• Keine Ergebnisse gefunden

H. Fischer, J. Schmitt & P. K¨ ohler

N/A
N/A
Protected

Academic year: 2022

Aktie "H. Fischer, J. Schmitt & P. K¨ ohler"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Use and abuse of Keeling plots in paleoatmospheric research:

What can we learn from δ 13 CO 2 in polar ice cores?

H. Fischer, J. Schmitt & P. K¨ ohler

Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany Contact: hufischer@awi-bremerhaven.de

The alternation of ice and warm ages is connected to glacial/interglacial CO

2

con- centration changes of approximately 80-100 ppmv with significant fine structure du- ring Termination I (Monnin et al. 2001). Changes in the carbon isotopic signature of CO

2

during that time are expected to add to our understanding what processes were responsible for the observed CO

2

changes. First measurements revealed a gla- cial/interglacial change in δ

13

CO

2

of 0.2-0.3 h (Leuenberger et al. 1992) but signi- ficantly higher variations during the termination (Smith et al. 1999). Using the so called Keeling plot approach (δ

13

C = a/CO

2

+ b, where b is taken as representative of the isotopic signature of carbon added or extracted from the atmosphere) it was concluded that the terrestrial biosphere was of major importance for CO

2

changes in the glacial and the Holocene (Smith et al. 1999; Fischer et al. 2003). However, this approach known from terrestrial carbon cycle research represents essentially a carbon isotopic mass balance of a two reservoir system and its application on paleoclimatic CO

2

changes is not straightforward. Here we revisit the Keeling plot approach on paleoclimatic time scales using ice core observations, theoretical consi- derations and modelling results. Based on output of transient model runs from our global carbon cycle model BICYCLE during the last transition (K¨ ohler et al. 2005) we constrain the conclusions to be drawn from ice core δ

13

CO

2

data and Keeling plot analyses (K¨ ohler et al. 2006). The effective isotopic signatures of various pro- cesses calculated by either the Keeling plot approach or theoretically differ widely from the known δ

13

C of the source and are very often indistinguishable in the light of the uncertainties. A back calculation from well distinct fluctuations in pCO

2

and δ

13

C to identify their origin using the Keeling plot approach seems not possible.

Extending the Keeling plot approach to a three reservoir system

Two reservoir system A=A0+B and AδA=A0δA

0+BδB⇒δA=A0(δA 0−δB)

A +δB

Three reservoir system A+O=A0+O0+B and AδA+OδO=A0δA

0+O0δO 0+BδB A0=600 PgC and O0=38,000 PgCδA

0 =−6.5h,δO

0 = +1.5hδB=−25h εAO≈δA

0−δO

0 ≈δA−δO≈ −8h

Revelle or buffer factorβ=f(temperature, alkalinity, DIC):β:=

¡

d[CO2]/[CO2]

dDIC/DIC

¢

. βin recent surface waters varies between 8 and 16 (Sabine et al. 2004). Preindustrial:β(surface ocean boxes): 11.5, with 9 in equatorial waters and 12 in the high latitudes.

Finally:δ∆A=

A0+O0+B−O A0+O0+B (A0δA

0+O0δO

0+BδB+εAOO)−A0δA 0

O0+B−O .

0 200 400 600 800 1000 B [PgC]

-10.0 -9.8 -9.6 -9.4 -9.2 -9.0

A

[

o

/

oo

]

AO= -8o/oo, = 11.5, A = 600 PgC

A

-12 -10 -8 -6 -4 -2 0

AO

[

o

/

oo

] 1

3 5 7 9 11 13 15 17 19

[- ]

A[o/oo] with B = 10 PgC, A = 600 PgC

-30

-30 -25-25

-20

-20 -15-15

-14 -14

-13 -13 -12

-12

-11 -11 -10

-10

-9 -9 -8 -8

-9.75 -9.75 -9.5

-9.5

-9.25 -9.25 -9

-9

-8.75 -8.75 -8.5

-8.5

-8.25 -8.25 -8

-8

-7.75 -7.75

B

Results of the three reservoirs approach. Effective isotopic signature of the atmosphereδ∆Aas function of (A) the size of the terrestrial release and (B) the Revelle Factorβand the fractionation during gas exchangeεAO. The cross in B marks the preindustrial state (β=11.5,εAO =−8.0h).

Box model of the Isotopic Carbon cYCLE BICYCLE

100 m

1000 m

DEEP SURFACE

MEDIATEINTER−

Rock

carbon

water C3

FS SS

NW W D C4

Atmosphere

Atlantic Indo−Pacific

Sediment

40°N

50°N 40°S 40°S

SO

Biosphere

16

22 5

10 1 4 16

9 6

3 30

9 16

20 1

18 19

15

6

9 9

16

12 5 2 1

3

200 250 300 350

C O

2

[p p m v ]

13C CO2

A

TD

30 1

Time [kyr BP]

LD 1000 2000

Time [yr AD]

2000 PB 1980 2000

Time [yr AD]

-8.5 -8.0 -7.5 -7.0 -6.5 -6.0

13

C [

o

/

oo

]

0.003 0.004 0.005 1/CO

2

[1/ppmv]

-8.5 -8.0 -7.5 -7.0 -6.5

-6.0 300 250 200

CO

2

[ppmv]

...

. . . ... . . ..

. . ...

. ..

... ..

. . . ..

.... . .. . .

. .. . ... .

. ..

.. . ...

. ..

. ...

. . .... . ... . . ..

... . ..

. ..

... ..

. . ..

... . . . . ..

...

. ..

... ..

. ..

... . ...

..

. ..

...

. . . .. . ...

. . . . ...

. ..

...

. ..

.. . ...

. ..

... ..

. . . . .

...

. . . ... . . ..

. . ...

. ..

... ..

. . . ..

... . .. . .

. .. . ... . ..

.. . ...

. ..

... ..

... . . . . .... . ... . . ..

.. . ... . . ..

... ..

. ..

. . ...

. . . ..

...

. ..

... ..

. ..

... . ..

. ..

. ..

...

. . . .. . ...

. . . . ... . . ..

. . ...

. ..

.. . ...

. ..

... . .. . . . . .

. .

Point Barrow, detrended

.

Point Barrow Law Dome Taylor Dome LGM Taylor Dome GIG Taylor Dome HOL

TD HOL: y0= -9.5o/oo, r2= 40%

TD GIG: y0= -5.8o/oo, r2= 34%

TD LGM: y0= -9.5o/oo, r2= 48%

LD ANT: y0= -13.1o/oo, r2= 96%

PB ORG: y0= -16.7o/oo, r2= 68%

PB DET: y0= -25.3o/oo, r2= 96%

B

A: Data sets of measured CO2 andδ13C. B: Keeling plot. Point Barrow monthly resolved (1982−2002) (Keeling & Whorf 2005; Keeling et al. 2005); original data (PB ORG); detrended (PB DET). Law Dome (1 kyr) (Francey et al. 1999; Trudinger et al. 1999) (LD ANT). Taylor Dome (30 kyr) (Smith et al. 1999); Holocene (TD HOL), glacial/interglacial transition (TD GIG), LGM (TD LGM).

Summary of y-axis intercept y0 of the steady state Keeling plot analysis for processes changing over Termination I.

Process y0 (h) Comment

Linear rise in terrestrial carbon storage −8.6 increase non-linear, steepest slope−25h Decrease in marine export production −8.6 steeper slope during first 50 yr (y0=−9.7h) Rise in NADW formation −7.8 varies with time; mixture with changes in marine export

production during Heinrich 1 event; during Younger Dryas and resumption in the Holocene y0=−7.15±

0.05h, steep slope during first 50 yr (y0=−9.5h) Rise in Southern Ocean vertical mixing −8.2 steep slope during first 50 yr (y0=−11.0h) Decline in sea ice cover −0.7 regression over whole data set:−3.8h; different in

North (−4.8h) and South (−77.2h)

Rise in sea level −6.4

Rise in temperature −3.6

Sediment/ocean interaction −5.8

266 268 270 272 274

p C O

2

[ a tm ]

13C pCO2

A

-2 0 2 4 6 8

Time [kyr]

-7.0 -6.9 -6.8 -6.7 -6.6 -6.5

13

C [

o

/

oo

]

0.0037 0.00375 1/pCO

2

[1/ atm]

-7.0 -6.9 -6.8 -6.7 -6.6

-6.5 270 260

pCO

2

[ atm]

05 PgC, -23o/oo 10 PgC, -33o/oo 10 PgC, -13o/oo 10 PgC, -23o/oo y0= -23.8o/oo y0= -8.4o/oo y0= -18.7o/oo; r2=68%

year 1

year 0

B

250 300 350 400 450 500

p C O

2

[ a tm ]

13C pCO2

A

-2 0 2 4 6 8

Time [kyr]

-7.6 -7.4 -7.2 -7.0 -6.8 -6.6

13

C (a tm ) [

o

/

oo

]

0.002 0.003 0.004

1/pCO

2

[1/ atm]

-7.6 -7.4 -7.2 -7.0 -6.8 -6.6

500 400 300

pCO

2

[ atm]

y0= -8.8o/oo y0= -10.2o/oo

y0= -8.0o/oo r2= 93%

year 0

B

year 100 year 8000

20 18 16 14 12 10 Time [kyr BP]

160 180 200 220 240 260

p C O

2

[ a tm ]

A

20 18 16 14 12 10 Time [kyr BP]

-7.0 -6.8 -6.6 -6.4 -6.2

13C pCO2

0.004 0.005 0.006 1/pCO

2

[1/ atm]

-7.0 -6.8 -6.6 -6.4 -6.2

13

C [

o

/

oo

]

270 230 190 170 pCO

2

[ atm]

1: y0=-07.3o/oo, r2= 65%

2: y0=-10.0o/oo, r2=100%

3: y0=-05.2o/oo, r2= 97%

4: y0=-11.4o/oo, r2= 83%

5: y0=-13.3o/oo, r2= 90%

6: y0=-13.0o/oo, r2= 76%

7: y0=-06.9o/oo, r2= 06%

B

Examples for Keeling plots out of simulation results: Top: Fast terrestrial carbon release. Middle: Switching from abiotic to biotic ocean. Different regression models in Top and Middle: first year only in green; prior/after (steady states) in black; equilibration time in magenta. Bottom: Identifying events with differentδ13 C signal during Termination I.

References:

Francey, et al. 1999. Tellus, 51B:170–193.Fischer, et al. 2003. Memoirs National Institute Polar Research, 57:121–

138.Keeling, et al. 2005. Oak Ridge National Laboratory, U.S. Department of Energy,, Oak Ridge, Tenn., USA.

Keeling, & Whorf 2005. Oak Ridge National Laboratory, U.S. Department of Energy,, Oak Ridge, Tenn., USA.

K¨ohler et al. 2005. GBC, 19:GB4020, doi: 10.1029/2004GB002345.K¨ohler et al. 2006. Biogeosciences Discussions, in press.Leuenberger et al. 1992. Nature, 357:488–490.Monnin et al. 2001. Science, 291:112–114.Sabine et al.

2004. Science, 305:367–371.Smith et al. 1999. Nature, 400:248–250.Trudinger et al. 1999. Tellus, 51B:233–248.

Referenzen

ÄHNLICHE DOKUMENTE

In der Hesseschen Normalform steckt bereits der Satz des

Die beiden oberen sind seitlich herunterge- klappt, die beiden unteren auf das Bodenrechteck eingeklappt und daher beim stehenden Milchkarton nicht sichtbar.. Die Faltnasen sind

In der Abbildung 4 ist rot die Kurve für k = 3 einge- zeichnet und blau der mit dem Faktor 2 gestreckte Thaleskreis, also

It can help to pinpoint, which exchange processes among the different reservoirs of the global carbon cycle significantly alter atmospheric CO 2 as δ 13 C is recorded in ice cores

The Keeling plot analysis is an interpretation method widely used in terrestrial carbon cycle research to quantify exchange processes of carbon between terrestrial reservoirs and

In the first study, we used the isotopic composition of bulk sedimentary organic carbon (δ 13 C org ), pub-.. a) Relationship between the isotopic fractionation (ε p ) of the C 37:2

Проблематиката относно правното положение на областния управител в системата на органите на изпълнителната власт е ана - лизирана и представена

In an African study, closer to Eritrea; Ayele & Zewdie (2017) analyzed human population size and its pattern in Ethiopia using ARIMA models and employing annual data from 1961