• Keine Ergebnisse gefunden

NFFT based Ewald summation for electrostatic systems with charges and dipoles

N/A
N/A
Protected

Academic year: 2022

Aktie "NFFT based Ewald summation for electrostatic systems with charges and dipoles"

Copied!
62
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

NFFT based Ewald summation

for electrostatic systems with charges and dipoles

NFFT based Ewald summation

for electrostatic systems with charges and dipoles

Franziska Nestler Technische Universität Chemnitz

Faculty of Mathematics joint work with M. Pippig and M. Hofmann

Stuttgart, 11/2015

(2)

NFFT based Ewald summation

for electrostatic systems with charges and dipoles

1 Introduction NFFT

Fast summation The Coulomb problem

2 Fast Ewald summation for charged particle systems The 3d-periodic case

Mixed periodic boundary conditions

3 Extension to systems containing charges and dipoles

(3)

Introduction NFFT

The 1d-NFFT (FFT for nonequispaced data)

Notation

define the torusT:=R/Z'[−1/2,1/2)

forM∈2NsetIM :={−M/2, . . . ,M/2−1}

NFFT: f(xj) := X

k∈IM

ke−2πikxj xj∈T, j= 1, . . . , N

(inverse) FFT: f(j) := X

k∈IM

ke−2πikj/M j∈ IM

, N:=M

adjoint NFFT: h(k) :=

N

X

j=1

fje2πikxj k∈ IM

Complexity:O(MlogM+N)

[Dutt, Rokhlin 1993] [Beylkin 1995] [Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

(4)

Introduction NFFT

The 1d-NFFT (FFT for nonequispaced data)

Notation

define the torusT:=R/Z'[−1/2,1/2)

forM∈2NsetIM :={−M/2, . . . ,M/2−1}

NFFT: f(xj) := X

k∈IM

ke−2πikxj xj∈T, j= 1, . . . , N (inverse) FFT: f(j) := X

k∈IM

ke−2πikj/M j∈ IM, N:=M

adjoint NFFT: h(k) :=

N

X

j=1

fje2πikxj k∈ IM

Complexity:O(MlogM+N)

[Dutt, Rokhlin 1993] [Beylkin 1995]

[Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

(5)

Introduction NFFT

The 1d-NFFT (FFT for nonequispaced data)

Notation

define the torusT:=R/Z'[−1/2,1/2)

forM∈2NsetIM :={−M/2, . . . ,M/2−1}

NFFT: f(xj) := X

k∈IM

ke−2πikxj xj∈T, j= 1, . . . , N (inverse) FFT: f(j) := X

k∈IM

ke−2πikj/M j∈ IM, N:=M

adjoint NFFT: h(k) :=

N

X

j=1

fje2πikxj k∈ IM

Complexity:O(MlogM+N)

[Dutt, Rokhlin 1993] [Beylkin 1995]

[Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

(6)

Introduction NFFT

NFFT window function

Goal: Evaluation of the trigonometric polynomial

f(x) :=

M/2−1

X

k=−M/2

ke−2πikx

inxj∈T,j= 1, . . . , N.

Idea: Approximatefby

f(x)≈

σM/2−1

X

l=−σM/2

glϕ(x˜ −l/σM)

| {z }

discrete convolution

,

where

ϕ˜is a1-periodic function with small support[−m/σM,−m/σM]⊂T(mσM),

σ≥1is called oversampling factor,

glare up to now unknown.

(7)

Introduction NFFT

12 0 12

1 σM

σMm,σMm ϕ(x)

˜ ϕ(x)

12 0 12

1

σM f(x)

σMP/2−1

`=−σM/2

g`ϕ(x˜ `/σM)

ind >1dimensions:tensor product approachϕ(x)7→ϕ(x1)·. . .·ϕ(xd).

(8)

Introduction NFFT

NFFT workflow

1 Deconvolution in Fourier space:O(M)

ˆ gk:=

( fˆ

k

ck( ˜ϕ) :k∈ {−M/2, . . . ,M/2−1},

0 :else.

2 Inverse FFT:O(σMlog(σM))

gl:= 1 σM

σM/2−1

X

k=−σM/2

ˆ

gke−2πikl/(σM), l=−σM/2, . . . ,σM/2−1.

3 Convolution in spatial domain:O((2m+ 1)N)

f(xj)≈

σM/2−1

X

l=−σM/2

glϕ(x˜ jl/σM), j= 1, . . . , N.

(9)

Introduction NFFT

NFFT workflow

1 Deconvolution in Fourier space:O(M)

ˆ gk:=

( fˆ

k

ck( ˜ϕ) :k∈ {−M/2, . . . ,M/2−1},

0 :else.

2 Inverse FFT:O(σMlog(σM))

gl:= 1 σM

σM/2−1

X

k=−σM/2

ˆ

gke−2πikl/(σM), l=−σM/2, . . . ,σM/2−1.

3 Convolution in spatial domain:O((2m+ 1)N)

f(xj)≈

σM/2−1

X

l=−σM/2

glϕ(x˜ jl/σM), j= 1, . . . , N.

(10)

Introduction NFFT

NFFT workflow

1 Deconvolution in Fourier space:O(M)

ˆ gk:=

( fˆ

k

ck( ˜ϕ) :k∈ {−M/2, . . . ,M/2−1},

0 :else.

2 Inverse FFT:O(σMlog(σM))

gl:= 1 σM

σM/2−1

X

k=−σM/2

ˆ

gke−2πikl/(σM), l=−σM/2, . . . ,σM/2−1.

3 Convolution in spatial domain:O((2m+ 1)N)

f(xj)≈

σM/2−1

X

l=−σM/2

glϕ(x˜ jl/σM), j= 1, . . . , N.

(11)

Introduction NFFT

Deconvolution:

ˆ

gk:= ˆdk·fˆk. Standard approach:

k:=

 1

ck( ˜ϕ) :k=−M/2, . . . ,M/2−1,

0 :else.

Least square optimized NFFT:

k:=





ck( ˜ϕ) P

r∈Z

c2k+rσM( ˜ϕ) :k=−M/2, . . . ,M/2−1,

0 :else.

(12)

Introduction NFFT

Matrix-vector form

1 Deconvolution in Fourier space:gˆk:= ˆdkk

ˆ

g:=D·f,ˆ D∈RσM×M : diag. matrix with entriesdˆk 2 Inverse FFT:gˆ7→g

g=F ·ˆg, F ∈CσM×σM :Fourier matrix

3 Convolution in spatial domain:f(xj)≈PσM/2−1

l=−σM/2glϕ(x˜ jl/σM) f˜=B·g, B∈RN×σM, bjl= ˜ϕ(xjl/σM)

(13)

Introduction NFFT

Adjoint NFFT

NFFT: Compute for allj= 1, . . . , N fj:=

M/2−1

X

k=−M/2

ke−2πikxj ⇐⇒ f:=A·fˆ,

whereA= e−2πikxj

j,k∈RN×M. Approximation:f≈BF D·fˆ.

adjoint NFFT: Compute for allk=−M/2, . . . ,M/2−1 hk:=

N

X

j=1

fje2πikxj ⇐⇒ h=A·f,

whereA= e2πikxj

k,j∈RM×N. Approximation:h≈DFBT·f.

(14)

Introduction NFFT

Adjoint NFFT

NFFT: Compute for allj= 1, . . . , N fj:=

M/2−1

X

k=−M/2

ke−2πikxj ⇐⇒ f:=A·fˆ,

whereA= e−2πikxj

j,k∈RN×M. Approximation:f≈BF D·fˆ.

adjoint NFFT: Compute for allk=−M/2, . . . ,M/2−1 hk:=

N

X

j=1

fje2πikxj ⇐⇒ h=A·f,

whereA= e2πikxj

k,j∈RM×N. Approximation:h≈DFBT·f.

(15)

Introduction Fast summation

Fast summation based on NFFT in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xixj)forxj[−L/2,L/2], j= 1, . . . , N.

0

−L L

K(x)

1

Extend the interval at both ends.

Construct asmooth transition(match derivatives up to some orderpN).

Two-point-Taylor interpolation

Theregularized kernel functionis smooth and periodic.

(16)

Introduction Fast summation

Fast summation based on NFFT in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xixj)forxj[−L/2,L/2], j= 1, . . . , N.

0

−L L

−(L+δ) L+δ

j

∂xjKB(L) =∂xjjK(L)

K(x)

KB(x) KB(x)

1

Extend the interval at both ends.

Construct asmooth transition(match derivatives up to some orderpN).

Two-point-Taylor interpolation

Theregularized kernel functionis smooth and periodic.

(17)

Introduction Fast summation

Fast summation based on NFFT in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xixj)forxj[−L/2,L/2], j= 1, . . . , N.

0

−L L

−(L+δ) L+δ

K(x)

KR(x)

KB(x) KB(x)

1

Extend the interval at both ends.

Construct asmooth transition(match derivatives up to some orderpN).

Two-point-Taylor interpolation

Theregularized kernel functionis smooth and periodic.

(18)

Introduction Fast summation

Fast summation based on NFFT in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xixj)forxj[L/2,L/2], j= 1, . . . , N.

K(x) =KR(x) x[−L, L]

f(xj) =

N

X

i=1

ciKR(xij)

0

−L L

−(L+δ) L+δ

K(x)

KR(x)

KB(x) KB(x)

1

Far field computations (use FFT and NFFT): KRis periodic with period2(L+δ) =:h.

f(xj) =

N

X

i=1

ciKR(xij)

N

X

i=1

ci

X

`∈IM

ˆb`e2πi`xij/h

= X

`∈IM

ˆb` N

X

i=1

cie2πi`xi/h

!

| {z }

adj. NFFT

e−2πi`xj/h

| {z }

NFFT

*Use the FFT to approximate the FKˆb`.

(19)

Introduction Fast summation

Fast summation based on NFFT in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xixj)forxj[L/2,L/2], j= 1, . . . , N.

K(x) =KR(x) x[−L, L]

f(xj) =

N

X

i=1

ciKR(xij)

0

−L L

−(L+δ) L+δ

K(x)

KR(x)

KB(x) KB(x)

1

Far field computations (use FFT and NFFT):

KRis periodic with period2(L+δ) =:h.

f(xj) =

N

X

i=1

ciKR(xij)

N

X

i=1

ci

X

`∈IM

ˆb`e2πi`xij/h

= X

`∈IM

ˆb` N

X

i=1

cie2πi`xi/h

!

| {z }

adj. NFFT

e−2πi`xj/h

| {z }

NFFT

*Use the FFT to approximate the FKˆb`.

(20)

Introduction Fast summation

Fast summation based on NFFT in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xixj)forxj[L/2,L/2], j= 1, . . . , N.

K(x) =KR(x) x[−L, L]

f(xj) =

N

X

i=1

ciKR(xij)

0

−L L

−(L+δ) L+δ

K(x)

KR(x)

KB(x) KB(x)

1

Far field computations (use FFT and NFFT):

KRis periodic with period2(L+δ) =:h.

f(xj) =

N

X

i=1

ciKR(xij)

N

X

i=1

ci

X

`∈IM

ˆb`e2πi`xij/h= X

`∈IM

ˆb` N

X

i=1

cie2πi`xi/h

!

| {z }

adj. NFFT

e−2πi`xj/h

| {z }

NFFT

*Use the FFT to approximate the FKˆb`.

(21)

Introduction Fast summation

Fast decaying kernels

Computef(xj) :=

N

X

i=1

ciK(xixj)forxj[L/2,L/2], j= 1, . . . , N.

Assume that

K(·)is sufficiently small outside of[h/2,h/2][L, L].

we know the analytical Fourier transformK(·).ˆ

Use analytical Fourier coefficients (Poisson summation, no FFT-precomputation).

h/2 h/2

K(x) X n=−∞

K(x+nh) =1 h

X

`=−∞

K(ˆ`/h)e2πi`x/h K(x)

h-periodization

N 1

X

i=1

ciK(xij) 1 h

X

`∈IM

K(ˆ `/h)

N

X

i=1

cie2πi`xi/h

!

e−2πi`xj/h

(22)

Introduction Fast summation

For d ≥ 2 dimensions, radial kernels

Computef(xj) :=

N

X

i=1

ciK(kxixjk)forj= 1, . . . , N. Assumekxixjk ≤L.

dj

drjKB(L+δ) = 0 dj

drjKB(L) =drdjjK(L)

L

−L L+δ

−(L+δ)

K(x)

1

1d regularization on[h/2,h/2],h/2:=L+δ

claim vanishing derivatives at the boundary

rotate and extend the function to the torushT2 (constant value over the striped area)

result: periodically smooth function in 2 variables

approximate by bivariate trigonometric polynomials (2d FFT)

Franziska Nestler TU Chemnitz, Faculty of Mathematics

(23)

Introduction The Coulomb problem

Coulomb interactions

LetNchargesqj∈Rat positionsxj∈[−L/2,L/2]3be given.

Coulomb interaction energy s.t. periodic boundary conditions:

U :=1 2

N

X

j=1

qjφ(j) with φ(j) :=X

n∈S N

X

i=1 0 qi

kxij+Lnk, whereS ⊂Z3.

0d-periodic:S:={0}3

3d-periodic:S:=Z3

2d-periodic:S:=Z2× {0}

1d-periodic:S:=Z× {0}2

(24)

Introduction The Coulomb problem

Coulomb interactions

LetNchargesqj∈Rat positionsxj∈[−L/2,L/2]3be given.

Coulomb interaction energy s.t. periodic boundary conditions:

U :=1 2

N

X

j=1

qjφ(j) with φ(j) :=X

n∈S N

X

i=1 0 qi

kxij+Lnk, whereS ⊂Z3.

0d-periodic:S:={0}3

3d-periodic:S:=Z3

2d-periodic:S:=Z2× {0}

1d-periodic:S:=Z× {0}2

Franziska Nestler 1 TU Chemnitz, Faculty of Mathematics

(25)

Introduction The Coulomb problem

Coulomb interactions

LetNchargesqj∈Rat positionsxj∈[−L/2,L/2]3be given.

Coulomb interaction energy s.t. periodic boundary conditions:

U :=1 2

N

X

j=1

qjφ(j) with φ(j) :=X

n∈S N

X

i=1 0 qi

kxij+Lnk, whereS ⊂Z3.

0d-periodic:S:={0}3

3d-periodic:S:=Z3

2d-periodic:S:=Z2× {0}

1d-periodic:S:=Z× {0}2

L L

L

Franziska Nestler 1 TU Chemnitz, Faculty of Mathematics

(26)

Introduction The Coulomb problem

Coulomb interactions

LetNchargesqj∈Rat positionsxj∈[−L/2,L/2]3be given.

Coulomb interaction energy s.t. periodic boundary conditions:

U :=1 2

N

X

j=1

qjφ(j) with φ(j) :=X

n∈S N

X

i=1 0 qi

kxij+Lnk, whereS ⊂Z3.

0d-periodic:S:={0}3

3d-periodic:S:=Z3

2d-periodic:S:=Z2× {0}

1d-periodic:S:=Z× {0}2

L

L

1

(27)

Introduction The Coulomb problem

Coulomb interactions

LetNchargesqj∈Rat positionsxj∈[−L/2,L/2]3be given.

Coulomb interaction energy s.t. periodic boundary conditions:

U :=1 2

N

X

j=1

qjφ(j) with φ(j) :=X

n∈S N

X

i=1 0 qi

kxij+Lnk, whereS ⊂Z3.

0d-periodic:S:={0}3

3d-periodic:S:=Z3

2d-periodic:S:=Z2× {0}

1d-periodic:S:=Z× {0}2 L

1

(28)

Fast Ewald summation for charged particle systems

Ewald summation

Apply the well known Ewald splitting 1

r = erfc(αr)

r +erf(αr) r withr:=kxij+Lnkand obtain

φ(j) =X

n∈S N

X

i=1 0 qi

kxij+Lnk

=X

n∈S N

X

i=1

0qierfc(αkxij+Lnk) kxij+Lnk +

φL(j) :=X

n∈S N

X

i=1

qi

erf(αkxij+Lnk) kxij+Lnk − 2α

√πqj

short range partcan be obtained via direct evaluation after truncation

lim

r→0 erf(αr)

r = π⇒substractself potential

write thelong range partas a sum in Fourier space

(29)

Fast Ewald summation for charged particle systems

Ewald summation

Apply the well known Ewald splitting 1

r = erfc(αr)

r +erf(αr) r withr:=kxij+Lnkand obtain

φ(j) =X

n∈S N

X

i=1 0 qi

kxij+Lnk =X

n∈S N

X

i=1

0qierfc(αkxij+Lnk) kxij+Lnk +

φL(j) :=X

n∈S N

X

i=1

qi

erf(αkxij+Lnk) kxij+Lnk − 2α

√πqj

short range partcan be obtained via direct evaluation after truncation

lim

r→0 erf(αr)

r = π⇒substractself potential

write thelong range partas a sum in Fourier space

(30)

Fast Ewald summation for charged particle systems

Ewald summation

Apply the well known Ewald splitting 1

r = erfc(αr)

r +erf(αr) r withr:=kxij+Lnkand obtain

φ(j) =X

n∈S N

X

i=1 0 qi

kxij+Lnk =X

n∈S N

X

i=1

0qierfc(αkxij+Lnk) kxij+Lnk +

φL(j) :=

X

n∈S N

X

i=1

qi

erf(αkxij+Lnk) kxij+Lnk − 2α

√πqj

short range partcan be obtained via direct evaluation after truncation

lim

r→0 erf(αr)

r = π⇒substractself potential

write thelong range partas a sum in Fourier space

(31)

Fast Ewald summation for charged particle systems

Ewald summation

Apply the well known Ewald splitting 1

r = erfc(αr)

r +erf(αr) r withr:=kxij+Lnkand obtain

φ(j) =X

n∈S N

X

i=1 0 qi

kxij+Lnk =X

n∈S N

X

i=1

0qierfc(αkxij+Lnk) kxij+Lnk +

φL(j) :=X

n∈S N

X

i=1

qi

erf(αkxij+Lnk) kxij+Lnk

− 2α

√πqj

short range partcan be obtained via direct evaluation after truncation

lim

r→0 erf(αr)

r = π⇒substractself potential

write thelong range partas a sum in Fourier space

(32)

Fast Ewald summation for charged particle systems The 3d-periodic case

3d-periodic Ewald summation

Applying the splitting we obtain

φ(j) =φshort(j) +φF(j) +φself(j) +φcorrect(j), where

φshort(j) = X

n∈Z3 N

X

i=1

0qierfc(αkxij+Lnk) kxij+Lnk

φF(j) = 1 πL

X

k∈Z3\{0}

e−π2kkk2/(α2L2) kkk2

N

X

i=1

qie2πikTxi/L

!

e−2πikTxj/L

φself(j) =−2α

√πqj

and the correction termφcorrect(j)represents the applied order of summation or rather the surrounding medium.

(33)

Fast Ewald summation for charged particle systems The 3d-periodic case

Order of summation

The correction term reads as

φcorrect(j) = 4π V(1 + 2)

N

X

i=1

qixi

!T

xj− 2π V(1 + 2)

N

X

i=1

qikxik2,

wheredenotes the dielectric constant of the surrounding medium.

Corresponding summation orders:

vacuum b.c.,= 1 X

i,j

X

n∈Z3

0:= lim

R→∞

N

X

i,j=1

X

kLnk≤R 0

spherical shells, whole boxes

metallic b.c.,=∞ 1

(ScaFaCoS)

X

i,j

X

n∈Z3

0:= lim

R→∞

N

X

i,j=1

X

kxij+Lnk≤R 0

increasing sharp cutoff

Franziska Nestler TU Chemnitz, Faculty of Mathematics

(34)

Fast Ewald summation for charged particle systems The 3d-periodic case

NFFT based computation of the long range part

Define the Fourier coefficients ψ(k) :=ˆ

( 1 πL

e−π2kkk2/(α2L2)

kkk2 :k6=0,

0 :k=0.

Truncate the infinite sum and compute the structure factors

S(k) :=

N

X

i=1

qie2πikTxi/L≈S˜(k),

wherek∈ IM, via theadjoint NFFT.

Finally, the long range parts of the potentials are approximated via theNFFT.

φL(j)≈ X

k∈IM

ψ(k) ˜ˆ S(k) e−2πikTxj/L.

(35)

Fast Ewald summation for charged particle systems The 3d-periodic case

Fields and forces

Potentials:φ(j) =φshort(j) +φF(j) +φself(j) +φcorrect(j)

Energies:U(j) =qjφ(j)

Overall energy:U =12PN j=1qjφ(j)

Fields:E(j) =−∇xjφ(j) =Eshort(j) +EF(j)+Ecorrect(j)

Forces:F(j) =qjE(j)

Fourier space parts of the fields:

EF(j) =−∇xj

X

k∈IM

ψ(k)Sˆ (k) e−2πikTxj/L

(36)

Fast Ewald summation for charged particle systems The 3d-periodic case

Gradient NFFT

∇f(xj) =∇xj

X

k∈IM

ke−2πikTxj.

ik-differentiation:

∇f(xj) =−2πi X

k∈IM

kke−2πikTxj.

We need an FFT in each of the 3 dimensions.

{fˆk}7→ {ˆD gk} 7→ {−2πiˆgkk}3xFFT7→ {gl} 7→X

l

glϕ(x˜ jl/σM)

Analytical differentiation:

{fˆk}7→ {ˆD gk}1xFFT7→ {gl} 7→X

l

gl∇ϕ(x˜ jl/σM)

Apply the differentiation operator to the NFFT window function. Only one FFT is needed.

(37)

Fast Ewald summation for charged particle systems The 3d-periodic case

Gradient NFFT

∇f(xj) =∇xj

X

k∈IM

ke−2πikTxj.

ik-differentiation:

∇f(xj) =−2πi X

k∈IM

kke−2πikTxj.

We need an FFT in each of the 3 dimensions.

{fˆk}7→ {ˆD gk} 7→ {−2πiˆgkk}3xFFT7→ {gl} 7→X

l

glϕ(x˜ jl/σM)

Analytical differentiation:

{fˆk}7→ {ˆD gk}1xFFT7→ {gl} 7→X

l

gl∇ϕ(x˜ jl/σM)

Apply the differentiation operator to the NFFT window function. Only one FFT is needed.

(38)

Fast Ewald summation for charged particle systems Mixed periodic boundary conditions

Ewald summation with 2d-periodic b.c.

Long range part under 2d-periodic b.c.[Grzybowski, Gwó´zd´z, Bródka 2000]

We writexij= (˜xij, xij,3)and obtain φL(j) = X

k∈Z2\{0}

N

X

i=1

qie2πik·˜xij/LΘp2(kkk, xij,3) −

N

X

i=1

qiΘp2(0, xij,3)

2d Fourier series k=0part

Θp2(k, r)

k= 1 k=√

2 k=√

3 . . .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

e2πkr/L 2Lk erfcπk

αL+αr

+e−2πkr/L2Lk erfcπk αLαr

Θp2(0, r) =2

π

αL2e−α2r2+2rπL2erf(αr)

(39)

Fast Ewald summation for charged particle systems Mixed periodic boundary conditions

Ewald summation with 2d-periodic b.c.

Long range part under 2d-periodic b.c.[Grzybowski, Gwó´zd´z, Bródka 2000]

We writexij= (˜xij, xij,3)and obtain φL(j) = X

k∈Z2\{0}

N

X

i=1

qie2πik·˜xij/LΘp2(kkk, xij,3) −

N

X

i=1

qiΘp2(0, xij,3)

2d Fourier series k=0part

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0 0.1 0.2 0.3 0.4 0.5

Θp2(k, r)

k= 1 k=√

2 k=√

3 . . .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

e2πkr/L 2Lk erfc

πk αL+αr

+e−2πkr/L2Lk erfc πk αLαr

Θp2(0, r) =2

π

αL2e−α2r2+2rπL2erf(αr)

(40)

Fast Ewald summation for charged particle systems Mixed periodic boundary conditions

Ewald summation with 2d-periodic b.c.

Long range part under 2d-periodic b.c.[Grzybowski, Gwó´zd´z, Bródka 2000]

We writexij= (˜xij, xij,3)and obtain φL(j) = X

k∈Z2\{0}

N

X

i=1

qie2πik·˜xij/LΘp2(kkk, xij,3) −

N

X

i=1

qiΘp2(0, xij,3)

2d Fourier series k=0part

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0 0.1 0.2 0.3 0.4 0.5

Θp2(k, r)

k= 1 k=√

2 k=√

3 . . .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

e2πkr/L 2Lk erfc

πk αL+αr

+e−2πkr/L2Lk erfc πk αLαr

Θp2(0, r) =2

π

αL2e−α2r2+2rπL2erf(αr)

(41)

Fast Ewald summation for charged particle systems Mixed periodic boundary conditions

Apply 1d fast summation

k= 0and smallk6= 0 k6= 0large enough

0

−L L

h/2 h/2

R(k,·) Θp2(k,·)

polynomial polynomial

1

h/2 h/2

Θp2(k, r) X n=−∞

Θp2(k, r+nh) Θp2(k,·) h-periodization

1

Choose an appropriate periodh >2L:

embedΘp2(k,·)into a smooth function R(k,·)(regularization)

interpolate the derivatives at the boundary up to orderpN

approximate Fourier coefficients byFFT

approximate the function by itsh-periodic version

useanalytical Fourier coefficients (Poisson summation formula)

Result: Θp2(k, r)≈

M3/2−1

P

l=−M3/2

ˆbk,le2πilr/h , r∈[−L, L].

(42)

Fast Ewald summation for charged particle systems Mixed periodic boundary conditions

NFFT based algorithm

φL(j) = X

k∈Z2

e2πik·x˜ij/L

N

X

i=1

qiΘp2(kkk, xij,3)

≈ X

k∈IM

e2πik·x˜ij/L

N

X

i=1

qiΘp2(kkk, xij,3)

≈ X

k∈IM

X

l∈IM3

ˆbkkk,l

N

X

i=1

qie

2πi

k1 k2 l

·

xi1/L xi2/L xi3/h

| {z }

3d adj. NFFT

e

−2πi

k1 k2 l

·

xj1/L xj2/L xj3/h

| {z }

3d NFFT,j=1,...,N

(43)

Fast Ewald summation for charged particle systems Mixed periodic boundary conditions

1d and 0d-periodic b.c.

2d-periodic:

φF(j) = X

k∈Z2 N

X

i=1

qie2πikTx˜ij/LΘp2(kkk,|xij,3|) Approximate the functionsΘp2(kkk,·)by trigonometric polynomials.

1d-periodic:

φF(j) =X

k∈Z N

X

i=1

qie2πikxij,1/LΘp1(|k|,k˜xijk)

Approximate the functionsΘp1(|k|,k · k)by bivariate trigonometric polynomials.

0d-periodic (open):

φF(j) =

N

X

i=1

qi

erf(αkxijk) kxijk

Approximateerf(αk · k)/k · kby a trivariate trigonometric polynomial.

(44)

Fast Ewald summation for charged particle systems Mixed periodic boundary conditions

1d and 0d-periodic b.c.

2d-periodic:

φF(j) = X

k∈Z2 N

X

i=1

qie2πikTx˜ij/LΘp2(kkk,|xij,3|)

Approximate the functionsΘp2(kkk,·)by trigonometric polynomials.

1d-periodic:

φF(j) =X

k∈Z N

X

i=1

qie2πikxij,1/LΘp1(|k|,k˜xijk)

Approximate the functionsΘp1(|k|,k · k)by bivariate trigonometric polynomials.

0d-periodic (open):

φF(j) =

N

X

i=1

qi

erf(αkxijk) kxijk

Approximateerf(αk · k)/k · kby a trivariate trigonometric polynomial.

(45)

Fast Ewald summation for charged particle systems Mixed periodic boundary conditions

1d and 0d-periodic b.c.

2d-periodic:

φF(j) = X

k∈Z2 N

X

i=1

qie2πikTx˜ij/LΘp2(kkk,|xij,3|)

Approximate the functionsΘp2(kkk,·)by trigonometric polynomials.

1d-periodic:

φF(j) =X

k∈Z N

X

i=1

qie2πikxij,1/LΘp1(|k|,k˜xijk)

Approximate the functionsΘp1(|k|,k · k)by bivariate trigonometric polynomials.

0d-periodic (open):

φF(j) =

N

X

i=1

qi

erf(αkxijk) kxijk

Approximateerf(αk · k)/k · kby a trivariate trigonometric polynomial.

(46)

Fast Ewald summation for charged particle systems Mixed periodic boundary conditions

P

2

NFFT, computation of the Fourier space part

3d-periodic: φF(j) = X

k∈IM

ψ(k)S(k)ˆ e

−2πikT

xj,1/L xj,2/L xj,3/L

2d-periodic: φF(j) = X

(k,l)∈IM

ˆbk,lS(k, l)e

−2πi(k,l)T

xj,1/L xj,2/L xj,3/h

1d-periodic: φF(j) = X

(k,l)∈IM

ˆbk,lS(k,l)e

−2πi(k,l)T

xj,1/L xj,2/h xj,3/h

0d-periodic: φF(j) = X

l∈IM

ˆblS(l)e

−2πilT

xj,1/h xj,2/h xj,3/h

Steps:1. adjoint NFFT, 2. multiply with the Fourier coefficients, 3. NFFT:

φF≈BF D·D·DFBT·q

Referenzen

ÄHNLICHE DOKUMENTE

At first, we must determine the appropriate Ewald splitting parameter α and a suitable grid size M. Therefore, we adopt the parameter tuning given in [35] such that it works with

Abstract—The efficient computation of interactions in charged particle systems is possible based on the well known Ewald summation formulas and the fast Fourier transform for

In the case of 3d-periodic boundary conditions the nonequispaced fast Fourier trans- form (NFFT) 30 can be directly applied to the Fourier space sum in order to achieve a

Abstract—Ewald summation has established as basic element of fast algorithms evaluating the Coulomb interaction energy of charged particle systems in three dimensions subject

N., Pippig, Potts: NFFT based fast Ewald summation for various types of periodic boundary conditions. Sutmann, Grotendorst, Gompper, Marx (Eds.), Computational Trends in Solvation

Fast Ewald summation for electrostatic systems with charges and dipoles for various types of periodic boundary conditions.. Franziska Nestler Chemnitz University

• 2d-periodic: Ewald summation (2D) and fast summation (1D) Long range parts of the forces: Use gradient NFFT. Extended method for computation of interactions

Potts: Parallel three-dimensional nonequispaced fast Fourier transforms and their application to particle simulation. Porto: Ewald summation of electrostatic interactions of