• Keine Ergebnisse gefunden

NFFT basierte schnelle Ewald-Summation für gemischt periodische Randbedingungen

N/A
N/A
Protected

Academic year: 2022

Aktie "NFFT basierte schnelle Ewald-Summation für gemischt periodische Randbedingungen"

Copied!
48
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

NFFT basierte schnelle Ewald-Summation für gemischt periodische Randbedingungen

Franziska Nestler

Fakultät für Mathematik

Mecklenburger Workshop

Approximationsmethoden und schnelle Algorithmen Hasenwinkel, 18. März 2014

(2)

Contents

¶ NFFT based fast summation

· Coulomb interactions in periodic boundary conditions

¸ Fast Ewald Summation for mixed periodic boundary conditions

¹ Numerical results º Conclusion

(3)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

The 3d-NFFT (FFT for nonequispaced data)

Notation

define the torusT:=R/Z'[−1/2,1/2)

forM ∈2NsetIM :={−M/2, . . . ,M/2−1}3⊂Z3

NFFT: f(xj) := X

k∈IM

ke2πik·xj xj∈T3, j= 1, . . . , N

FFT: f(j) := X

k∈IM

ke2πik·j/M j∈ IM

, N:=|IM|=M3

adjoint NFFT: h(k) :=

N

X

j=1

fje−2πik·xj k∈ IM

Complexity: O(|IM|log|IM|+N)

[Dutt, Rokhlin 1993] [Beylkin 1995]

[Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

(4)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

The 3d-NFFT (FFT for nonequispaced data)

Notation

define the torusT:=R/Z'[−1/2,1/2)

forM ∈2NsetIM :={−M/2, . . . ,M/2−1}3⊂Z3

NFFT: f(xj) := X

k∈IM

ke2πik·xj xj∈T3, j= 1, . . . , N FFT: f(j) := X

k∈IM

ke2πik·j/M j∈ IM, N:=|IM|=M3

j=1

∈ I

Complexity: O(|IM|log|IM|+N)

[Dutt, Rokhlin 1993] [Beylkin 1995]

[Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

(5)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

The 3d-NFFT (FFT for nonequispaced data)

Notation

define the torusT:=R/Z'[−1/2,1/2)

forM ∈2NsetIM :={−M/2, . . . ,M/2−1}3⊂Z3

NFFT: f(xj) := X

k∈IM

ke2πik·xj xj∈T3, j= 1, . . . , N FFT: f(j) := X

k∈IM

ke2πik·j/M j∈ IM, N:=|IM|=M3

adjoint NFFT: h(k) :=

N

X

j=1

fje−2πik·xj k∈ IM

Complexity: O(|IM|log|IM|+N)

[Dutt, Rokhlin 1993] [Beylkin 1995]

[Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

(6)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

Fast summation based on NFFT in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xixj)forxj[L/2,L/2], j= 1, . . . , N.

0

L L

K(x)

1

xixj[−L, L]

constructKB, claim smoothness inx=±L

regularized kernelKRis smooth and periodic with period h:= 2(L+δ)

f(xj) =

N

X

i=1

ciKR(xixj)

N

X

i=1

ci M/2−1

X

l=−M/2

ˆble2πil(xi−xj)/h =

NFFT

z }| {

M/2−1

X

l=−M/2

ˆbl

adj. NFFT

z }| {

N

X

i=1

cie2πilxi/h

!

e−2πilxj/h

(7)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

Fast summation based on NFFT in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xixj)forxj[L/2,L/2], j= 1, . . . , N.

0

L L

(L+δ) L+δ

j

∂xjKB(L) =∂xjjK(L)

K(x)

KB(x) KB(x)

1

xixj[−L, L]

extend interval at the boundaries

constructKB, claim smoothness inx=±L

regularized kernelKRis smooth and periodic with period h:= 2(L+δ)

f(xj) =

N

X

i=1

ciKR(xixj)

N

X

i=1

ci M/2−1

X

l=−M/2

ˆble2πil(xi−xj)/h =

NFFT

z }| {

M/2−1

X

l=−M/2

ˆbl

adj. NFFT

z }| {

N

X

i=1

cie2πilxi/h

!

e−2πilxj/h

(8)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

Fast summation based on NFFT in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xixj)forxj[L/2,L/2], j= 1, . . . , N.

0

L L

(L+δ) L+δ

K(x)

KR(x)

KB(x) KB(x)

1

xixj[−L, L]

extend interval at the boundaries

constructKB, claim smoothness inx=±L

regularized kernelKRis smooth and periodic with period h:= 2(L+δ)

i=1

N

X

i=1

ci M/2−1

X

l=−M/2

ˆble2πil(xi−xj)/h =

M/2−1

X

l=−M/2

ˆbl

adj. NFFT

z }| {

N

X

i=1

cie2πilxi/h

!

e−2πilxj/h

(9)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

Fast summation based on NFFT in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xixj)forxj[L/2,L/2], j= 1, . . . , N.

0

L L

(L+δ) L+δ

K(x)

KR(x)

KB(x) KB(x)

1

xixj[−L, L]

extend interval at the boundaries

constructKB, claim smoothness inx=±L

regularized kernelKRis smooth and periodic with period h:= 2(L+δ)

f(xj) =

N

X

i=1

ciKR(xixj)

N

X

i=1

ci M/2−1

X

l=−M/2

ˆble2πil(xi−xj)/h

=

NFFT

z }| {

M/2−1

X

l=−M/2

ˆbl

adj. NFFT

z }| {

N

X

i=1

cie2πilxi/h

!

e−2πilxj/h

(10)

Fast summation based on NFFT in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xixj)forxj[L/2,L/2], j= 1, . . . , N.

0

L L

(L+δ) L+δ

K(x)

KR(x)

KB(x) KB(x)

1

xixj[−L, L]

extend interval at the boundaries

constructKB, claim smoothness inx=±L

regularized kernelKRis smooth and periodic with period h:= 2(L+δ)

f(xj) =

N

X

i=1

ciKR(xixj)

N

X

i=1

ci M/2−1

X

l=−M/2

ˆble2πil(xi−xj)/h =

NFFT

z }| {

M/2−1

X

l=−M/2

ˆbl

adj. NFFT

z }| {

N

X

i=1

cie2πilxi/h

!

e−2πilxj/h

(11)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

Definition of the Coulomb interaction energy

LetN chargesqj∈Rat positionsxj∈R3 be given.

Coulomb interaction energy (xij:=xi−xj):

E:=1 2

N

X

i,j=1 i6=j

qiqj

kxijk=1 2

N

X

j=1

qjφ(xj) with φ(xj) :=

N

X

i=1 i6=j

qi

kxijk.

3d-periodic boundary conditions chooseS:=Z3,xj∈BT3 and set

φ(xj) :=φS(xj) :=X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk

→crystals, . . .

Fast NFFT based algorithm: P2NFFT,O(NlogN)[Pippig, Potts 2011]

(12)

Definition of the Coulomb interaction energy

LetN chargesqj∈Rat positionsxj∈R3 be given.

Coulomb interaction energy (xij:=xi−xj):

E:=1 2

N

X

i,j=1 i6=j

qiqj

kxijk=1 2

N

X

j=1

qjφ(xj) with φ(xj) :=

N

X

i=1 i6=j

qi

kxijk.

3d-periodic boundary conditions chooseS:=Z3,xj∈BT3 and set

φ(xj) :=φS(xj) :=X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk

→crystals, . . .

B

1

Fast NFFT based algorithm: P2NFFT,O(NlogN)[Pippig, Potts 2011]

(13)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

Definition of the Coulomb interaction energy

LetN chargesqj∈Rat positionsxj∈R3 be given.

Coulomb interaction energy (xij:=xi−xj):

E:=1 2

N

X

i,j=1 i6=j

qiqj

kxijk=1 2

N

X

j=1

qjφ(xj) with φ(xj) :=

N

X

i=1 i6=j

qi

kxijk.

3d-periodic boundary conditions chooseS:=Z3,xj∈BT3 and set

φ(xj) :=φS(xj) :=X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk

→crystals, . . .

1

Fast NFFT based algorithm: P2NFFT,O(NlogN)[Pippig, Potts 2011]

(14)

Definition of the Coulomb interaction energy

LetN chargesqj∈Rat positionsxj∈R3 be given.

Coulomb interaction energy (xij:=xi−xj):

E:=1 2

N

X

i,j=1 i6=j

qiqj

kxijk=1 2

N

X

j=1

qjφ(xj) with φ(xj) :=

N

X

i=1 i6=j

qi

kxijk.

3d-periodic boundary conditions chooseS:=Z3,xj∈BT3 and set

φ(xj) :=φS(xj) :=X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk

→crystals, . . .

1

Fast NFFT based algorithm: P2NFFT,O(NlogN)[Pippig, Potts 2011]

(15)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

Coulomb energy s.t. periodic boundary conditions E(S) :=1

2

N

X

j=1

qjφS(xj) with φS(xj) := X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk

Mixed periodic boundary conditions:

2d-periodic

xj∈BT2×R,S:=Z2× {0}

→thin liquid films, . . .

B

B

1

1d-periodic

xj∈BT×R2,S:=Z× {0}2

→nano channels, . . .

B

1

AssumePN

j=1qj= 0⇒conditional convergence

(16)

Coulomb energy s.t. periodic boundary conditions E(S) :=1

2

N

X

j=1

qjφS(xj) with φS(xj) := X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk

Mixed periodic boundary conditions:

2d-periodic

xj∈BT2×R,S:=Z2× {0}

→thin liquid films, . . .

B

B

1

1d-periodic

xj∈BT×R2,S:=Z× {0}2

→nano channels, . . .

B

1

AssumePN

j=1qj= 0⇒conditional convergence

(17)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

Coulomb energy s.t. periodic boundary conditions E(S) :=1

2

N

X

j=1

qjφS(xj) with φS(xj) := X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk

Mixed periodic boundary conditions:

2d-periodic

xj∈BT2×R,S:=Z2× {0}

→thin liquid films, . . . FMM:O(N) [Greengard, Rokhlin 1987]

MMM2D:O(N5/3) [Arnold, Holm 2002]

SE2P:O(NlogN) [Lindbo, Tornberg 2011]

1d-periodic

xj∈BT×R2,S:=Z× {0}2

→nano channels, . . . FMM:O(N) [Greengard, Rokhlin 1987]

MMM1D:O(N2) [Arnold, Holm 2005]

AssumePN

j=1qj= 0⇒conditional convergence

(18)

Ewald summation

Idea of the Ewald summation[Ewald 1921]:

Ewald splitting 1

r = erf(αr) r

| {z } long ranged, continuous

+ erfc(αr) r

| {z } singular in 0, short ranged

0 0.2 0.4 0.6 0.8 1

0 2 4 6 8 10

r

erf(x) := 2πRx

0 e−t2dt(error function)

erfc(x) := 1−erf(x)(complementary error function)

α >0(scaling parameter)

(19)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

Ewald Summation

We apply 1

r =erfc(αr)

r +erf(αr)

r withr:=kxij+Bnkand obtain

X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk

= X

n∈S N

X

i=1 i6=jifn=0

qierfc(αkxij+Bnk) kxij+Bnk +

φLS(xj) := X

n∈S N

X

i=1

qi

erf(αkxij+Bnk) kxij+Bnk − 2α

√πqj

short range partcan be obtained via direct evaluation after truncation

limr→0erf(αr)

r =π ⇒substractself potential

write thelong range partas a sum in Fourier space

(20)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

Ewald Summation

We apply 1

r =erfc(αr)

r +erf(αr)

r withr:=kxij+Bnkand obtain

X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk = X

n∈S N

X

i=1 i6=jifn=0

qierfc(αkxij+Bnk) kxij+Bnk +

n∈Si=1 kxij+Bnk − √π

short range partcan be obtained via direct evaluation after truncation

limr→0erf(αr)

r =π ⇒substractself potential

write thelong range partas a sum in Fourier space

(21)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

Ewald Summation

We apply 1

r =erfc(αr)

r +erf(αr)

r withr:=kxij+Bnkand obtain

X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk = X

n∈S N

X

i=1 i6=jifn=0

qierfc(αkxij+Bnk) kxij+Bnk +

φLS(xj) :=

X

n∈S N

X

i=1

qi

erf(αkxij+Bnk) kxij+Bnk − 2α

√πqj

short range partcan be obtained via direct evaluation after truncation

limr→0erf(αr)

r = π ⇒substractself potential

write thelong range partas a sum in Fourier space

(22)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

Ewald Summation

r r r

X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk = X

n∈S N

X

i=1 i6=jifn=0

qierfc(αkxij+Bnk) kxij+Bnk +

φLS(xj) := X

n∈S N

X

i=1

qi

erf(αkxij+Bnk) kxij+Bnk

− 2α

√πqj

short range partcan be obtained via direct evaluation after truncation

limr→0erf(αr)

r =π ⇒substractself potential

write thelong range partas a sum in Fourier space

(23)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

Ewald summation s.t. 2d-periodic boundary conditions

Long range part under 2d-periodic b.c. [Grzybowski, Gwóźdź, Bródka 2000]

We writexij= (˜xij, xij,3)and obtain forφLZ2×{0}(xj) 1

2B X

k∈Z2\{0}

N

X

i=1

qie2πik·˜xij/BΘp2(kkk, xij,3)−2√π B2

N

X

i=1

qiΘp20 (xij,3)

2d Fourier series k=0part

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0 0.1 0.2 0.3 0.4 0.5

Θp2(k, r) k= 1 k=√

2 k=√

3 . . .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

e2πkr/Berfc(αBπk+αr)+e−2πkr/Berfc(αBπk−αr)

k

Θp20 (r) =α1e−α2r2+r πerf(αr)

(24)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

Ewald summation s.t. 2d-periodic boundary conditions

Long range part under 2d-periodic b.c. [Grzybowski, Gwóźdź, Bródka 2000]

We writexij= (˜xij, xij,3)and obtain forφLZ2×{0}(xj) 1

2B X

k∈Z2\{0}

N

X

i=1

qie2πik·˜xij/BΘp2(kkk, xij,3)−2√π B2

N

X

i=1

qiΘp20 (xij,3)

2d Fourier series k=0part

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0 0.1 0.2 0.3 0.4 0.5

Θp2(k, r) k= 1 k=√

2 k=√

3 . . .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1 1.2 1.4

e2πkr/Berfc(αBπk+αr)+e−2πkr/Berfc(αBπk−αr)

k

Θp20 (r) =α1e−α2r2+r πerf(αr)

(25)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

Ewald summation s.t. 2d-periodic boundary conditions

Long range part under 2d-periodic b.c. [Grzybowski, Gwóźdź, Bródka 2000]

We writexij= (˜xij, xij,3)and obtain forφLZ2×{0}(xj) 1

2B X

k∈Z2\{0}

N

X

i=1

qie2πik·˜xij/BΘp2(kkk, xij,3)−2√π B2

N

X

i=1

qiΘp20 (xij,3)

2d Fourier series k=0part

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0 0.1 0.2 0.3 0.4 0.5

Θp2(k, r) k= 1 k=√

2 k=√

3 . . .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

e2πkr/Berfc(αBπk+αr)+e−2πkr/Berfc(αBπk−αr)

k

Θp20 (r) =α1e−α2r2+r πerf(αr)

(26)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

A fast algorithm I

The 2d Fourier sum

1 2B

P

k∈Z2\{0}e2πik·˜xij/BPN

i=1qiΘp2(kkk, xij,3)

∀k: Θp2(k,·)∈C(R) Regularization:

xij,3 are absolutely bounded

we are just interested in Θp2(k,·)over a finite interval (white area)

ε(0,1/2)determines the size of the areas at the boundaries

0

h/2+ h/2

h/2 h/2

j

∂rjKB(k,h/2hε) = 1

2Bj

∂rjΘp2(k,h/2hε) 1

2BΘp2(k,·)

KB(k,·) KB(k,·)

1

.

| {z }

KR(k,·) :hT→R

Franziska Nestler TU Chemnitz

(27)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

A fast algorithm I

The 2d Fourier sum

1 2B

P

k∈Z2\{0}e2πik·˜xij/BPN

i=1qiΘp2(kkk, xij,3)

∀k: Θp2(k,·)∈C(R) Regularization:

xij,3 are absolutely bounded

we are just interested in Θp2(k,·)over a finite interval (white area)

construct a smooth and periodic functionKR(k,·)

ε(0,1/2)determines the size of the areas at the boundaries

0

h/2+ h/2

h/2 h/2

j

∂rjKB(k,h/2hε) = 1

2Bj

∂rjΘp2(k,h/2hε) 1

2BΘp2(k,·)

KB(k,·) KB(k,·)

1

.

| {z }

KR(k,·) :hT→R

Franziska Nestler TU Chemnitz

(28)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

A fast algorithm II

The 2d Fourier sum(∗)

1 2B

P

k∈Z2\{0}e2πik·˜xij/BPN

i=1qiΘp2(kkk, xij,3)

truncate the infinite sum,Z2→ IM˜ :={−M˜/2. . . ,M˜/2−1}2

1

2BΘp2(k, xij,3) =KR(k, xij,3)

M/2−1

X

l=−M/2

ˆbk,le2πilxij,3/h

we obtain withxˆi:= xBi,1,xBi,2,xi,3h

the approximation

analog for thek=0term

(29)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

A fast algorithm II

The 2d Fourier sum(∗)

1 2B

P

k∈Z2\{0}e2πik·˜xij/BPN

i=1qiΘp2(kkk, xij,3)

truncate the infinite sum,Z2→ IM˜ :={−M˜/2. . . ,M˜/2−1}2

forM ∈2Nlarge enough we find for eachk=kkk 6= 0 (k∈ IM˜)

1

2BΘp2(k, xij,3) =KR(k, xij,3)

M/2−1

X

l=−M/2

ˆbk,le2πilxij,3/h

we obtain withxˆi:= xBi,1,xBi,2,xi,3h

the approximation

() X

k∈IM˜\{0} M/2−1

X

l=−M/2

ˆbkkk,l

N

X

i=1

qie

2πi

k1

k2

l

·ˆxi

e

−2πi

k1

k2

l

·xˆj

analog for thek=0term

(30)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

A fast algorithm II

The 2d Fourier sum(∗)

1 2B

P

k∈Z2\{0}e2πik·˜xij/BPN

i=1qiΘp2(kkk, xij,3)

truncate the infinite sum,Z2→ IM˜ :={−M˜/2. . . ,M˜/2−1}2

forM ∈2Nlarge enough we find for eachk=kkk 6= 0 (k∈ IM˜)

1

2BΘp2(k, xij,3) =KR(k, xij,3)

M/2−1

X

l=−M/2

ˆbk,le2πilxij,3/h

we obtain withxˆi:= xBi,1,xBi,2,xi,3h

the approximation

() X

k∈IM˜\{0}

M/2−1

X

l=−M/2

ˆbkkk,l

N

X

i=1

qie

2πi

k1

k2

l

·ˆxi

e

−2πi

k1

k2

l

·xˆj

(31)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

A fast algorithm II

The 2d Fourier sum(∗)

1 2B

P

k∈Z2\{0}e2πik·˜xij/BPN

i=1qiΘp2(kkk, xij,3)

truncate the infinite sum,Z2→ IM˜ :={−M˜/2. . . ,M˜/2−1}2

forM ∈2Nlarge enough we find for eachk=kkk 6= 0 (k∈ IM˜)

1

2BΘp2(k, xij,3) =KR(k, xij,3)

M/2−1

X

l=−M/2

ˆbk,le2πilxij,3/h

we obtain withxˆi:= xBi,1,xBi,2,xi,3h

the approximation

() X

k∈IM˜\{0}

M/2−1

X

l=−M/2

ˆbkkk,l

N

X

i=1

qie

2πi

k1

k2

l

·ˆxi

| {z }

3d adj. NFFT

e

−2πi

k1

k2

l

·xˆj

| {z }

3d NFFT

analog for thek=0term

(32)

A fast algorithm II

The 2d Fourier sum(∗)

1 2B

P

k∈Z2\{0}e2πik·˜xij/BPN

i=1qiΘp2(kkk, xij,3)

truncate the infinite sum,Z2→ IM˜ :={−M˜/2. . . ,M˜/2−1}2

forM ∈2Nlarge enough we find for eachk=kkk 6= 0 (k∈ IM˜)

1

2BΘp2(k, xij,3) =KR(k, xij,3)

M/2−1

X

l=−M/2

ˆbk,le2πilxij,3/h

we obtain withxˆi:= xBi,1,xBi,2,xi,3h

the approximation

() X

k∈IM˜\{0}

M/2−1

X

l=−M/2

ˆbkkk,l

N

X

i=1

qie

2πi

k1

k2

l

·ˆxi

| {z }

3d adj. NFFT

e

−2πi

k1

k2

l

·xˆj

| {z }

3d NFFT

analog for thek=0term

(33)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

Ewald summation s.t. 1d periodic boundary conditions

Long range part under 1d-periodic b.c. [Porto 2000]

We writexij= (xij,1,x˜ij)and obtain forφLZ×{0}2(xj) 2

B X

k∈Z\{0}

N

X

i=1

qie2πikxij,1/BΘp1(|k|,kx˜ijk)− 1 B

N

X

i=1

qiΘp10 (kx˜ijk)

1d Fourier series k= 0part

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Θp1(k, r) k= 1 k= 2 k= 3 . . .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Θp1(k, r) = Zα

0 1 texp

πB22kt22r2t2

dt Θp10 (r) =γ+ Γ(0, α2r2) + ln(α2r2)

(34)

Fast summation Coulomb interactions Fast Ewald Results Conclusion

Ewald summation s.t. 1d periodic boundary conditions

Long range part under 1d-periodic b.c. [Porto 2000]

We writexij= (xij,1,x˜ij)and obtain forφLZ×{0}2(xj) 2

B X

k∈Z\{0}

N

X

i=1

qie2πikxij,1/BΘp1(|k|,kx˜ijk)− 1 B

N

X

i=1

qiΘp10 (kx˜ijk)

1d Fourier series k= 0part

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Θp1(k, r) k= 1 k= 2 k= 3 . . .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0 0.5 1 1.5 2 2.5 3 3.5

Θp1(k, r) = Zα

0 1 texp

πB22kt22 r2t2 dt

Θp10 (r) =γ+ Γ(0, α2r2) + ln(α2r2)

Referenzen

ÄHNLICHE DOKUMENTE

At first, we must determine the appropriate Ewald splitting parameter α and a suitable grid size M. Therefore, we adopt the parameter tuning given in [35] such that it works with

In the case of 3d-periodic boundary conditions the nonequispaced fast Fourier trans- form (NFFT) 30 can be directly applied to the Fourier space sum in order to achieve a

Abstract—Ewald summation has established as basic element of fast algorithms evaluating the Coulomb interaction energy of charged particle systems in three dimensions subject

N., Pippig, Potts: NFFT based fast Ewald summation for various types of periodic boundary conditions. Sutmann, Grotendorst, Gompper, Marx (Eds.), Computational Trends in Solvation

Fast Ewald summation for electrostatic systems with charges and dipoles for various types of periodic boundary conditions.. Franziska Nestler Chemnitz University

• proposed a new approach for NFFT based fast Ewald summation under mixed boundary conditions [Nestler, Potts 2013]. • based on constructing regularizations of the

Fast Ewald summation for charged particle systems Mixed periodic boundary conditions. Ewald summation with

Potts: Parallel three-dimensional nonequispaced fast Fourier transforms and their application to particle simulation. Porto: Ewald summation of electrostatic interactions of