• Keine Ergebnisse gefunden

Status of the Mu3e Experiment at PSI

N/A
N/A
Protected

Academic year: 2022

Aktie "Status of the Mu3e Experiment at PSI"

Copied!
32
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Ann-Kathrin Perrevoort

on behalf of the Mu3e Collaboration

Physikalisches Institut, Heidelberg

FCCP, September 12, 2015, Anacapri

(2)

The Mu3e Experiment

Searching for the lepton flavour violating decayµ+ → e+ee+ In this talk

Introduction to Mu3e

Experimental Concept

Current Status and Outlook

A. Perrevoort (Heidelberg) Mu3e FCCP 2015 2 / 20

(3)

Searching for New Physics in the Decayµeee

Lepton Flavour conserved in Standard Model

. . . butνoscillations

Expectation from lepton mixing: BRµeee∼(mmWν)4<1054

(4)

Charged Lepton Flavour Violation

Searching for New Physics in the Decayµeee

Observation ofµ →eee is a clear sign for New Physics

SUSY, extra heavy vector bosons (Z’), . . .

Current limit: BRµeee<1.0⋅1012at 90 % CL[SINDRUM, 1988]

Mu3e: New experiment sensitive to BR’s of 1015(1016)

A. Perrevoort (Heidelberg) Mu3e FCCP 2015 4 / 20

(5)

Searching for New Physics in the Decayµeee

300 400 500 600 700 800 1000900 2000 3000 4000 5000 6000 7000

10-2 10-1 1 10 102

!

" (TeV)

EXCLUDED (90% CL) B(µ # e$)=10-13

B(µ # e$)=10-14

B(µ # eee)=10-14 B(µ # eee)=10-16

LCLFV=[(κm+1µ)Λ2µRσµνeLFµν]

dipole-like+[(κ+κ1)Λ2(µLγµeL)(eLγµeL)]

four-fermion

A. Gouv ˆea, P. Vogel, Prog.Part.Nucl.Phys. 71 (2013)

(6)

Signal and Background

Signal Background

Signalµ+ → e+ee+ Common vertex Coincident

Ee=mµ

∑⃗pe=0

Accidental combinations No common vertex Not coincident

Eemµ

pe≠0

Internal conversion µ+ → e+ee+νµνe

Common vertex Coincident

Ee<mµ

∑⃗pe≠0

A. Perrevoort (Heidelberg) Mu3e FCCP 2015 6 / 20

(7)

Background

0 1 2 3 4 5 6

19 10

18 10

17 10

16 10

15 10

14 10

13 10

12 10

mμ-Etot[MeV]

Branching Ratio

Internal conversion µ+ → e+ee+νµνe

Common vertex Coincident

Ee<mµ

∑⃗pe≠0

(8)

Signal and Background

Signal Background

Detector requirements:

Very good vertex (∼200 µm) and time resolution (∼100 ps)

Excellent momentum resolution (∼0.5 MeV)

Minimal material amount

+ High muon stopping rates (108to 109muons/s)

Thin silicon pixel sensors + Scintillating fibres/tiles

A. Perrevoort (Heidelberg) Mu3e FCCP 2015 6 / 20

(9)

Phase I: Detector Configuration A

Tracking detector with Si pixel sensors

Phase IA 107muons/s

BR∼1014 2017

(10)

Experimental Concept

Muon Beam

Paul-Scherrer Institute in Switzerland

2.2 mA proton beam with 590 MeV Secondary beamlines:µ+with 28 MeV 108muons/s at existing beamline 109muons/s at future beamline

under investigation

A. Perrevoort (Heidelberg) Mu3e FCCP 2015 8 / 20

(11)

High-Voltage Monolithic Active Pixel Sensors

P-substrate N-well

Particle E field

I. Peri´c, NIM A 582 (2007)

Pixel Periphery

sensor CSA

comparator tune

DAC

threshold baseline source

follower

test-pulse injection

readout 2nd amplifier

integrate charge

amplification

line driver

digital output AC coupling

via CR filter per pixel threshold adjustment

High voltage of>60 V

Fast charge collection via drift

Depletion zone of∼10 µm Thinning possible (≲50 µm)

Integrated readout electronics

Pixel size 80×80µm2 Sensor size 2×2cm2 Thin and granular

(12)

Experimental Concept

High-Voltage Monolithic Active Pixel Sensors

Schwellwert [V]

0.6 0.8 1 1.2 1.4 1.6

Effizienz

0.85096 0.85098 0.851 0.85102 0.85104 0.85106

0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78

0.75 0.8 0.85 0.9 0.95

1 98 %

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Efficiency

Threshold [V]

Mean noise rate per pixel [1/s]

Latest prototype: MuPix7

Pixel size 103×80µm2 Sensor size 2.9×3.2mm2

Zero-suppressed hit addresses and timestamps via fast serial link

Successfully tested in lab and in testbeam campaigns

A. Perrevoort (Heidelberg) Mu3e FCCP 2015 10 / 20

(13)

Lightweight Mechanics

50 µm silicon sensor

100 µm Kapton flexprint with aluminum traces

25 µm Kapton support structure

→ ∼1 ‰ of radiation length

Cooling with gaseous helium

(14)

Experimental Concept

Data Acquisition

Triggerless data acquisition Front-end board

Buffer and merge data ofO(15)sensors

Time-sorting

Slow control

Switching board

Switch between front-end and filterfarm

Merge data of sub-detectors

GPU filterfarm

Fast track finding and online reconstruction

Reduce data rate from

1 Tbit/s to100 MB/s

~ 1000 Pixel Sensors

up to 45 1.25 Gbit/s links

FPGA FPGA FPGA

...

Switching Boards 1 6.4 Gbit/s link each

GPU PC

GPU PC

GPU 12 PCs PC ...

12 6.4 Gbit/s links per RO Board 4 Inputs each

Data Collection

Server

Mass Storage Gbit Ethernet

2 Switching boards

~40 FPGAs Front-end boards

Switching boards

Filterfarm

A. Perrevoort (Heidelberg) Mu3e FCCP 2015 12 / 20

(15)

Phase I

Increase muon rate to 108muons/s Ð→ precise time measurement required

Tracks expected within readout frame of 50 ns

Matching with time information of scintillating fibres and tiles

(16)

Experimental Concept

Phase I: Detector Configuration B

Scintillators improve time resolution

A. Perrevoort (Heidelberg) Mu3e FCCP 2015 14 / 20

(17)

Phase I: Detector Configuration B

Improve momentum resolution by measuring re-curling particles Increase acceptance for re-curlers

(18)

Experimental Concept

Phase I: Detector Configuration B

Phase IB 108muons/s

BR∼1015 2018

A. Perrevoort (Heidelberg) Mu3e FCCP 2015 14 / 20

(19)

Scintillating Fibres

-4 -3 -2 -1 0 1 2 3 4

Events/200ps

0 1000 2000 3000 4000 5000

σ = (412 x 2)ps

t1-t2[ns]

Time resolution of squared fibres

∼3 layers of fibres with diameter of 250 µm

Round and squared fibres under investigation

Photon detection at both ends with SiPM array

Readout with custom-designed STiC chip

Time resolution:

σround

21.5 ns

σsquared

2500 ps

(20)

Experimental Concept

Scintillating Tiles

Time Difference [ps]

-400 -200 0 200 400

# Entries

0 5 10 15 20 25 30 103

×

TWC No TWC ) ps

×2 = (56 σ

) ps

× 2 = (70 σ

Size∼1×1×1cm3

Each tile has a SiPM

Readout with custom-designed STiC chip

Time resolution≲100 ps

A. Perrevoort (Heidelberg) Mu3e FCCP 2015 16 / 20

(21)

Phase II

Phase II 109muons/s at future beamline BR∼1016

2020+

(22)

Sensitivity Studies

Reconstructed mass for signal and background events Phase IB

Reconstructed Mass [MeV]

96 98 100 102 104 106 108 110

Events per 100 keV

10-4

10-3

10-2

10-1

1 10

Internal Conversion Background

eee at 10-12

µ

eee at 10-13

µ

eee at 10-14

µ

eee at 10-15

µ

+ Michel e+

e-

Bhabha e+

Mu3e: 1·1015 μ on Target; Rate 108 μ/s

SIMULATION

A. Perrevoort (Heidelberg) Mu3e FCCP 2015 18 / 20

(23)

Mu3e

Precision experiment searching for LFV decayµ → eee Aiming at a sensitivity of BR∼1015(1016)

Lightweight pixel detector made of HV-MAPS Precise timing by scintillating fibres/tiles Triggerless readout

Operated at 108muons/s

(24)

Status and Outlook

Tests of HV-MAPS prototype

Mechanical prototype

Current status

Research proposal approved in 2013

Technical design report in preparation(Q1 2016) Research and development of subsystems Preparation of detector construction Outlook

Commissioning and first data in 2017 Phase IA: BR∼1014(2017)

Phase IB: BR∼1015(2018) Phase II : BR∼1016(2020+)

requires muon rates of 109muon/s

A. Perrevoort (Heidelberg) Mu3e FCCP 2015 20 / 20

(25)

Appendix

(26)

History of LFV Searches in µ and τ Decays

1940 1960 1980 2000 2020

Year

90%CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

e

3e

N eN

3

10–16

SINDRUM SINDRUM II MEG

MEG II Mu3e Phase I

Mu3e Phase II Comet/Mu2e

Adapted from Marciano et al. [Ann.Rev.Nucl.Part.Sci.58, 2008]

A. Perrevoort (Heidelberg) Mu3e FCCP 2015 2 / 7

(27)
(28)

Multiple Coulomb Scattering

Ω MS

θ

MS

B

Decay electrons have low momentum<53 MeV/c

Momentum resolution is dominated by multiple scattering

σ pθMS θMSβ1cp

x X0

A. Perrevoort (Heidelberg) Mu3e FCCP 2015 4 / 7

(29)

Ω ~ π MS

θMS

B

Decay electrons have low momentum<53 MeV/c

Momentum resolution is dominated by multiple scattering

σ pθMS θMSβ1cp

x X0

(30)

Layout of MuPix7

Periphery Pixel Matrix

Readout Control

A. Perrevoort (Heidelberg) Mu3e FCCP 2015 5 / 7

(31)

...

4860 Pixel Sensors

up to 56 1250 Mbit/s links

FPGA FPGA FPGA

...

82 FPGAs

RO Board

RO Board

RO Board

RO Board 1 6 Gbit/s

link each

Group A Group B Group C Group D

GPU PC

GPU PC

GPU PC 12 PCs

Subfarm A ...

12 10 Gbit/s links per RO Board 8 Inputs each

GPU PC

GPU PC

GPU PC 12 PCs

Subfarm D 4 Subfarms

~ 4000 Fibres

FPGA FPGA

...

16 FPGAs

~ 7000 Tiles

FPGA FPGA

...

14 FPGAs

RO Board

RO Board

RO Board

RO Board Group A Group B Group C Group D

RO Board

RO Board

RO Board

RO Board Group A Group B Group C Group D

Data Collection

Server

Mass Storage Gbit Ethernet

(32)

Mu3e Collaboration

DPNC, Geneva University KIP, Heidelberg University

Physics Institute, Heidelberg University IPE, Karlsruhe Institute of Technology Institute for Nuclear Physics, JGU Mainz Paul Scherrer Institute

Institute for Particle Physics, ETH Z ¨urich Physics Institute, Z ¨urich University

A. Perrevoort (Heidelberg) Mu3e FCCP 2015 7 / 7

Referenzen

ÄHNLICHE DOKUMENTE

'Fmt' takes as input a file containing text with interspersed formatting instructions. It is invoked by a command with various optional parameters, discussed

We propose to use three models we have developed as the core for our project. Al- though this model is less rich in data and well-tested relationships, it has

IIASA as a research institution. Haefele noted that clear- inghouses in the energy field might already exist. Raiffa added that IIASA has an obligation to the

customers Germany customers NRW universities near location customers near location suppliers Germany suppliers NRW universities NRW universities Germany consultants near

In contrast, for J 0 /J 1, the system reduces to a 2D square lattice Heisenberg model, the ground state of which has long-range antiferromagnetic order and no spin gap (the N´

• The Domain structure, observed in the low tem- perature phase and the character of the temperature de- pendent changes of birefringence indicate that the new crystal has at

Current parameter is difficult to determine and several different methods are currently used, like absolute and relative methods (see more in ref. In the

Aaron Bertram, Ionut Ciocan-Fontanine, William Fulton, Quantum multiplication of Schur polynomials, 1999.. Alexander Postnikov, Affine approach to quantum Schubert