 Tesla

(23)

Andre Schöning, PI-Heidelberg 23 PSI2013 Workshop, Sept 12, 2013

Mu3e Baseline Design

Geometrical acceptance ~70 % for μ

+

→ e

+

e

+

e

-

decay

Long cylinder!

~15 cm

~150 cm

not to scale

B = 1 Tesla

(24)

Andre Schöning, PI-Heidelberg 24 PSI2013 Workshop, Sept 12, 2013

Challenges for Particle Tracking Challenges for Particle Tracking

Θ

MS

∼ 1

PX / X

0

Muon decay:

→ electrons in low momentum range p < 53 MeV/c

Multiple scattering is dominant!

Need thin, fast and high resolution detectors (tracking + time of flight) operated at high rate 10

9

particles/s

multiple scattering regime

limited hit

resolution regime

(25)

Andre Schöning, PI-Heidelberg 25 PSI2013 Workshop, Sept 12, 2013

50 μm silicon wafer

Mechanical Prototypes for Pixel Tracker

Sandwich

X ≤ 0.1% X

0

per layer possible

Ultra-thin detector mock-up:

sandwich of 25 µm Kapton

®

and 50/100 µm glass (instead of silicon chips)

High Voltage Monolithic Active

Pixel Sensor (HV-MAPS)

(26)

Andre Schöning, PI-Heidelberg 26 PSI2013 Workshop, Sept 12, 2013

High Voltage - MAPS Technology

Key Features

high precision → pixels 80 x 80 μm

2

(for Mu3e) can be “thinned” down to ~30 μm (~ 0.0004 X

0

)

low production costs (standard HV-CMOS process, 60-80 V)

active sensors → small RO bandwidth, no bump bonding required triggerless and fast readout (LVDS link integrated)

low power: ~150 mW/cm

2

I.Peric, P. Fischer et al., NIM A 582 (2007) 876 (ZITI Mannheim, Uni Heidelberg) transistor logic embedded in N-well

(“smart diode array”)

→ talk by Ivan Peric (PSI2013/CHIPP session)

(27)

Andre Schöning, PI-Heidelberg 27 PSI2013 Workshop, Sept 12, 2013

HV-MAPS R&D Test Measurements

prototype sensors

DESY test beam

CERN test beam

LED test in lab

(28)

Andre Schöning, PI-Heidelberg 28 PSI2013 Workshop, Sept 12, 2013

Cooling flow reactor for tests

Tracker Cooling with Gaseous Helium

Flow box with integrated inductive heating

Simulation results

metallized Kapton

V

helium

~ 0.1 – 1 m/s

(29)

Andre Schöning, PI-Heidelberg 29 PSI2013 Workshop, Sept 12, 2013

Timing

Timing

(30)

Andre Schöning, PI-Heidelberg 30 PSI2013 Workshop, Sept 12, 2013

Pixel Detector: Readout Frames @ 20 MHz

100 muon decays @ rate 2 · 10

9

muon stops/s

50 ns snapshot

(31)

Andre Schöning, PI-Heidelberg 31 PSI2013 Workshop, Sept 12, 2013

Pixel: Readout Frames 50 ns

100 muon decays @ rate 2 · 10

9

muon stops/s

Additional Time of Flight (ToF) detectors required < 1ns

(32)

Andre Schöning, PI-Heidelberg 32 PSI2013 Workshop, Sept 12, 2013

Mu3e Time of Flight System

not to scale

Scintillating tiles

200-300 ps

~100 ps

Scintillating fibers

(33)

Andre Schöning, PI-Heidelberg 33 PSI2013 Workshop, Sept 12, 2013

R&D for Scintillating Fiber Tracker

simulation

90

Sr source, SiPMs, S10362-33-050C

by Hamatsu,

3 layers of scintillating fibers Ø = 250 μm (Kuraray)

readout by SiPMs and custom ASICs

time resolution <1 ns

σ

t

< 1ns

(34)

Andre Schöning, PI-Heidelberg 34 PSI2013 Workshop, Sept 12, 2013

Scintillating Fiber Performance

90

Sr

SIPM1 SIPM2

clear photoelectron peaks!

(35)

Andre Schöning, PI-Heidelberg 35 PSI2013 Workshop, Sept 12, 2013

Mu3e Time of Flight System

not to scale

Scintillating tiles

200-300 ns

~100 ps

Scintillating fibers

(36)

Andre Schöning, PI-Heidelberg 36 PSI2013 Workshop, Sept 12, 2013

R&D for Scintillating Tile Detector

scintillating tiles of size ~ 1 cm

2

timing resolution of about 100 ps photosensors (SiPM)

readout by custom ASICs

simulated (phase 2)

design sketch

DESY beam test results (March 2013)

Time Resolution [ns]

(37)

Andre Schöning, PI-Heidelberg 37 PSI2013 Workshop, Sept 12, 2013

Phase IA: rate ≤ 2 · 10

7

muons/s

Sensitivity Study

Phase II: rate ~ 2 · 10

9

muons/s

BG

μ→eeeνν

signal signal

BG

→ Research Proposal

arXiv:1301.6113

(38)

Andre Schöning, PI-Heidelberg 38 PSI2013 Workshop, Sept 12, 2013

Sensitivity Projection

2 · 10

7

/s 1 · 10

8

/s 2 · 10

9

/s

(39)

Andre Schöning, PI-Heidelberg 39 PSI2013 Workshop, Sept 12, 2013

Conclusions

Charged LFV almost “unavoidable” in many BSM models Search for μ → eee at the 10

-16

level is complementary

to other searches and well motivated

The new HV-MAPS technology is a promising alternative for gaseous tracking detectors at low energy and high rate

Successful R&D program:

first large scale HV-MAPS detector next year

Timing at the 100 ps – 1 ns level with scintillating tiles and fibers using SiPM readout

Start data taking 2015/16 (Phase 1A)

Hopefully 2 billion muons per second at HIMB after 2017

(Phase2)

(40)

Andre Schöning, PI-Heidelberg 40 PSI2013 Workshop, Sept 12, 2013

Backup

(41)

Andre Schöning, PI-Heidelberg 41 PSI2013 Workshop, Sept 12, 2013

LFV in the Standard Model

process is heavily suppressed due to small mass difference of neutrinos!

SM process via Neutrino mixing

B( μ + →e + e + e - ) ~ O(10 - 56 )

Neutrino Oscillation Summary Plot (part)

∝ ( Δ M m

W2ν 2

)

2

(42)

Andre Schöning, PI-Heidelberg 42 PSI2013 Workshop, Sept 12, 2013

ν

e

ν

µ

ν

τ

M.Kakizaki et al., Phys.Lett. B566 210, 2003

Example: Higgs Triplet Models Example: Higgs Triplet Models Example: Higgs Triplet Models Example: Higgs Triplet Models

Motivated by Left-Right Symmetric Models

Daya Bay, Reno, Double Chooz

e e

μ e

H, H

++

related to neutrino masses (→ mass pattern) M = 200 GeV

triplet Higgs

+ loop diagrams

(43)

Andre Schöning, PI-Heidelberg 43 PSI2013 Workshop, Sept 12, 2013 M.Kakizaki et al., Phys.Lett. B566 210, 2003

Motivated by Left-Right Symmetric Models

Example: Higgs Triplet Models II Example: Higgs Triplet Models II

M = 200 GeV M = 200 GeV

BrA 4

M 4 A= trilinear coupling (25 eV)

(44)

Andre Schöning, PI-Heidelberg 44 PSI2013 Workshop, Sept 12, 2013

LFV SM - Higgs Couplings LFV SM - Higgs Couplings

LFV decays of SM Higgs:

Framework

LFV muon decay:

~

LHC and muon decay experiments are largely complementary!

R. Harnik, J. Kopp J, Zupan [arXiv:1206.6497]

(45)

Andre Schöning, PI-Heidelberg 45 PSI2013 Workshop, Sept 12, 2013

μ

+

→ e

+

e

+

e

-

μ e

e e

μ e

e e

γ Z

μ + →e + e + e - Penguin Loop and Box Diagrams μ + →e + e + e - Penguin Loop and Box Diagrams

Higgs-penguin

μ e

e e

H

box diagram

μ e

e e

photon penguin Z - penguin

(46)

Andre Schöning, PI-Heidelberg 46 PSI2013 Workshop, Sept 12, 2013

μ

+

→ e

+

e

+

e

-

μ e

e e

μ e

e e

γ Z

Brm μ 5 Λ 4

from dimensional analysis:

Brm μ 5

m 4 Z f ( Λ 4 )

can dominate if Λ >> m

Z

The Z-Penguin Diagram in μ + → e + e + e - The Z-Penguin Diagram in μ + → e + e + e -

photon penguin Z - penguin

(47)

Andre Schöning, PI-Heidelberg 47 PSI2013 Workshop, Sept 12, 2013

μ

+

→ e

+

e

+

e

-

μ e

e e

μ e

e e

γ Z

Brm μ 5 Λ 4

from dimensional analysis:

Brm μ 5

m 4 Z f ( Λ 4 )

no decoupling in many models!

photon penguin Z - penguin

The Z-Penguin Diagram in μ + → e + e + e -

The Z-Penguin Diagram in μ + → e + e + e -

(48)

Andre Schöning, PI-Heidelberg 48 PSI2013 Workshop, Sept 12, 2013

Abada et al., Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution [arXiv:1206.6497]

Z penguin

γ

h + box B

+

e

+

e

+

e

-

)

dashed lines represent interference terms

Non-decoupling behaviour of Z-penguin contribution

LFV couplings fixed by neutrino mass matrix

Note μ

+

→ e

+

e

+

e

-

dominates over μ

+

→ e

+

γ for m

0

> 1 TeV

Inverse Seesaw Model

(49)

Andre Schöning, PI-Heidelberg 49 PSI2013 Workshop, Sept 12, 2013

Hirsch et al., Phenomenology of the minimal supersymmetric U(1)

B−L

× U (1)

R

extension of the standard model [arXiv:1206.3516]

MSSM Model with heavy right-handed neutrino and Z'

m

0

= 800 GeV, M

1/2

= 1200 GeV, tan β = 10, A

0

= 0

v

R

= 10 TeV, tan β

R

= 1.05, μ

R

= −500 GeV, m

AR

= 1000 GeV.

decoupling!

(50)

Andre Schöning, PI-Heidelberg 50 PSI2013 Workshop, Sept 12, 2013

L = m

μ

Λ

2

(1+ κ) H

dipole

+ κ

Λ

2

(1+ κ ) J

ν

J

ν, ee

Effective cLFV Lagrangian:

e e

μ e

μ e

e e

Model Independent Comparison Model Independent Comparison

Λ κ

= common effective mass scale

= parameter

μ e

μ

B( μ →eee ) < 10-12

κ → 0 κ → ∞

eμee contact IA

(51)

Andre Schöning, PI-Heidelberg 51 PSI2013 Workshop, Sept 12, 2013

e e

μ e

μ e

e e

Model Independent Comparison Model Independent Comparison

μ e

μ

κ → 0 κ → ∞

B(μ

+

→ e

+

e

+

e

-

)

B(μ

+

→ e

+

γ ) ~ 0.006

B(μ

+

→ e

+

e

+

e

-

)

B(μ

+

→ e

+

γ ) =

B( μ →eee ) < 10-12

eμee contact IA

(52)

Andre Schöning, PI-Heidelberg 52 PSI2013 Workshop, Sept 12, 2013

π e5 Beamline (Phase I)

MEG and Mu3e could co-exist if MEG is to be upgraded

MEG

muon rates of 1.4 · 10

8

/s achieved in past

rate of 10

8

/s muons needed to reach B( μ

+

→e

+

e

+

e

-

) ~ 2 ·10

-15

(90%CL)

(53)

Andre Schöning, PI-Heidelberg 53 PSI2013 Workshop, Sept 12, 2013

π e5 Beamline (Phase I)

(54)

Andre Schöning, PI-Heidelberg 54 PSI2013 Workshop, Sept 12, 2013

π e5 Beamline (Phase I)

(55)

Andre Schöning, PI-Heidelberg 55 PSI2013 Workshop, Sept 12, 2013

High Intensitiy Muon Beamline (Phase II)

Muon rates in excess of 10

10

per second in beam phase acceptance possible

2 · 10

9

muons/s needed to reach ultimate goal of B( μ

+

→e

+

e

+

e

-

) < 10

-16

Not before 2017

HiMB = High Intensity Muon Beamline

(56)

Andre Schöning, PI-Heidelberg 56 PSI2013 Workshop, Sept 12, 2013

Backgrounds Backgrounds

Irreducible BG: radiative decay with internal conversion

e

+

e

+

e

-

ν ν

B( μ

+

→ e

+

e

+

e

-

νν ) = 3.4 ·10

- 5

very good momentum +

total energy resolution required!

(57)

Andre Schöning, PI-Heidelberg 57 PSI2013 Workshop, Sept 12, 2013

The Target The Target

Spread muon decays in space and time

DC Muon beam (PSI)

about 4000 muons resting on target at same time

large stopping target

good vertexing and timing resolution required

e.g. Sindrum-like extended target

hollow double cone (e.g. 30-80 µm Al)

alternative Aerogel?

(58)

Andre Schöning, PI-Heidelberg 58 PSI2013 Workshop, Sept 12, 2013

Momentum Resolution in MS Regime Momentum Resolution in MS Regime

Momentum resolution of spectrometer:

σ

p

P ∼ Θ

MS

Ω

precision requires large lever arm large bending angle Ω

multiple-scattering angle

(linearised)

(59)

Andre Schöning, PI-Heidelberg 59 PSI2013 Workshop, Sept 12, 2013

Momentum Resolution in MS Regime Momentum Resolution in MS Regime

σ

p

PO

2MS

)

best precision for half turn tracks have to measure recurlers

Momentum resolution of “half turn” spectrometer:

(60)

Andre Schöning, PI-Heidelberg 60 PSI2013 Workshop, Sept 12, 2013

Tracking Design Considerations

Tracking Design Considerations

(61)

Andre Schöning, PI-Heidelberg 61 PSI2013 Workshop, Sept 12, 2013

Tracking Design Considerations

Tracking Design Considerations

(62)

Andre Schöning, PI-Heidelberg 62 PSI2013 Workshop, Sept 12, 2013

Tracking Design Considerations

Tracking Design Considerations

(63)

Andre Schöning, PI-Heidelberg 63 PSI2013 Workshop, Sept 12, 2013

Tracking Design Considerations

Tracking Design Considerations

(64)

Andre Schöning, PI-Heidelberg 64 PSI2013 Workshop, Sept 12, 2013

Mechanical Prototypes for Pixel Tracker

18 cm

even larger stable structures with 100 µm thickness possible

by using Kapton folds

(65)

Andre Schöning, PI-Heidelberg 65 PSI2013 Workshop, Sept 12, 2013

Pixel Detector Tests in Lab

MuPix2 chip under LED test

Signal from

55

Fe

Noise from LED injection pulse scan

Lab: U

bias

= 60 V

Perrevoort, Heidelberg

good energy resolution

very good signal to noise (SNR)

(66)

Andre Schöning, PI-Heidelberg 66 PSI2013 Workshop, Sept 12, 2013

Data Acquisition

Total number of pixels ~280 mill (+fibers+tiles)

Frontend data rate of ~1 Tbit/s (Phase II)

Online event reconstruction (no trigger) FPGA based switching network

Graphics Processing Units (~50 GPUs)

Logging rate ~50-100 MB/s

(67)

Andre Schöning, PI-Heidelberg 67 PSI2013 Workshop, Sept 12, 2013

Invariant Mass Resolution of Signal

Phase IA:

rate ~ 2 · 10

7

muons/s

Phase IB:

rate ~ 2 · 10

8

muons/s

Phase II:

rate ~ 2 · 10

9

muons/s

Referenzen

ÄHNLICHE DOKUMENTE

• Energy resolution highly dependent on converter layer thickness → P in range 5% to 15% with reasonable energy resolution →

(tracking alone not sufficient to reject accidental background).. magnet) Commissioning earliest 2018..

– detector readout and filter farm (Mainz) – mechanics and cooling (PSI, PI-HD) – experimental infrastructure (PSI) – slow

HiMB – High-intensity Muon Beam Concept muon rates in excess of 10 10 m / s possible use spallation neutron source target window as a high-intensity source of surface muons

To measure the momentum and vertex position of low momentum electrons (10 - 53 MeV/c) originating from this rare decay with high preci- sion, a tracking detector built from

Thus, besides minimizing the amount of material (and thus the scattering angle θ MS ), a large lever arm is desirable. In muon decays, the electron momenta range from half the muon

The upcoming Mu3e experiment aims to search for the lepton-flavour violating decay μ + →e + e - e + at an unprecedented sensitivity of better than one in 10 15 in a first and one in

The improvements are made possible by a novel experimental design based on high voltage monolithic active pixel sensors for high spatial resolution and fast readout