• Keine Ergebnisse gefunden

On the interpretation of the stable carbon isotope ratio, δ 13 C, during the last 2,000,000 years:

N/A
N/A
Protected

Academic year: 2022

Aktie "On the interpretation of the stable carbon isotope ratio, δ 13 C, during the last 2,000,000 years:"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

On the interpretation of the stable carbon isotope ratio, δ 13 C, during the last 2,000,000 years:

From millennial-scale variability in atmospheric δ 13 CO 2

to the Mid Pleistocene Transition in deep Pacific δ 13 C

Peter K¨ ohler 1 , Richard Bintanja 2 , Jochen Schmitt 1,3 and Hubertus Fischer 1,3

1

: Alfred Wegener Institute for Polar and Marine Research P.O. Box 12 01 61, D-27515 Bremerhaven, Germany

2

: KNMI Royal Netherlands Meteorological Institute, Wilhelminalaan 10, 3732 GK De Bilt, Netherlands

3

: Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research

1

: University of Bern, Bern, Switzerland

1

: email: peter.koehler@awi.de, bintanja@knmi.nl, hubertus.fischer@climate.unibe.ch, schmitt@climate.unibe.ch

Abstract

The ratio of the stable carbon isotopes, δ

13

C, contains valuable information on the processes which are opera- ting on the global carbon cycle-climate system. It can help to pinpoint, which exchange processes among the different reservoirs of the global carbon cycle significantly alter atmospheric CO

2

as δ

13

C is recorded in ice cores and benthic organisms buried in the sediments, respec- tively. Here we show with the help of the carbon cycle box model BICYCLE [K¨ ohler et al., 2005; K¨ ohler and Fischer, 2006] how much additional information on carbon cycle and climate dynamics might be extracted from δ

13

C and where we find significant limitations. Our time frame of in- terest is spanning from the variability during fast climate fluctuations of the Dansgaard/Oeschger (D/O) events to the rise in the glacial/interglacial amplitudes and the shift in the frequency spectra from 40 kyr to 100 kyr during the Mid Pleistocene Transition (MPT) [K¨ ohler and Bintanja, 2008].

The Model

000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111

00000 00000 00000 00000 00000 00000 00000 00000 00000

11111 11111 11111 11111 11111 11111 11111 11111 11111 0000 0000 1111 1111

000000 000000 000000 111111 111111 111111

Box model of the Isotopic Carbon cYCLE

BICYCLE

Rock C3

FS SS

NW W D C4 Atmosphere

Atlantic Indo−Pacific

Sediment SO

Biosphere mediate

inter−

surface

deep

water carbon

Southern Ocean vertical exchange

(red arrow)

is related to SST after MPT, but decoupled from SST before, which we call

Southern Ocean Decoupling Hypothesis.

Conclusions

(1) Based on our model convolution of various independently dated climate records there is no 100-kyr cycle in atmosphe- ric δ

13

CO

2

.

(2) Millennial-scale climate variability leads to fast changes in the terrestrial C cycle. The corresponding δ

13

CO

2

signal is dilluted quickly through gas exchange with the ocean.

(3) The δ

13

CO

2

amplitude which is recorded in ice cores de- pends on the gas age distribution in the firn, which dampens the recorded signal (60% at LGM in EPICA Dome C).

(4) We suggest a decoupling of SST in the Southern Ocean from the vertical mixing rates before the Mid Pleistocene Transition (before 1,000,000 years) to find glacial/interglacial amplitudes in δ

13

C in the deep Pacific which are in line with reconstruction.

(5) The 400 kyr cycle found in all deep ocean δ

13

C recon- structions and its complete lack in δ

18

O (and in our simula- tion results) still holds some surprises in the understanding of the carbon cycle-climate interactions.

Millennial-scale variability in atmospheric δ 13 CO 2

-7.0 -6.8 -6.6 -6.4 -6.2 -6.0

13

CO

2

(

o

/

oo

)

CTRL Taylor Dome ice core

A

-0.6 -0.4 -0.2 0.0 0.2 0.4

(

13

CO

2

) (

o

/

oo

)

TB Fe fert.

SO mixing NADW Sea ice Sea level

Temp.

B

700 600 500 400 300 200 100 0

Time (kyr BP) -0.6

-0.4 -0.2 0.0 0.2 0.4

(

13

CO

2

) (

o

/

oo

)

D/O minus TB+SST TB+SST minus TB+

TB+ minus CTRL

C

Simulated atmospheric

δ13CO

2 record over the last 740 kyr (A) does not contain any significant power in the 100 kyr periods (see power spectra below) due to opposing effects of the terrestrial biosphere and the different marine carbon pumps (B) Also: Taylor Dome ice cores data [Smith et al., 1999]. C: No millennial scale variability in CTRL: TB+: Fast changes in terrestrial carbon storage. TB+SST: Scenario TB+ and fast changes in North Atlantic SST. D/O: Scenario TB+SST and fast changes in Atlantic meridional overturning.

101 2 5102 2 5103 Period (kyr) 10-1

2 5 100 2 5 101 2 5 102 2

Spectralpower(-) 99% conf.

CTRL 34 19 15

(100)

0 500 1000 1500 2000 Gas age (yr) 0

1 2 3 4 5 6

Probability(o/oo) E=213yr

E=590yr LGM firn model LGM lognormal PRE firn model PRE lognormal

0 50 100 150

(TBC)(PgC)

A

220 230 240 250 260 270 280 290

pCO2(atm) 5000 yr 1000 yr 0500 yr 0100 yr

B

0 1 2 3 4

Time after start of event (kyr) -7.4

-7.2 -7.0 -6.8 -6.6 -6.4 -6.2 -6.0 -5.8 -5.6

13CO2(o/oo) 590 yr lognormal filter 213 yr lognormal filter original

C

Left top:

Maximum entropy spectral analysis (MESA) of

δ

13CO 2 in CTRL .

Left bottom:

Gas age distribution as function of climate state, here preindustrial (PRE) and LGM conditions. Calculation by Joos & Spahni [2008], approximated by lognormal functions.

Right:

Simulation of terrestrial carbon uptake of 150 PgC (

δ

13C = –22h) in 100 yr, followed after 1 kyr by the release of 150 PgC within 100, 500, 1000, 5000 years (A) and effects on atmospheric pCO2 (B) and

δ

13CO 2 (C). Thick lines: Original results. Thin and thinnest lines: After filtering with a lognormal function with mean gas age distribution of 213 yr (PRE) and 590 yr (LGM) to mimic amplitude attenuation during gas enclose in the ice.

Mid Pleistocene Transition in deep Pacific δ 13 C

5 4 3

18

O (

o

/

oo

)

A

180 200 220 240 260 280 300

pCO

2

( atm) 180 200 220 240 260 280 300

B

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

2.0 1.5 1.0 0.5 0

Time (Myr BP) -1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2

13

C (

o

/

oo

)

LR04 SODH

C

100-kyr MPT

40-kyr

(A) LR04 deep ocean benthic

δ

18 O stack [Lisiecki and Raymo, 2005], and (B) simulated and measured atmospheric pCO2 and (C) deep Pacific

δ

13C over the last 2,000,000 years. Grey: data from ice cores (B) and sediments (C), black:

reconstructed pCO2 based on

δ

11 B from planktic foraminifer [H¨onisch et al., 2009]. Scenario LR04: Climate is similarly related to the LR04 benthic

δ

18O prior and after the MPT. Scenario SODH: The Southern Ocean Decoupling Hypothesis.

40K MPT 100K 0.0 0.2 0.4 0.6 0.8 1.0 1.2

f

ratio

(-)

SODH LR04 data

Left:

Glacial/interglacial amplitudes in deep Pacific

δ

13C normalised to the 100k-world (fratio = 1) in data and both simulation scenarios (LR04, SODH).

Below:

As consequence of the Southern Ocean Decoupling Hy- pothesis the relation between Southern Ocean temperature and CO2 breaks up (left). This is also seen in the latest CO2 data set from EPICA Dome C between Antarctic temperature and CO2 (right) [L¨uthi et al., 2008].

-3 -2 -1 0 1 2 3 4 5 SO SST [

o

C]

160 180 200 220 240 260 280 300

pCO

2

[ atm]

...

...

...

...

...

...

...

....

....

...

...

...

...

...

...

...

...

....

...

...

... ... ...

...

...

..

..

..

..

...

...

...

....

...

...

...

....

....

...

...

...

...

...

...

...

...

...

...

...

...

...

...

....

...

...

...

...

...

...

...

...

...

...

...

....

...

...

...

...

...

...

....

...

...

...

...

...

...

...

...

...

...

...

....

...

...

...

....

...

...

...

...

...

..

..

..

...

...

...

...

....

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

....

...

...

...

...

...

...

...

...

...

...

...

...

...

...

....

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

....

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

....

...

...

...

...

...

...

...

...

...

...

...

...

...

... ...

...

...

...

...

...

...

....

...

...

...

...

....

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

-3 -2 -1 0 1 2 3 4 5 SO SST [

o

C]

160 180 200 220 240 260 280 300

pCO

2

[ atm]

40k world

y=164+24x, r2=92%

100k world

y=189+17x, r2=95%

A

-10 -8 -6 -4 -2 0 2 4 6 T [K]

180 200 220 240 260 280 300

CO

2

[ppmv]

. . . . . . .. .

. . . .

. .. . . . . .

. . . . . . . . . ..

. . .

. . .

. . .

. . . . ..

. . . . . . . . . ..

.. . . . . . . . .

. . .. ...

. . . . . ...

..

. .

. . . . .

. . . .. ..

. .. . . . . . .. . .

... . . . .. . . ..

. .

. . .

. .. . . . . . .. .

. .. ..

. . . . . . . . . . . . .

. . . . .

...

. . . . .

. . . . . .

. .

.. . .

. . . . . . . . .. . . . . .. .. ....

. . . . . .

. . . . . . .. ... ..

. . . . . . . . . . . . . .

. .

. ...

. . . ..

. .. . .

. . . .

. . . .

. . ..

.. . .. . ..

. . . .

. . . . . . . . . .. . . . . . . . . . . . . .. .

.. . . . . . . . . . ..

. . . .... .. .... .. . .. ... .. . .

. .. . ... .. ... . . ... ..

. . . ..

... . ..

. . . . .. . . . ..

. . ..

. . . .. . . . . .. . . . .... . . ... ... .... . ... .. ..

. . . ..

. ... .. . .. . . ..

. . .... . . . .. . . . . ... .. .. ....

... ..

.. . .... . .. .. .. .. ...

... ... . ... ... ... .. .. ..

.. . ... . . . . .. ..

. . . . . . . .. . . . . ..

... . ..

... . . . . . . . ... . .

. . .

. ..

.. .. .

. .

... ... ...

.. . . . ...

.. . . . .... . ... ..

. . . . .... ...

. . . . . . . . . ...

. . ...

.... ...

. ..

...

....

. .

.. . ... . ...

... . ... . . . . .

. . ... .

..

... ... ... .. ... .. ... ... ... . ... ... ... ... ..

. ....

. . .. .. . . ..

.. ... ..

... .. . ... . .... ....

. ... . . . ..

.. ..

-10 -8 -6 -4 -2 0 2 4 6 T [K]

180 200 220 240 260 280 300

CO

2

[ppmv]

y = 263+6.77x 050-270 kyr BP

y = 257+8.01x 650-800 kyr BP

References:

H¨ onisch et al. (2009) Science 324:1551ff. K¨ ohler et al., (2005) GBC 19:GB4020. K¨ ohler & Bintanja (2008) Climate of the Past 4:311ff. K¨ ohler & Fischer (2006) Climate of the Past 2:57ff. Joos & Spahni (2008) PNAS 105:1425ff. Lisiecki &

Raymo (2005) Paleoceanography 20:PA1003. L¨ uthi et al. (2008) Nature, 453:379ff. Petit et al. (1999) Nature 399:429ff.

Raymo et al. (1997) Paleoceanography 12:546ff. Raymo et al. (2004) Paleoceanography 19:PA2008. Smith et al. (1999)

Nature 400:248ff. Siegenthaler et al. (2005) Science 310:1313ff.

Referenzen

ÄHNLICHE DOKUMENTE

Processes depict changes in SST (S-SST), sea level (S- SEAL), sea ice (S-SICE), NADW formation (S-NADW), Southern Ocean vertical mixing (S- SOX), iron fertilisation in the

Processes acting on the global carbon cycle that increase glacial ∆ 14 C are a restricted glacial gas exchange bet- ween the atmosphere and the surface ocean through sea ice coverage,

A model-based interpretation of low frequency changes in the carbon cycle during the last 120,000 years and its implications for the reconstruction of atmospheric ∆ 14 C —

The Keeling plot analysis is an interpretation method widely used in terrestrial carbon cycle research to quantify exchange processes of carbon between terrestrial reservoirs and

The deployed foodfall lander, which should have been recovered in September by our deep-sea biologists who will shortly join the French research vessel ATALANTE, came prematurely

Simulation scenarios combine all physical processes (ocean temperature, sea level, sea ice) with changes in ocean circulation (NADW formation, Southern Ocean mixing), marine

Here we used a coupled atmosphere/biosphere/ocean box model of the global carbon cycle to quan- tify changes in pCO 2 and δ 13 CO 2 observed in Antarctic ice core records.. To this

In the first study, we used the isotopic composition of bulk sedimentary organic carbon (δ 13 C org ), pub-.. a) Relationship between the isotopic fractionation (ε p ) of the C 37:2