• Keine Ergebnisse gefunden

Fast Ewald summation under 2d- and 1d-periodic boundary conditions based on NFFTs

N/A
N/A
Protected

Academic year: 2022

Aktie "Fast Ewald summation under 2d- and 1d-periodic boundary conditions based on NFFTs"

Copied!
54
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Fast Ewald summation under 2d- and 1d-periodic boundary conditions based on NFFTs

F. Nestler* and D. Potts

Departement of Mathematics

SampTA 2013, Bremen July 5, 2013

Franziska Nestler Chemnitz University of Technology, Germany

(2)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Contents

¶ Nonequispaced fast Fourier transforms

· Coulomb interactions

¸ Fast Ewald Summation under 3d-periodic boundary conditions

¹ A new approach to fast Ewald summation under mixed b.c.

º Conclusion

Franziska Nestler Chemnitz University of Technology, Germany

(3)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

The 3d-NFFT

Notation

define the torusT:=R/Z'[−1/2,1/2)

forM ∈2NsetIM :={−M/2, . . . ,M/2−1}3

Fast evaluation of trigonometric sums : NFFT: f(xj) := X

k∈IM

ke2πik·xj xj∈T3, j= 1, . . . , N FFT: f(j) := X

k∈IM

ke2πik·j/M j∈ IM, N:=|IM|=M3

adjoint NFFT: h(k) :=

N

X

j=1

fje−2πik·xj k∈ IM

Complexity: O(|IM|log|IM|+N)

[Dutt, Rokhlin 1993] [Beylkin 1995] [Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

Franziska Nestler Chemnitz University of Technology, Germany

(4)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

The 3d-NFFT

Notation

define the torusT:=R/Z'[−1/2,1/2)

forM ∈2NsetIM :={−M/2, . . . ,M/2−1}3

Fast evaluation of trigonometric sums : NFFT: f(xj) := X

k∈IM

ke2πik·xj xj∈T3, j= 1, . . . , N

FFT: f(j) := X

k∈IM

ke2πik·j/M j∈ IM, N:=|IM|=M3

adjoint NFFT: h(k) :=

N

X

j=1

fje−2πik·xj k∈ IM

Complexity: O(|IM|log|IM|+N)

[Dutt, Rokhlin 1993] [Beylkin 1995]

[Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

Franziska Nestler Chemnitz University of Technology, Germany

(5)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

The 3d-NFFT

Notation

define the torusT:=R/Z'[−1/2,1/2)

forM ∈2NsetIM :={−M/2, . . . ,M/2−1}3

Fast evaluation of trigonometric sums : NFFT: f(xj) := X

k∈IM

ke2πik·xj xj∈T3, j= 1, . . . , N FFT: f(j) := X

k∈IM

ke2πik·j/M j∈ IM, N:=|IM|=M3

adjoint NFFT: h(k) :=

N

X

j=1

fje−2πik·xj k∈ IM

Complexity: O(|IM|log|IM|+N)

[Dutt, Rokhlin 1993] [Beylkin 1995]

[Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

Franziska Nestler Chemnitz University of Technology, Germany

(6)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

The 3d-NFFT

Notation

define the torusT:=R/Z'[−1/2,1/2)

forM ∈2NsetIM :={−M/2, . . . ,M/2−1}3

Fast evaluation of trigonometric sums : NFFT: f(xj) := X

k∈IM

ke2πik·xj xj∈T3, j= 1, . . . , N FFT: f(j) := X

k∈IM

ke2πik·j/M j∈ IM, N:=|IM|=M3

adjoint NFFT: h(k) :=

N

X

j=1

fje−2πik·xj k∈ IM

Complexity: O(|IM|log|IM|+N)

[Dutt, Rokhlin 1993] [Beylkin 1995]

[Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

Franziska Nestler Chemnitz University of Technology, Germany

(7)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

The 3d-NFFT

Notation

define the torusT:=R/Z'[−1/2,1/2)

forM ∈2NsetIM :={−M/2, . . . ,M/2−1}3

Fast evaluation of trigonometric sums : NFFT: f(xj) := X

k∈IM

ke2πik·xj xj∈T3, j= 1, . . . , N FFT: f(j) := X

k∈IM

ke2πik·j/M j∈ IM, N:=|IM|=M3

adjoint NFFT: h(k) :=

N

X

j=1

fje−2πik·xj k∈ IM

Complexity: O(|IM|log|IM|+N)

[Dutt, Rokhlin 1993] [Beylkin 1995]

[Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

Franziska Nestler Chemnitz University of Technology, Germany

(8)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Definition of the Coulomb interaction energy

LetN chargesqj∈Rat positionsxj∈R3 be given.

Coulomb interaction energy (xij:=xi−xj):

E:=1 2

N

X

i,j=1 i6=j

qiqj

kxijk

=1 2

N

X

j=1

qjφ(xj) with φ(xj) :=

N

X

i=1 i6=j

qi

kxijk.

3d-periodic boundary conditions chooseS:=Z3,xj∈BT3 and set

φ(xj) :=φS(xj) :=X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk

Franziska Nestler Chemnitz University of Technology, Germany

(9)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Definition of the Coulomb interaction energy

LetN chargesqj∈Rat positionsxj∈R3 be given.

Coulomb interaction energy (xij:=xi−xj):

E:=1 2

N

X

i,j=1 i6=j

qiqj

kxijk=1 2

N

X

j=1

qjφ(xj) with φ(xj) :=

N

X

i=1 i6=j

qi

kxijk.

3d-periodic boundary conditions chooseS:=Z3,xj∈BT3 and set

φ(xj) :=φS(xj) :=X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk

Franziska Nestler Chemnitz University of Technology, Germany

(10)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Definition of the Coulomb interaction energy

LetN chargesqj∈Rat positionsxj∈R3 be given.

Coulomb interaction energy (xij:=xi−xj):

E:=1 2

N

X

i,j=1 i6=j

qiqj

kxijk=1 2

N

X

j=1

qjφ(xj) with φ(xj) :=

N

X

i=1 i6=j

qi

kxijk.

3d-periodic boundary conditions chooseS:=Z3,xj∈BT3 and set

φ(xj) :=φS(xj) :=X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk

B

Franziska Nestler Chemnitz University of Technology, Germany1

(11)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Definition of the Coulomb interaction energy

LetN chargesqj∈Rat positionsxj∈R3 be given.

Coulomb interaction energy (xij:=xi−xj):

E:=1 2

N

X

i,j=1 i6=j

qiqj

kxijk=1 2

N

X

j=1

qjφ(xj) with φ(xj) :=

N

X

i=1 i6=j

qi

kxijk.

3d-periodic boundary conditions chooseS:=Z3,xj∈BT3 and set

φ(xj) :=φS(xj) :=X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk

Franziska Nestler Chemnitz University of Technology, Germany1

(12)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Definition of the Coulomb interaction energy

LetN chargesqj∈Rat positionsxj∈R3 be given.

Coulomb interaction energy (xij:=xi−xj):

E:=1 2

N

X

i,j=1 i6=j

qiqj

kxijk=1 2

N

X

j=1

qjφ(xj) with φ(xj) :=

N

X

i=1 i6=j

qi

kxijk.

3d-periodic boundary conditions chooseS:=Z3,xj∈BT3 and set

φ(xj) :=φS(xj) :=X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk

Franziska Nestler Chemnitz University of Technology, Germany1

(13)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Definition of the Coulomb interaction energy

LetN chargesqj∈Rat positionsxj∈R3 be given.

Coulomb interaction energy (xij:=xi−xj):

E:=1 2

N

X

i,j=1 i6=j

qiqj

kxijk=1 2

N

X

j=1

qjφ(xj) with φ(xj) :=

N

X

i=1 i6=j

qi

kxijk.

3d-periodic boundary conditions chooseS:=Z3,xj∈BT3 and set

φ(xj) :=φS(xj) :=X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk

1

Franziska Nestler Chemnitz University of Technology, Germany

(14)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Coulomb energy s.t. periodic boundary conditions E(S) :=1

2

N

X

j=1

qjφS(xj) with φS(xj) := X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk.

Mixed boundary conditions:

2d-periodic

xj∈BT2×R,S:=Z2× {0}

1

1d-periodic

xj∈BT×R2,S:=Z× {0}2

1

AssumePN

j=1qj= 0⇒conditionalconvergence

Franziska Nestler Chemnitz University of Technology, Germany

(15)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Coulomb energy s.t. periodic boundary conditions E(S) :=1

2

N

X

j=1

qjφS(xj) with φS(xj) := X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Bnk.

Mixed boundary conditions:

2d-periodic

xj∈BT2×R,S:=Z2× {0}

1

1d-periodic

xj∈BT×R2,S:=Z× {0}2

1

AssumePN

j=1qj= 0⇒conditionalconvergence

Franziska Nestler Chemnitz University of Technology, Germany

(16)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Fast algorithms

Non Fourier methods

Multigrid,O(N) [Brandt, Hackbusch, Trottenberg 1977]

Fast Multipole method,O(N) [Greengard, Rokhlin 1987]

Open boundary conditions - finite sums

Fast summation methods based on NFFTs [Potts, Steidl 2003] Periodic boundary conditions - infinite sums

Basis: Ewald summation formulas [Ewald 1921]

3d-periodic: particle mesh approaches (P3M), P2NFFT,O(NlogN) [Hockney, Eastwood 1988] [Deserno, Holm 1998] [Pippig, Potts 2011]

2d-periodic: particle mesh like methods,O(NlogN) [Kawata, Mikami 2001] [Lindbo, Tornberg 2011]

1d-periodic: ?

Aim: propose efficient NFFT based methods for 2d- and 1d-periodic b.c.

Franziska Nestler Chemnitz University of Technology, Germany

(17)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Fast algorithms

Non Fourier methods

Multigrid,O(N) [Brandt, Hackbusch, Trottenberg 1977]

Fast Multipole method,O(N) [Greengard, Rokhlin 1987]

Open boundary conditions - finite sums

Fast summation methods based on NFFTs [Potts, Steidl 2003]

Periodic boundary conditions - infinite sums Basis: Ewald summation formulas [Ewald 1921]

3d-periodic: particle mesh approaches (P3M), P2NFFT,O(NlogN) [Hockney, Eastwood 1988] [Deserno, Holm 1998] [Pippig, Potts 2011]

2d-periodic: particle mesh like methods,O(NlogN) [Kawata, Mikami 2001] [Lindbo, Tornberg 2011]

1d-periodic: ?

Aim: propose efficient NFFT based methods for 2d- and 1d-periodic b.c.

Franziska Nestler Chemnitz University of Technology, Germany

(18)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Fast algorithms

Non Fourier methods

Multigrid,O(N) [Brandt, Hackbusch, Trottenberg 1977]

Fast Multipole method,O(N) [Greengard, Rokhlin 1987]

Open boundary conditions - finite sums

Fast summation methods based on NFFTs [Potts, Steidl 2003]

Periodic boundary conditions - infinite sums Basis: Ewald summation formulas [Ewald 1921]

3d-periodic: particle mesh approaches (P3M), P2NFFT,O(NlogN) [Hockney, Eastwood 1988] [Deserno, Holm 1998] [Pippig, Potts 2011]

2d-periodic: particle mesh like methods,O(NlogN) [Kawata, Mikami 2001] [Lindbo, Tornberg 2011]

1d-periodic: ?

Aim: propose efficient NFFT based methods for 2d- and 1d-periodic b.c.

Franziska Nestler Chemnitz University of Technology, Germany

(19)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Fast algorithms

Non Fourier methods

Multigrid,O(N) [Brandt, Hackbusch, Trottenberg 1977]

Fast Multipole method,O(N) [Greengard, Rokhlin 1987]

Open boundary conditions - finite sums

Fast summation methods based on NFFTs [Potts, Steidl 2003]

Periodic boundary conditions - infinite sums Basis: Ewald summation formulas [Ewald 1921]

3d-periodic: particle mesh approaches (P3M), P2NFFT,O(NlogN) [Hockney, Eastwood 1988] [Deserno, Holm 1998] [Pippig, Potts 2011]

2d-periodic: particle mesh like methods,O(NlogN) [Kawata, Mikami 2001] [Lindbo, Tornberg 2011]

1d-periodic: ?

Aim: propose efficient NFFT based methods for 2d- and 1d-periodic b.c.

Franziska Nestler Chemnitz University of Technology, Germany

(20)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Fast algorithms

Non Fourier methods

Multigrid,O(N) [Brandt, Hackbusch, Trottenberg 1977]

Fast Multipole method,O(N) [Greengard, Rokhlin 1987]

Open boundary conditions - finite sums

Fast summation methods based on NFFTs [Potts, Steidl 2003]

Periodic boundary conditions - infinite sums Basis: Ewald summation formulas [Ewald 1921]

3d-periodic: particle mesh approaches (P3M), P2NFFT,O(NlogN) [Hockney, Eastwood 1988] [Deserno, Holm 1998] [Pippig, Potts 2011]

2d-periodic: particle mesh like methods,O(NlogN) [Kawata, Mikami 2001] [Lindbo, Tornberg 2011]

1d-periodic: ?

Aim: propose efficient NFFT based methods for 2d- and 1d-periodic b.c.

Franziska Nestler Chemnitz University of Technology, Germany

(21)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Fast algorithms

Non Fourier methods

Multigrid,O(N) [Brandt, Hackbusch, Trottenberg 1977]

Fast Multipole method,O(N) [Greengard, Rokhlin 1987]

Open boundary conditions - finite sums

Fast summation methods based on NFFTs [Potts, Steidl 2003]

Periodic boundary conditions - infinite sums Basis: Ewald summation formulas [Ewald 1921]

3d-periodic: particle mesh approaches (P3M), P2NFFT,O(NlogN) [Hockney, Eastwood 1988] [Deserno, Holm 1998] [Pippig, Potts 2011]

2d-periodic: particle mesh like methods,O(NlogN) [Kawata, Mikami 2001] [Lindbo, Tornberg 2011]

1d-periodic: ?

Aim: propose efficient NFFT based methods for 2d- and 1d-periodic b.c.

Franziska Nestler Chemnitz University of Technology, Germany

(22)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Fast algorithms

Non Fourier methods

Multigrid,O(N) [Brandt, Hackbusch, Trottenberg 1977]

Fast Multipole method,O(N) [Greengard, Rokhlin 1987]

Open boundary conditions - finite sums

Fast summation methods based on NFFTs [Potts, Steidl 2003]

Periodic boundary conditions - infinite sums Basis: Ewald summation formulas [Ewald 1921]

3d-periodic: particle mesh approaches (P3M), P2NFFT,O(NlogN) [Hockney, Eastwood 1988] [Deserno, Holm 1998] [Pippig, Potts 2011]

2d-periodic: particle mesh like methods,O(NlogN) [Kawata, Mikami 2001] [Lindbo, Tornberg 2011]

1d-periodic: ?

Aim: propose efficient NFFT based methods for 2d- and 1d-periodic b.c.

Franziska Nestler Chemnitz University of Technology, Germany

(23)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Ewald’s idea

Idea of the Ewald summation[Ewald 1921]:

Ewald splitting 1

r = erf(αr) r

| {z } long ranged, continuous

+ erfc(αr) r

| {z } singular in 0, short ranged

0 0.2 0.4 0.6 0.8 1

0 2 4 6 8 10

r

erf(x) := 2πRx

0 e−t2dt(error function)

erfc(x) := 1−erf(x)(complementary error function)

α >0(scaling parameter)

Franziska Nestler Chemnitz University of Technology, Germany

(24)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

3d Ewald Summation

We apply 1r = erfc(αr)r +erf(αr)r withr:=kxij+Bnkand obtain

X

n∈Z3 N

X

i,j=1 i6=jifn=0

qiqj

kxij+Bnk

= X

n∈Z3 N

X

i,j=1 i6=jifn=0

qiqj

erfc(αkxij+Bnk) kxij+Bnk +

X

n∈Z3 N

X

i,j=1

qiqj

erf(αkxij+Bnk) kxij+Bnk − 2α

√π

N

X

j=1

q2j

short range partcan be obtained via direct evaluation after truncation

limr→0erf(αr)

r =π ⇒substractself energy

write thelong range partas a sum in Fourier space

Franziska Nestler Chemnitz University of Technology, Germany

(25)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

3d Ewald Summation

We apply 1r = erfc(αr)r +erf(αr)r withr:=kxij+Bnkand obtain

X

n∈Z3 N

X

i,j=1 i6=jifn=0

qiqj

kxij+Bnk = X

n∈Z3 N

X

i,j=1 i6=jifn=0

qiqj

erfc(αkxij+Bnk) kxij+Bnk +

X

n∈Z3 N

X

i,j=1

qiqj

erf(αkxij+Bnk) kxij+Bnk − 2α

√π

N

X

j=1

q2j

short range partcan be obtained via direct evaluation after truncation

limr→0erf(αr)

r =π ⇒substractself energy

write thelong range partas a sum in Fourier space

Franziska Nestler Chemnitz University of Technology, Germany

(26)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

3d Ewald Summation

We apply 1r = erfc(αr)r +erf(αr)r withr:=kxij+Bnkand obtain

X

n∈Z3 N

X

i,j=1 i6=jifn=0

qiqj

kxij+Bnk = X

n∈Z3 N

X

i,j=1 i6=jifn=0

qiqj

erfc(αkxij+Bnk) kxij+Bnk +

X

n∈Z3 N

X

i,j=1

qiqj

erf(αkxij+Bnk) kxij+Bnk − 2α

√π

N

X

j=1

q2j

short range partcan be obtained via direct evaluation after truncation

limr→0erf(αr)

r = π ⇒substractself energy

write thelong range partas a sum in Fourier space

Franziska Nestler Chemnitz University of Technology, Germany

(27)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

An efficient algorithm

calculate the self energy

compute short range part: direct evaluation

long range part: conditional convergence

assume: charge neutrality + spherical order of summation 1

2 X

n∈Z3 N

X

i,j=1

qiqj

erf(αkxi−xj+Bnk) kxi−xj+Bnk

= 1

2πB X

k∈Z3\{0}

e−π2kkk2/(α2B2)

kkk2 |S(k)|2+ 2π 3B2

N

X

j=1

qjxj

2

,

whereS(k) :=PN

j=1qje2πik·xj/B

truncate the infinite sum (Z3→ IM)

S(k),k∈ IM, by adjoint 3d-NFFT

resulting method: O(NlogN)

Franziska Nestler Chemnitz University of Technology, Germany

(28)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

An efficient algorithm

calculate the self energy

compute short range part: direct evaluation

long range part: conditional convergence

assume: charge neutrality + spherical order of summation 1

2 X

n∈Z3 N

X

i,j=1

qiqj

erf(αkxi−xj+Bnk) kxi−xj+Bnk

= 1

2πB X

k∈Z3\{0}

e−π2kkk2/(α2B2)

kkk2 |S(k)|2+ 2π 3B2

N

X

j=1

qjxj

2

,

whereS(k) :=PN

j=1qje2πik·xj/B

truncate the infinite sum (Z3→ IM)

S(k),k∈ IM, by adjoint 3d-NFFT

resulting method: O(NlogN)

Franziska Nestler Chemnitz University of Technology, Germany

(29)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

An efficient algorithm

calculate the self energy

compute short range part: direct evaluation

long range part: conditional convergence

assume: charge neutrality + spherical order of summation 1

2 X

n∈Z3 N

X

i,j=1

qiqj

erf(αkxi−xj+Bnk) kxi−xj+Bnk

= 1

2πB X

k∈Z3\{0}

e−π2kkk2/(α2B2)

kkk2 |S(k)|2+ 2π 3B2

N

X

j=1

qjxj

2

,

whereS(k) :=PN

j=1qje2πik·xj/B

truncate the infinite sum (Z3→ IM)

S(k),k∈ IM, by adjoint 3d-NFFT

resulting method: O(NlogN)

Franziska Nestler Chemnitz University of Technology, Germany

(30)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

An efficient algorithm

calculate the self energy

compute short range part: direct evaluation

long range part: conditional convergence

assume: charge neutrality + spherical order of summation 1

2 X

n∈Z3 N

X

i,j=1

qiqj

erf(αkxi−xj+Bnk) kxi−xj+Bnk

= 1

2πB X

k∈Z3\{0}

e−π2kkk2/(α2B2)

kkk2 |S(k)|2+ 2π 3B2

N

X

j=1

qjxj

2

,

whereS(k) :=PN

j=1qje2πik·xj/B

truncate the infinite sum (Z3→ IM)

S(k),k∈ IM, by adjoint 3d-NFFT

resulting method: O(NlogN)

Franziska Nestler Chemnitz University of Technology, Germany

(31)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

An efficient algorithm

calculate the self energy

compute short range part: direct evaluation

long range part: conditional convergence

assume: charge neutrality + spherical order of summation 1

2 X

n∈Z3 N

X

i,j=1

qiqj

erf(αkxi−xj+Bnk) kxi−xj+Bnk

= 1

2πB X

k∈Z3\{0}

e−π2kkk2/(α2B2)

kkk2 |S(k)|2+ 2π 3B2

N

X

j=1

qjxj

2

,

whereS(k) :=PN

j=1qje2πik·xj/B

truncate theinfinite sum(Z3→ IM)

S(k),k∈ IM, by adjoint 3d-NFFT

resulting method: O(NlogN)

Franziska Nestler Chemnitz University of Technology, Germany

(32)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

An efficient algorithm

calculate the self energy

compute short range part: direct evaluation

long range part: conditional convergence

assume: charge neutrality + spherical order of summation 1

2 X

n∈Z3 N

X

i,j=1

qiqj

erf(αkxi−xj+Bnk) kxi−xj+Bnk

= 1

2πB X

k∈Z3\{0}

e−π2kkk2/(α2B2)

kkk2 |S(k)|2+ 2π 3B2

N

X

j=1

qjxj

2

,

whereS(k) :=PN

j=1qje2πik·xj/B

truncate the infinite sum (Z3→ IM)

S(k),k∈ IM, by adjoint 3d-NFFT

resulting method: O(NlogN)

Franziska Nestler Chemnitz University of Technology, Germany

(33)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

An efficient algorithm

calculate the self energy

compute short range part: direct evaluation

long range part: conditional convergence

assume: charge neutrality + spherical order of summation 1

2 X

n∈Z3 N

X

i,j=1

qiqj

erf(αkxi−xj+Bnk) kxi−xj+Bnk

= 1

2πB X

k∈Z3\{0}

e−π2kkk2/(α2B2)

kkk2 |S(k)|2+ 2π 3B2

N

X

j=1

qjxj

2

,

whereS(k) :=PN

j=1qje2πik·xj/B

truncate the infinite sum (Z3→ IM)

S(k),k∈ IM, by adjoint 3d-NFFT

resulting method: O(NlogN)

Franziska Nestler Chemnitz University of Technology, Germany

(34)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Computing the potentials

If we are interested in the potentials:

Write the Fourier part of the potentials in the form 1

πB X

k∈Z3\{0}

e−π2kkk2/(α2B2) kkk2

N

X

i=1

qie2πik·xi/B

!

e−2πik·xj/B

. . . and use adjoint NFFT + NFFT

Franziska Nestler Chemnitz University of Technology, Germany

(35)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Computing the potentials

If we are interested in the potentials:

Write the Fourier part of the potentials in the form 1

πB X

k∈Z3\{0}

e−π2kkk2/(α2B2) kkk2

N

X

i=1

qie2πik·xi/B

!

| {z }

adjoint NFFT

e−2πik·xj/B

| {z }

NFFT

. . . and use adjoint NFFT + NFFT

Franziska Nestler Chemnitz University of Technology, Germany

(36)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Ewald summation s.t. 2d periodic boundary conditions

Long range part under 2d-periodic b.c. [Grzybowski, Gwóźdź, Bródka 2000]

We definexij:=xi−xj= (˜xij, xij,3)and obtain 1

4B X

k∈Z2\{0}

N

X

i,j=1

qiqje2πik·˜xij/BΘp2(kkk, xij,3)−

√π B2

N

X

i,j=1

qiqjΘp20 (xij,3)

2d Fourier series k=0part

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0 0.1 0.2 0.3 0.4 0.5

Θp2(k, r) k= 1 k=√

2 k=√

3 . . .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

e2πkr/Berfc(αBπk+αr)+e2πkr/Berfc(αBπk−αr)

k

Θp20 (r) =α1e−α2r2+r πerf(αr)

Franziska Nestler Chemnitz University of Technology, Germany

(37)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Ewald summation s.t. 2d periodic boundary conditions

Long range part under 2d-periodic b.c. [Grzybowski, Gwóźdź, Bródka 2000]

We definexij:=xi−xj= (˜xij, xij,3)and obtain 1

4B X

k∈Z2\{0}

N

X

i,j=1

qiqje2πik·˜xij/BΘp2(kkk, xij,3)−

√π B2

N

X

i,j=1

qiqjΘp20 (xij,3)

2d Fourier series k=0part

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0 0.1 0.2 0.3 0.4 0.5

Θp2(k, r) k= 1 k=√

2 k=√

3 . . .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

e2πkr/Berfc(αBπk+αr)+e2πkr/Berfc(αBπk−αr)

k

Θp20 (r) =α1e−α2r2+r πerf(αr)

Franziska Nestler Chemnitz University of Technology, Germany

(38)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

Ewald summation s.t. 2d periodic boundary conditions

Long range part under 2d-periodic b.c. [Grzybowski, Gwóźdź, Bródka 2000]

We definexij:=xi−xj= (˜xij, xij,3)and obtain 1

4B X

k∈Z2\{0}

N

X

i,j=1

qiqje2πik·˜xij/BΘp2(kkk, xij,3)−

√π B2

N

X

i,j=1

qiqjΘp20 (xij,3)

2d Fourier series k=0part

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0 0.1 0.2 0.3 0.4 0.5

Θp2(k, r) k= 1 k=√

2 k=√

3 . . .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

e2πkr/Berfc(αBπk+αr)+e2πkr/Berfc(αBπk−αr)

k

Θp20 (r) =α1e−α2r2+r πerf(αr)

Franziska Nestler Chemnitz University of Technology, Germany

(39)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

A fast algorithm

Long range part 1

4B X

k6=0 N

X

i,j=1

qiqje2πik·x˜ij/BΘp2(kkk, xij,3)

π B2

N

X

i,j=1

qiqjΘp20 (xij,3)

truncate theinfinite sum

, assume that|xij,3|< hfor alli, j

chooseε >0,remainingk=kkk 6= 0construct a smooth function

Rk(r) :=

Θp2(k, r) :|r| ≤h Bk(r) :h <|r| ≤h+ε

Rk(r)

m/2−1

X

l=−m/2

bk,leπilr/(h+ε)

0

−(h+ε) h

−h h

Θp2(k,·)

1

m2Nsufficiently large

replaceΘp2(kkk,·)by the Fourier sums

by adjoint NFFT:S(k, l) :=

N

X

j=1

qje2πik·x˜j/B+πilxj,3/(h+ε) (k6=0)

analog for thek=0part

Franziska Nestler Chemnitz University of Technology, Germany

(40)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

A fast algorithm

Long range part 1

4B X

k6=0 N

X

i,j=1

qiqje2πik·x˜ij/BΘp2(kkk,xij,3)

π B2

N

X

i,j=1

qiqjΘp20 (xij,3)

truncate the infinite sum, assume that|xij,3|< hfor alli, j

chooseε >0,remainingk=kkk 6= 0construct a smooth function

Rk(r) :=

Θp2(k, r) :|r| ≤h Bk(r) :h <|r| ≤h+ε

Rk(r)

m/2−1

X

l=−m/2

bk,leπilr/(h+ε)

0

−(h+ε) h

−h h

Θp2(k,·)

1

m2Nsufficiently large

replaceΘp2(kkk,·)by the Fourier sums

by adjoint NFFT:S(k, l) :=

N

X

j=1

qje2πik·x˜j/B+πilxj,3/(h+ε) (k6=0)

analog for thek=0part

Franziska Nestler Chemnitz University of Technology, Germany

(41)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

A fast algorithm

Long range part 1

4B X

k6=0 N

X

i,j=1

qiqje2πik·x˜ij/BΘp2(kkk, xij,3)

π B2

N

X

i,j=1

qiqjΘp20 (xij,3)

truncate the infinite sum, assume that|xij,3|< hfor alli, j

chooseε >0,remainingk=kkk 6= 0construct a smooth function

Rk(r) :=

Θp2(k, r) :|r| ≤h Bk(r) :h <|r| ≤h+ε

Rk(r)

m/2−1

X

l=−m/2

bk,leπilr/(h+ε)

0

−(h+ε) h

−h h

Θp2(k,·)

1

m2Nsufficiently large

replaceΘp2(kkk,·)by the Fourier sums

by adjoint NFFT:S(k, l) :=

N

X

j=1

qje2πik·x˜j/B+πilxj,3/(h+ε) (k6=0)

analog for thek=0part

Franziska Nestler Chemnitz University of Technology, Germany

(42)

NFFT Coulomb interactions 3d Ewald 2d Ewald 1d Ewald Conclusion

A fast algorithm

Long range part 1

4B X

k6=0 N

X

i,j=1

qiqje2πik·x˜ij/BΘp2(kkk, xij,3)

π B2

N

X

i,j=1

qiqjΘp20 (xij,3)

truncate the infinite sum, assume that|xij,3|< hfor alli, j

chooseε >0,remainingk=kkk 6= 0construct a smooth function

Rk(r) :=

Θp2(k, r) :|r| ≤h Bk(r) :h <|r| ≤h+ε

Rk(r)

m/2−1

X

l=−m/2

bk,leπilr/(h+ε)

0

−(h+ε) h

−h h

Θp2(k,·)

1

m2Nsufficiently large

replaceΘp2(kkk,·)by the Fourier sums

by adjoint NFFT:S(k, l) :=

N

X

j=1

qje2πik·x˜j/B+πilxj,3/(h+ε) (k6=0)

analog for thek=0part

Franziska Nestler Chemnitz University of Technology, Germany

Referenzen

ÄHNLICHE DOKUMENTE

For mixed periodic as well as open boundary conditions the Fourier coefficients are not known analytically, in contrast to the 3d-periodic case, and the contributions in the

At first, we must determine the appropriate Ewald splitting parameter α and a suitable grid size M. Therefore, we adopt the parameter tuning given in [35] such that it works with

Abstract—The efficient computation of interactions in charged particle systems is possible based on the well known Ewald summation formulas and the fast Fourier transform for

In the case of 3d-periodic boundary conditions the nonequispaced fast Fourier trans- form (NFFT) 30 can be directly applied to the Fourier space sum in order to achieve a

Abstract—Ewald summation has established as basic element of fast algorithms evaluating the Coulomb interaction energy of charged particle systems in three dimensions subject

N., Pippig, Potts: NFFT based fast Ewald summation for various types of periodic boundary conditions. Sutmann, Grotendorst, Gompper, Marx (Eds.), Computational Trends in Solvation

• proposed a new approach for NFFT based fast Ewald summation under mixed boundary conditions [Nestler, Potts 2013]. • based on constructing regularizations of the

Fast Ewald summation for charged particle systems Mixed periodic boundary conditions. Ewald summation with