• Keine Ergebnisse gefunden

A model-based interpretation of low frequency changes in the carbon cycle during the last 120,000 years and its implications for the reconstruction of atmospheric ∆ 14 C

N/A
N/A
Protected

Academic year: 2022

Aktie "A model-based interpretation of low frequency changes in the carbon cycle during the last 120,000 years and its implications for the reconstruction of atmospheric ∆ 14 C"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

A model-based interpretation of low frequency changes in the carbon cycle during the last 120,000 years and its implications for the reconstruction of atmospheric ∆ 14 C

— AGU2006 Poster ID: PP33A-1781

Peter K¨ ohler

1

, Raimund Muscheler

2

& Hubertus Fischer

1

1: Alfred Wegener Institute for Polar & Marine Research Bremerhaven, Germany (Peter.Koehler@awi.de)

2: NASA/Goddard Space Flight Center, Climate and Radiation Branch, Greenbelt, MD, USA (raimund@climate.gsfc.nasa.gov)

A main caveat in the interpretation of observed changes in atmospheric14C du- ring the last 50,000 years is the unknown variability of the carbon cycle, which together with changes in the14C production rates determines the14C dynamics.

A plausible scenario explaining glacial/interglacial dynamics seen in atmospheric CO2andδ13C was proposed recently (K¨ohler et al. 2005). A similar approach and expanding its interpretation to the14C cycle is an important step towards a deeper understanding of14C variability (K¨ohler et al. 2006). This approach is based on an ocean/atmosphere/biosphere box model of the global carbon cycle (BICYCLE) to reproduce low frequency changes in atmospheric CO2as seen in Antarctic ice cores. The model is forced forward in time by various paleo-climatic records deri- ved from ice and sediment cores. The simulation results of our proposed scenario match a compiled CO2record from various ice cores during the last 120,000 years with high accuracy (r2= 0.89). We analyze scenarios with different14C produc- tion rates, which are either constant, based on10Be measured in Greenland ice cores, or the recent high-resolution geomagnetic field reconstruction GLOPIS-75 and compare them with the available14C data covering the last 50,000 years.

Our results suggest that during the last glacial cycle in general less than 110h of the increased atmospheric14C are based on variations in the carbon cycle, while the largest part (5/6) of the variations has to be explained by other factors.

Glacial atmospheric14C larger than 700hcannot not be explained within our framework, neither through carbon cycle-based changes nor through variable14C production. Superimposed on these general trends might lie positive anomalies in atmospheric14C of50hcaused by millennial-scale variability of the northern deep water production during Heinrich events and Dansgaard/Oeschger climate fluctuations. According to our model the dominant processes that increase glacial

14C are a reduced glacial ocean circulation (+40h), a restricted glacial gas exchange between the atmosphere and the surface ocean through sea ice coverage (+20h), and the enrichment of DIC with14C in the surface waters through isotopic fractionation during higher glacial marine export production caused by iron fertilization (+10h).

Keywords:carbon cycle,14C cycle,14C production rates, glacial/interglacial, mo- deling, box model, radionuclides

Forcing ⇓Simulation Results

0.0 0.5 1.0 1.5 2.0 2.5

18O(o/oo)

A

-120 -100 -80 -60 -40 -20 0

sealevel(m))

B

-400 -200 0 200 400

depth(m)

C

-15 -10 -5 0

T(K)

D

-45 -40 -35

18O(o/oo)

E

-450 -420 -390 -360

D(o/oo)

F

-1500 -1000 -500 0

dust(ppbv)

G

120 100 80 60 40 20 0

Time (kyr BP) 160

200 240 280

CO2(ppmv)

H

120 100 80 60 40 20 0

Time (kyr BP) 160

200 240 280

CO2(ppmv)

10pt running mean simulation

-60 -40 -20 0 20 40

(CO2)[ppmv]

overall CaCO3chemistry Terrestrial biosphere Fe fertilisation SO mixing NADW Sea ice Sea level Temperature

A

180 200 220 240 260 280

CO2[ppmv]

B

-40 -20 0 20 40

(14C)[o/oo] C

120 100 80 60 40 20 0

Time [kyr BP]

-20 0 20 40 60

14C[o/oo]

D

Left:Different data sets forcing the model (A: equatorial SST proxy, B: sea level; C: lysocline; D: northern hemisphere temperature; E: North Atlantic SST proxy; F: Southern Ocean SST proxy; G: dust input in Southern Ocean; H: Data and simulation results for pCO2.Right:Simulation results. A: Process contribution to(pCO2); B: pCO2; C:

Process contribution to∆(∆14C); D:14C with constant 14C production rate.

Model —14C data — Results

000000 000000 000000 111111 111111 111111

00000000 00000000 00000000 11111111 11111111 11111111 000000 000000 111111 111111

000000 000000 111111 111111

Box model of the Isotopic Carbon cYCLE BICYCLE

1000 m

Rock

carbon

water C3

FS SS

NW W D C4

Atmosphere

Atlantic Indo−Pacific

Sediment SO

Biosphere

16

22 5

101 4 16

9 6

3 30

9 16

20 1

18 19

15

6

9 9

16

12 5 2 1

3 40°N 40°S

40°S 50°N

100 m

-200 0 200 400 600 800 1000 1200 1400 1600

0 10000 20000

30000 40000

50000 14C [‰]

Age [years BP]

Voelker et al., 1998 Bard et al., 1998 Schramm et al., 2000 Kitagawa & van der Pflicht, 2000 Goslar et al., 2000 Hughen et al, 2000, 2004 Beck et al., 2001 Reimer et al., 2004 Fairbanks et al., 2005

IntCal04

0 1 2 3 4

Time [kyr]

-20 0 20 40 60 80 100 120

(14C)[o/oo]

0 1 2 3 4

Time [kyr]

IG THC, 2 modern

30 29 28 27 26 25 Time [kyr BP]

-20 0 20 40 60 80 100 120

30 29 28 27 26 25 Time [kyr BP]

-20 0 20 40 60 80 100 120

(CO2)[ppmv]

transient, 2 modern -20

0 20 40 60 80 100 120

(14C)[o/oo]

IG THC, modern

-20 0 20 40 60 80 100 120

-20 0 20 40 60 80 100 120

(CO2)[ppmv]

transient, modern (CO2)

(14C) Top:Data based reconstruction of∆14C.

References:

Bard et al. 1998. Radiocarbon, 40:1085–1092.Beck et al. 2001. Science, 292:2453–2458. Fairbanks et al. 2005. Quaternary Science Reviews, 24:1781–1796.

Goslar et al. 2000. Nature, 403:877–880.Hughen et al. 2000. Science, 290:1951–1954.Hughen et al. 2004.

Science, 303:202–207.Kitagawa & van der Pflicht 2000.

Radiocarbon, 42:369–380.ohler et al. 2005. GBC, 19:GB4020, doi: 10.1029/2004GB002345.ohler et al.

2006. GGG, 7, Q11N06, doi: 10.1029/2005GC001228.

Laj et al. 2005. Geophs. Monog. Series, 145:255–265.

Muscheler et al. 2005. QSR, 24:1849–1860.Reimer et al. 2004. Radiocarbon, 46:1029–1058. Schramm et al. 2000. EPSL, 175:27–40.Voelker et al. 1998.

Radiocarbon, 40:517–534.

Top:Shutdown of the NADW from interglacial (IG) THC or transient experiments (30–25 kyr BP) with constant14C production rates (mo- dern or 2×modern level), length of shutdown:

500, 1000, 1500, 2000 years.

Variable14C production rates

0.0 0.5 1.0 1.5 2.0 2.5

70 60 50 40 30 20 10 0 Time [kyr BP]

0.0 0.5 1.0 1.5 2.0 2.5

relative14 Cproductionrate[-]

S4: f(GLOPIS-75) S3: f(10Be)

S2: constant at 2 modern level S1: constant at modern level

10Be from Muscheler et al. (2005) and GLOPIS from Laj et al. (2005).

yellow/blue: 1/3000 yr−1cutoff frequency.

Simulated14C based on variable14C production rates

-100 0 100 200 300 400 500 600 700 800 900

50 40 30 20 10 0

Time [kyr BP]

-100 0 100 200 300 400 500 600 700 800 900

14 C[o /oo]

S4x: f(GLOPIS-75) S3x: f(10Be) S1: constant (modern)

INTCAL04 Reimer et al (2004)

The content of this poster is published as K¨ohler et al. (2006) in GGG.

(2)

(Bard et al. 1998; Voelker et al. 1998; Goslar et al. 2000; Hughen et al. 2000; Hughen et al. 2004; Kitagawa & van der Pflicht 2000; Schramm et al. 2000; Beck et al. 2001;

Reimer et al. 2004; Fairbanks et al. 2005; K¨ohler et al. 2005; K¨ohler et al. 2006; Muscheler et al. 2005; Laj et al. 2005)

Literatur

[Bard et al. 1998] Bard, E., Arnold, M., Hamelin, B., Tisnerat-Laborde, N., & Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals.

An update data base including samples from Barbados, Mururoa and Tahiti. Radiocarbon,40:1085–1092.

[Beck et al. 2001] Beck, J. W., Richards, D. A., Edwards, R. L., Silverman, B. W., Smart, P. L., Donahue, D. J., Hererra-Osterheld, S., Burr, G. S., Calsoyas, L., Jull, A. J. T., & Biddulph, D.

2001. Extremely large variations of atmospheric14C concentration during the Last Glacial Period. Science,292:2453–2458.

[Fairbanks et al. 2005] Fairbanks, R. G., Mortlock, R. A., Chiu, T.-C., Cao, L., Kaplan, A., Guilderson, T. P., Fairbanks, T. W., Bloom, A. L., Grootes, P. M., & Nadeau, M.-J. 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired230Th/234U/238U ans14C dates on pristine corals. Quaternary Science Reviews,24:1781–1796.

[Goslar et al. 2000] Goslar, T., Arnold, M., Tisnerat-Laborde, N., Czernik, J., & Wickowski, K. 2000. Variations of Younger Dryas atmospheric radiocarbon explicable without ocean circulation changes. Nature,403:877–880.

[Hughen et al. 2004] Hughen, K., Lehman, S., Southon, J., Overpeck, J., Marchal, O., Herring, C., & Turnbull, J. 2004.14C activity and global carbon cycle changes over the past 50,000 years.

Science,303:202–207.

[Hughen et al. 2000] Hughen, K. A., Southon, J. R., Lehman, S. J., & Overpeck, J. T. 2000. Synchronous radiocarbon and climate shifts during the last deglaciation. Science,290:1951–1954.

[Kitagawa & van der Pflicht 2000] Kitagawa, H. & van der Pflicht, J. 2000. Atmospheric radiocarbon calibration beyond 11,900 Cal BP from Lake Suigetsu laminated sediments. Radiocarbon, 42:369–380.

[K¨ohler et al. 2005] K¨ohler, P., Fischer, H., Munhoven, G., & Zeebe, R. E. 2005. Quantitative interpretation of atmospheric carbon records over the last glacial termination. Global Biogeochemical Cycles,19:GB4020, doi: 10.1029/2004GB002345.

[K¨ohler et al. 2006] K¨ohler, P., Muscheler, R., & Fischer, H. 2006. A model-based interpretation of low frequency changes in the carbon cycle during the last 120 000 years and its implications for the reconstruction of atmospheric∆14C. Geochemistry, Geophysics, Geosystems,7:Q11N06; doi: 10.1029/2005GC001228.

[Laj et al. 2005] Laj, C., Kissel, C., & Beer, J. 2005. High resolution global paleointensity stack since 75 kyr (GLOPIS-75) calibrated to absolute values. Pages 255–265,in Channell, J. E. T., Kent, D. V., Lowrie, W., & Meert., J. G. (editors), Timescales of the paleomagnetic field, volume 145 of Geophysical Monograph Series. AGU, Washington, USA.

[Muscheler et al. 2005] Muscheler, R., Beer, J., Kubik, P. W., & Synal, H.-A. 2005. Geomagnetic field intensity during the last 60,000 years based on10Be and 36Cl from the Summit ice cores and14C. Quaternary Science Reviews,24:1849–1860; doi: 10.1016/j.quascirev.2005.01.012.

[Reimer et al. 2004] Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Bertrand, C. J. H., Blackwell, P. G., Buck, C. E., Burr, G. S., Cutler, K. B., Damon, P. E., Edwards, R. L., Fairbanks, R. G., Friedrich, M., Guilderson, T. P., Hogg, A. G., Hughen, K. A., Kromer, B., McCormac, G., Manning, S., Ramsey, C. B., Reimer, R. W., Remmele, S., Southon, J. R., Stuiver, M., Talamo, S., Taylor, F. W., van der Plicht, J., & Weyhenmeyer, C. E. 2004. INTCAL04 terrestrial radiocarbon age calibration, 0–26 Cal kyr BP. Radiocarbon,46:1029–1058.

[Schramm et al. 2000] Schramm, A., Stein, M., & .Goldstein, S. L. 2000. Calibration of the 14C time scale to 440 ka by 234U-230Th dating of Lake Lisan sediments (last glacial Dead Sea).

Earth and Planetary Science Letters,175:27–40.

[Voelker et al. 1998] Voelker, A. H. L., Sarnthein, M., Grootes, P., Erlenkeuser, H., Laj, C., Mazaud, A., Nadeau, M.-J., & Schleicher, M. 1998. Correlation of marine 14C ages from the nordic seas with the GISP2 isotope record: implications for radiocarbon calibration beyond 25 kyr BP. Radiocarbon,40:517–534.

Referenzen

ÄHNLICHE DOKUMENTE

We extend informations on the global carbon cycle by running the global carbon cycle box model BICYCLE (Köhler et al., 2005; Köhler and Fischer, 2006) over the last 2 Myr and

Processes depict changes in SST (S-SST), sea level (S- SEAL), sea ice (S-SICE), NADW formation (S-NADW), Southern Ocean vertical mixing (S- SOX), iron fertilisation in the

We here (Köhler and Fischer, 2006) use dust and the isotopic temperature proxy deuterium (δD) from the EPICA Dome C Antarctic ice core covering the last 740 kyr together with

Processes acting on the global carbon cycle that increase glacial ∆ 14 C are a restricted glacial gas exchange bet- ween the atmosphere and the surface ocean through sea ice coverage,

Besides these data obtained from the recorded time series, from January, 2001, very significant qualitative changes in the glacier catchment area have been

The longest CO 2 record from the Antarctic ice core of the Vostok station went back in time as far as about 410 kyr BP showing a switch of glacials and interglacials in all

Simulation scenarios combine all physical processes (ocean temperature, sea level, sea ice) with changes in ocean circulation (NADW formation, Southern Ocean mixing), marine

Here we used a coupled atmosphere/biosphere/ocean box model of the global carbon cycle to quan- tify changes in pCO 2 and δ 13 CO 2 observed in Antarctic ice core records.. To this