• Keine Ergebnisse gefunden

Particle simulation based on the nonequispaced FFT

N/A
N/A
Protected

Academic year: 2022

Aktie "Particle simulation based on the nonequispaced FFT"

Copied!
37
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Particle simulation based on the nonequispaced FFT

Particle simulation based on the nonequispaced FFT

Franziska Nestler Technische Universität Chemnitz

Faculty of Mathematics joint work with M. Pippig

Strobl16

Time-Frequency Analysis and Related Topics

Strobl, 06/2016

(2)

Particle simulation based on the nonequispaced FFT

1

Introduction: NFFT and fast summation

2

Coulomb interactions and fast Ewald summation

3

Numerical results

4

Extension to systems with dipoles

5

Summary

(3)

Introduction: NFFT and fast summation

The 3d-NFFT (FFT for nonequispaced data)

Notation

define the torus

T

:=

R

/

Z

' [−

1

/

2

,

1

/

2

)

for M ∈ 2

N

set I

M

:= {−

M

/

2

, . . . ,

M

/

2

− 1}

3

Z3

NFFT:

f(x

j

) :=

X

k∈IM

f ˆ

k

e

−2πik·xj xj

T3

, j = 1, . . . , N

FFT: f(j) :=

X

k∈IM

f ˆ

k

e

−2πik·j/M j

∈ I

M

, N := |I

M

| = M

3

adjoint NFFT:

h(k) :=

N

X

j=1

f

j

e

2πik·xj k

∈ I

M

Complexity: O(|I

M

| log |I

M

| + N )

[Dutt, Rokhlin 1993] [Beylkin 1995] [Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

(4)

Introduction: NFFT and fast summation

The 3d-NFFT (FFT for nonequispaced data)

Notation

define the torus

T

:=

R

/

Z

' [−

1

/

2

,

1

/

2

)

for M ∈ 2

N

set I

M

:= {−

M

/

2

, . . . ,

M

/

2

− 1}

3

Z3

NFFT:

f(x

j

) :=

X

k∈IM

f ˆ

k

e

−2πik·xj xj

T3

, j = 1, . . . , N

FFT: f(j) :=

X

k∈IM

f ˆ

k

e

−2πik·j/M j

∈ I

M

, N := |I

M

| = M

3

adjoint NFFT:

h(k) :=

N

X

j=1

f

j

e

2πik·xj k

∈ I

M

Complexity: O(|I

M

| log |I

M

| + N )

[Dutt, Rokhlin 1993] [Beylkin 1995]

[Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

(5)

Introduction: NFFT and fast summation

The 3d-NFFT (FFT for nonequispaced data)

Notation

define the torus

T

:=

R

/

Z

' [−

1

/

2

,

1

/

2

)

for M ∈ 2

N

set I

M

:= {−

M

/

2

, . . . ,

M

/

2

− 1}

3

Z3

NFFT:

f(x

j

) :=

X

k∈IM

f ˆ

k

e

−2πik·xj xj

T3

, j = 1, . . . , N

FFT: f(j) :=

X

k∈IM

f ˆ

k

e

−2πik·j/M j

∈ I

M

, N := |I

M

| = M

3

adjoint NFFT:

h(k) :=

N

X

j=1

f

j

e

2πik·xj k

∈ I

M

Complexity: O(|I

M

| log |I

M

| + N )

[Dutt, Rokhlin 1993] [Beylkin 1995]

[Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

(6)

Introduction: NFFT and fast summation

NFFT workflow

1

Deconvolution in Fourier space: O(|I

M

|)

ˆ g

k

:=

( fˆ

k

ck( ˜ϕ)

:

k

∈ I

M

,

0 : else.

2

Inverse FFT: O(|I

σM

| log |I

σM

|) g

l

:= 1

|I

σM

|

X

k∈IσM

ˆ

g

k

e

−2πik·l/(σM)

,

l

∈ I

σM

.

3

Convolution in spatial domain: O(N )

Approximate f by a sum of translates of a 1-periodic

window-function.

f(x

j

) ≈

X

l∈IσM

g

l

ϕ(x ˜

j

l

/

σM

), j = 1, . . . , N.

Oversampling factor σ ≥ 1: we can use more coefficients than given Fourier coefficients.

(7)

Introduction: NFFT and fast summation

NFFT workflow

1

Deconvolution in Fourier space: O(|I

M

|)

ˆ g

k

:=

( fˆ

k

ck( ˜ϕ)

:

k

∈ I

M

,

0 : else.

2

Inverse FFT: O(|I

σM

| log |I

σM

|) g

l

:= 1

|I

σM

|

X

k∈IσM

ˆ

g

k

e

−2πik·l/(σM)

,

l

∈ I

σM

.

3

Convolution in spatial domain: O(N )

Approximate f by a sum of translates of a 1-periodic

window-function.

f(x

j

) ≈

X

l∈IσM

g

l

ϕ(x ˜

j

l

/

σM

), j = 1, . . . , N.

Oversampling factor σ ≥ 1: we can use more coefficients than given Fourier coefficients.

(8)

Introduction: NFFT and fast summation

NFFT workflow

1

Deconvolution in Fourier space: O(|I

M

|)

ˆ g

k

:=

( fˆ

k

ck( ˜ϕ)

:

k

∈ I

M

,

0 : else.

2

Inverse FFT: O(|I

σM

| log |I

σM

|) g

l

:= 1

|I

σM

|

X

k∈IσM

ˆ

g

k

e

−2πik·l/(σM)

,

l

∈ I

σM

.

3

Convolution in spatial domain: O(N )

Approximate f by a sum of translates of a 1-periodic

window-function.

f(x

j

) ≈

X

l∈IσM

g

l

ϕ(x ˜

j

l

/

σM

), j = 1, . . . , N.

Oversampling factor σ ≥ 1: we can use more coefficients than given Fourier coefficients.

(9)

Introduction: NFFT and fast summation

The 3d-NFFT (FFT for nonequispaced data)

Further implemented variants:

Gradient NFFT: Approximate

∇f(x

j

) = −

X

k∈IM

2πik f ˆ

k

e

−2πik·xj

∀ j = 1, . . . , N.

Hessian NFFT: Approximate Hf(x

j

) = −

X

k∈IM

2kk>

f ˆ

k

e

−2πik·xj

∀ j = 1, . . . , N.

Adjoint gradient NFFT (f

j

C3

): Approximate

N

X

j=1

f>j

x

e

2πik·x x=x

j

=

N

X

j=1

2πif

>jk

e

2πik·xj

k

∈ I

M

.

Complexity: O(|I

M

| log |I

M

| + N )

X [M. Pippig, PNFFT library, https://github.com/mpip/pfft]

(10)

Introduction: NFFT and fast summation

ik and analytic differentiation

...for the gradient NFFT:

1

Differentiation in Fourier space (ik differentiation):

∇f(x

j

) = −

X

k∈IM

2πik f ˆ

k

e

−2πik·xj

Compute three 3D-FFTs in the second step (one in each dimension).

2

Analytic differentiation: apply gradient to the window function. Modify the last step of the NFFT as follows:

∇f(x

j

) ≈

X

l∈IσM

g

l

∇ ϕ(x ˜

j

l

/

σM

)

→ only one 3D-FFT has to be computed in the second step.

(11)

Introduction: NFFT and fast summation

ik and analytic differentiation

...for the gradient NFFT:

1

Differentiation in Fourier space (ik differentiation):

∇f(x

j

) = −

X

k∈IM

2πik f ˆ

k

e

−2πik·xj

Compute three 3D-FFTs in the second step (one in each dimension).

2

Analytic differentiation: apply gradient to the window function. Modify the last step of the NFFT as follows:

∇f(x

j

) ≈

X

l∈IσM

g

l

∇ ϕ(x ˜

j

l

/

σM

)

→ only one 3D-FFT has to be computed in the second step.

(12)

Introduction: NFFT and fast summation

Fast summation based on NFFT in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xi−xj)forxj∈[−L/2,L/2], j= 1, . . . , N.

0

−L L

K(x)

1

• Extend the interval at both ends.

• Construct asmooth transition(match derivatives up to some orderp∈N).

→Two-point-Taylor interpolation

• Theregularized kernel functionis smooth and periodic.

(13)

Introduction: NFFT and fast summation

Fast summation based on NFFT in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xi−xj)forxj∈[−L/2,L/2], j= 1, . . . , N.

0

−L L

−(L+δ) L+δ

j

∂xjKB(L) =∂xjjK(L)

K(x)

KB(x) KB(x)

1

• Extend the interval at both ends.

• Construct asmooth transition(match derivatives up to some orderp∈N).

→Two-point-Taylor interpolation

• Theregularized kernel functionis smooth and periodic.

(14)

Introduction: NFFT and fast summation

Fast summation based on NFFT in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xi−xj)forxj∈[−L/2,L/2], j= 1, . . . , N.

0

−L L

−(L+δ) L+δ

K(x)

KR(x)

KB(x) KB(x)

1

• Extend the interval at both ends.

• Construct asmooth transition(match derivatives up to some orderp∈N).

→Two-point-Taylor interpolation

• Theregularized kernel functionis smooth and periodic.

(15)

Introduction: NFFT and fast summation

Fast summation based on NFFT in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xi−xj)forxj∈[−L/2,L/2], j= 1, . . . , N.

K(x) =KR(x) ∀x∈[−L, L]

f(xj) =

N

X

i=1

ciKR(xi−xj)

0

−L L

−(L+δ) L+δ

K(x)

KR(x)

KB(x) KB(x)

1

Far field computations (use FFT and NFFT): KRis periodic with period2(L+δ) =:h. f(xj) =

N

X

i=1

ciKR(xi−xj)≈

N

X

i=1

ci

X

`∈IM

ˆb`e2πi`(xi−xj)/h

=X

`∈IM

ˆb` N

X

i=1

cie2πi`xi/h

!

| {z }

adj. NFFT

e−2πi`xj/h

| {z }

NFFT

*Use the FFT to approximate the FKˆb`.

(16)

Introduction: NFFT and fast summation

Fast summation based on NFFT in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xi−xj)forxj∈[−L/2,L/2], j= 1, . . . , N.

K(x) =KR(x) ∀x∈[−L, L]

f(xj) =

N

X

i=1

ciKR(xi−xj)

0

−L L

−(L+δ) L+δ

K(x)

KR(x)

KB(x) KB(x)

1

Far field computations (use FFT and NFFT):

KRis periodic with period2(L+δ) =:h.

f(xj) =

N

X

i=1

ciKR(xi−xj)≈

N

X

i=1

ci

X

`∈IM

ˆb`e2πi`(xi−xj)/h

=X

`∈IM

ˆb` N

X

i=1

cie2πi`xi/h

!

| {z }

adj. NFFT

e−2πi`xj/h

| {z }

NFFT

*Use the FFT to approximate the FKˆb`.

(17)

Introduction: NFFT and fast summation

Fast summation based on NFFT in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xi−xj)forxj∈[−L/2,L/2], j= 1, . . . , N.

K(x) =KR(x) ∀x∈[−L, L]

f(xj) =

N

X

i=1

ciKR(xi−xj)

0

−L L

−(L+δ) L+δ

K(x)

KR(x)

KB(x) KB(x)

1

Far field computations (use FFT and NFFT):

KRis periodic with period2(L+δ) =:h.

f(xj) =

N

X

i=1

ciKR(xi−xj)≈

N

X

i=1

ci

X

`∈IM

ˆb`e2πi`(xi−xj)/h=X

`∈IM

ˆb` N

X

i=1

cie2πi`xi/h

!

| {z }

adj. NFFT

e−2πi`xj/h

| {z }

NFFT

*Use the FFT to approximate the FKˆb`.

(18)

Introduction: NFFT and fast summation

For d ≥ 2 dimensions, radial kernels

Computef(xj) :=

N

X

i=1

ciK(kxi−xjk)forj= 1, . . . , N. Assumekxi−xjk ≤L.

dj

drjKB(L+δ) = 0 dj

drjKB(L) =drdjjK(L)

L

−L L+δ

−(L+δ)

K(x)

• 1d regularization on[−h/2,h/2]with h:= 2(L+δ)

• claim vanishing derivatives at the boundary

• rotate and extend the function to the torushT2 (constant value over the striped area)

• result: periodically smooth function in 2 variables

• approximate by bivariate trigonometric polynomials (2d FFT)

Franziska Nestler TU Chemnitz, Faculty of Mathematics

(19)

Coulomb interactions and fast Ewald summation

Definition of the Coulomb interaction energy

Let N charges q

j

R

at positions

xj

R3

be given.

Coulomb interaction energy (x

ij

:=

xi

xj

):

U := 1 2

N

X

i,j=1 i6=j

q

i

q

j

kx

ij

k = 1 2

N

X

j=1

q

j

φ(j) with φ(j) :=

N

X

i=1 i6=j

q

i

kx

ij

k .

3d-periodic boundary conditions choose S :=

Z3

,

xj

∈ L

T3

and set

φ(j) := φ

S

(j) :=

X

n∈S N

X

i=1 i6=jifn=0

q

i

kx

ij

+ Lnk

→ crystals, . . .

Fast NFFT based algorithm: P

2

NFFT, O(N log N)

[Pippig, Potts 2011]

(20)

Coulomb interactions and fast Ewald summation

Definition of the Coulomb interaction energy

Let N charges q

j

R

at positions

xj

R3

be given.

Coulomb interaction energy (x

ij

:=

xi

xj

):

U := 1 2

N

X

i,j=1 i6=j

q

i

q

j

kx

ij

k = 1 2

N

X

j=1

q

j

φ(j) with φ(j) :=

N

X

i=1 i6=j

q

i

kx

ij

k .

3d-periodic boundary conditions choose S :=

Z3

,

xj∈LT3

and set

φ(j) := φ

S

(j) :=

X

n∈S N

X

i=1 i6=jifn=0

q

i

kx

ij

+

Lnk

→ crystals, . . .

L

Fast NFFT based algorithm: P

2

NFFT, O(N log N)

[Pippig, Potts 2011]

(21)

Coulomb interactions and fast Ewald summation

Definition of the Coulomb interaction energy

Let N charges q

j

R

at positions

xj

R3

be given.

Coulomb interaction energy (x

ij

:=

xi

xj

):

U := 1 2

N

X

i,j=1 i6=j

q

i

q

j

kx

ij

k = 1 2

N

X

j=1

q

j

φ(j) with φ(j) :=

N

X

i=1 i6=j

q

i

kx

ij

k .

3d-periodic boundary conditions choose

S:=Z3

,

xj

∈ L

T3

and set

φ(j) := φ

S

(j) :=

X

n∈S N

X

i=1 i6=jifn=0

q

i

kx

ij

+ Lnk

→ crystals, . . .

Fast NFFT based algorithm: P

2

NFFT, O(N log N)

[Pippig, Potts 2011]

(22)

Coulomb interactions and fast Ewald summation

Definition of the Coulomb interaction energy

Let N charges q

j

R

at positions

xj

R3

be given.

Coulomb interaction energy (x

ij

:=

xi

xj

):

U := 1 2

N

X

i,j=1 i6=j

q

i

q

j

kx

ij

k = 1 2

N

X

j=1

q

j

φ(j) with φ(j) :=

N

X

i=1 i6=j

q

i

kx

ij

k .

3d-periodic boundary conditions choose S :=

Z3

,

xj

∈ L

T3

and set

φ(j) := φ

S

(j) :=

X

n∈S N

X

i=1 i6=jifn=0

q

i

kx

ij

+ Lnk

→ crystals, . . .

Fast NFFT based algorithm: P

2

NFFT, O(N log N)

[Pippig, Potts 2011]

(23)

Coulomb interactions and fast Ewald summation

Ewald splitting

Idea of Ewald summation

[Ewald 1921]

:

Ewald splitting 1

r =

erf(αr) r

| {z } long ranged, continuous

+

erfc(αr) r

| {z } singular in 0, short ranged

0 0.2 0.4 0.6 0.8 1

0 2 4 6 8 10

r

erf(x) :=

2πRx

0

e

−t2

dt (error function), lim

r→0erf(αr) r

=

π

erfc(x) := 1 − erf(x) (complementary error function)

α > 0 (scaling parameter)

(24)

Coulomb interactions and fast Ewald summation

Open boundary conditions

φ(j) =

N

X

i=1 i6=j

q

i

kx

ij

k =

N

X

i=1 i6=j

qi

erfc(αkxijk) kxijk

+

N

X

i=1

qi

erf(αkxijk) kxijk

− 2α

√ π q

j

• short range part:

direct evaluation (truncation)

• long range part:

use NFFT based fast summation for radial kernels (d = 3) φ

long

(j) ≈

X

k∈IM

ˆ b

k N

X

i=1

q

i

e

2πik·xi/h

!

| {z }

adj. NFFT

e

−2πik·xj/h

| {z }

NFFT

Computation of the forces:

F

(j) := −q

j

∇φ(j) = −q

j

∇φ

short

(j)

| {z }

direct

−q

j

∇φ

long

(j)

| {z }

via gradient NFFT

(25)

Coulomb interactions and fast Ewald summation

Open boundary conditions

φ(j) =

N

X

i=1 i6=j

q

i

kx

ij

k =

N

X

i=1 i6=j

qi

erfc(αkxijk) kxijk

+

N

X

i=1

qi

erf(αkxijk) kxijk

− 2α

√ π q

j

• short range part:

direct evaluation (truncation)

• long range part:

use NFFT based fast summation for radial kernels (d = 3) φ

long

(j) ≈

X

k∈IM

ˆ b

k N

X

i=1

q

i

e

2πik·xi/h

!

| {z }

adj. NFFT

e

−2πik·xj/h

| {z }

NFFT

Computation of the forces:

F

(j) := −q

j

∇φ(j) = −q

j

∇φ

short

(j)

| {z }

direct

−q

j

∇φ

long

(j)

| {z }

via gradient NFFT

(26)

Coulomb interactions and fast Ewald summation

3d-periodic boundary conditions

φ(j) =

X

n∈Z3 N

X

i=1 i6=jifn=0

qierfc(αkxij+Lnk) kxij+Lnk

+

X

n∈Z3 N

X

i=1

qierf(αkxij+Lnk) kxij+Lnk

− 2α

√ π q

j

• short range part:

direct evaluation (truncation)

• long range part:

Fourier coefficients are known analytically.

φ

long

(j) =

X

k∈Z3

e

−π2kkk2/(α2L2)

kkk

2

N

X

i=1

q

i

e

2πik·xi/L

!

| {z }

adj. NFFT

e

−2πik·xj/L

| {z }

NFFT

• coefficients tend to zero exponentially fast

• truncate:Z37→ IM

(27)

Coulomb interactions and fast Ewald summation

Mixed periodicity

φ(j) :=

X

n∈S N

X

i=1 i6=jifn=0

q

i

kx

ij

+ Lnk

2d-periodic

xj

∈ L

T2

×

R

, S :=

Z2

× {0}

→ thin liquid films, . . .

L

L

1

Compute analytic solution with respect to the 2 periodic dimensions.

Use fast summation in 1d for the non-periodic dimension.

1d-periodic

xj

∈ L

T

×

R2

, S :=

Z

× {0}

2

→ nano channels, . . .

L

1

Compute analytic solution with respect to the 1 periodic dimension.

Use fast summation in 2d for the

non-periodic dimensions.

(28)

Numerical results

Parameter choice

Parameter tuning: quite well understood for the 3d-periodic case.

Choose the NFFT mesh size in the mixed periodic case as follows:

2d-periodc 3d-periodic

periodic dims. non periodic dim. periodic dims.

box length L

h:= 2L+ 2δ L

# grid points M M

3

:= 2M + P M

0

L L

(L+δ) L+δ

regularization regularization

periodic

non periodic

P/2 M M P/2

grid points

Franziska Nestler TU Chemnitz, Faculty of Mathematics

(29)

Numerical results

Parameter choice

If the parameters are chosen appropriately, the achieved rms errors are comparable:

0.5 1 1.5 2

10−14 10−11 10−8 10−5 10−2

splitting parameterα

FZ2×{0}

M= 16, P= 8, h= 25 M= 32, P= 16, h= 25 M= 64, P= 30, h24.67 M= 128, P= 44, h23.44 M= 256, P= 76, h22.97

0.5 1 1.5 2

10−14 10−11 10−8 10−5 10−2

splitting parameterα

FZ3

Figure:Achieved rms force errors for the 2d-periodic (left) compared to the 3d-periodic (right) case. (L= 10,N= 300)

Large particle systems:

• Tune parameters for a small system.

• Use tuned parameters also for lager systems (same particle density), chooseM3∼N.

• Complexity:O(NlogN).

103 104 105 106

10−2 10−1 100 101 102 103

#charges

time[s]

N

NlogN

Figure:Comparison of the computation times (2dp:*, 3dp:4).

(30)

Numerical results

Parameter choice

If the parameters are chosen appropriately, the achieved rms errors are comparable:

0.5 1 1.5 2

10−14 10−11 10−8 10−5 10−2

splitting parameterα

FZ2×{0}

M= 16, P= 8, h= 25 M= 32, P= 16, h= 25 M= 64, P= 30, h24.67 M= 128, P= 44, h23.44 M= 256, P= 76, h22.97

0.5 1 1.5 2

10−14 10−11 10−8 10−5 10−2

splitting parameterα

FZ3

Figure:Achieved rms force errors for the 2d-periodic (left) compared to the 3d-periodic (right) case. (L= 10,N= 300)

Large particle systems:

• Tune parameters for a small system.

• Use tuned parameters also for lager systems (same particle density), chooseM3∼N.

• Complexity:O(NlogN).

103 104 105 106

10−2 10−1 100 101 102 103

#charges

time[s]

N

NlogN

Figure:Comparison of the computation times (2dp:*, 3dp:4).

(31)

Extension to systems with dipoles

Systems with charges and dipoles

Given

N

1

charges q

j

R

at positions

xj

(j = 1, . . . , N

1

)

N

2

dipoles with dipole moments

µj

R3

at positions

xj

(j = N

1

+ 1, . . . , N

1

+ N

2

) Replace the charges q

j

by the operators ξ

j

:

q

j

7→ ξ

j

:=

(

q

j

: j ∈ {1, . . . , N

1

},

µ>j

xj

: j ∈ {N

1

+ 1, . . . , N

1

+ N

2

}.

Electrostatic energy and potentials:

U := 1 2

N1+N2

X

j=1

ξ

j

φ(j) with φ(j) :=

X

n∈Z3 N1+N2

X

i=1 i6=jifn=0

ξ

i

kx

ij

+ Lnk .

(32)

Extension to systems with dipoles

NFFT based computation of the long range part

Potentials (for charges and dipoles):

φ

long

(j) ≈

X

k∈IM

ˆ b

k

N1

X

i=1

q

i

e

2πik·xi/L

| {z }

adj. NFFT

+

N1+N2

X

i=N1+1

µ>i

xi

e

2πik·xi/L

| {z }

adj. gradient NFFT

e

−2πik·xj/L

| {z }

NFFT

Forces of the charges:

F

(j) = −q

j

xj

φ(j),

gradient NFFT

instead of NFFT.

Forces of the dipoles:

F

(j) = −[∇

xj

>xj

φ(j)] ·

µj

Flong

(j) ≈ −

∇xj

>xj

X

k∈IM

ˆ b

k

(S

c

(k) + S

d

(k)) e

−2πik·xj/L

| {z }

Hessian NFFT

·µ

j

(33)

Summary

P

2

NFFT for charged particle systems

Long range parts of the potentials: same structure for all types of periodic boundary conditions.

[N., Pippig, Potts, J. Comput. Phys. 2015], [N., Pippig, Potts, Comput. Trends in Solvation and Transport in Liquids 2015]

• 3d-periodic: coefficientsˆbkare known analytically (Ewald summation)

• 0d-periodic: NFFT based fast summation (3D)

• 1d-periodic: Ewald summation (1D) and fast summation (2D)

• 2d-periodic: Ewald summation (2D) and fast summation (1D)

Long range parts of the forces: Use gradient NFFT.

Extended method for computation of interactions with dipoles.[N., Appl. Numer. Math. 2016]

New NFFT modules: Hessian NFFT, adjoint gradient NFFT.[M. Pippig, PNFFT library, https://github.com/mpip/pfft] P2NFFT is publicly available at www.scafacos.de

Numerical results for systems with charges and dipoles: going to be published.

Thank you for your attention!

(34)

Summary

P

2

NFFT for charged particle systems

Long range parts of the potentials: same structure for all types of periodic boundary conditions.

[N., Pippig, Potts, J. Comput. Phys. 2015], [N., Pippig, Potts, Comput. Trends in Solvation and Transport in Liquids 2015]

• 3d-periodic: coefficientsˆbkare known analytically (Ewald summation)

• 0d-periodic: NFFT based fast summation (3D)

• 1d-periodic: Ewald summation (1D) and fast summation (2D)

• 2d-periodic: Ewald summation (2D) and fast summation (1D) Long range parts of the forces: Use gradient NFFT.

Extended method for computation of interactions with dipoles.[N., Appl. Numer. Math. 2016]

New NFFT modules: Hessian NFFT, adjoint gradient NFFT.[M. Pippig, PNFFT library, https://github.com/mpip/pfft] P2NFFT is publicly available at www.scafacos.de

Numerical results for systems with charges and dipoles: going to be published.

Thank you for your attention!

(35)

Summary

P

2

NFFT for charged particle systems

Long range parts of the potentials: same structure for all types of periodic boundary conditions.

[N., Pippig, Potts, J. Comput. Phys. 2015], [N., Pippig, Potts, Comput. Trends in Solvation and Transport in Liquids 2015]

• 3d-periodic: coefficientsˆbkare known analytically (Ewald summation)

• 0d-periodic: NFFT based fast summation (3D)

• 1d-periodic: Ewald summation (1D) and fast summation (2D)

• 2d-periodic: Ewald summation (2D) and fast summation (1D) Long range parts of the forces: Use gradient NFFT.

Extended method for computation of interactions with dipoles.[N., Appl. Numer. Math. 2016]

New NFFT modules: Hessian NFFT, adjoint gradient NFFT.[M. Pippig, PNFFT library, https://github.com/mpip/pfft]

P2NFFT is publicly available at www.scafacos.de

Numerical results for systems with charges and dipoles: going to be published.

Thank you for your attention!

(36)

Summary

P

2

NFFT for charged particle systems

Long range parts of the potentials: same structure for all types of periodic boundary conditions.

[N., Pippig, Potts, J. Comput. Phys. 2015], [N., Pippig, Potts, Comput. Trends in Solvation and Transport in Liquids 2015]

• 3d-periodic: coefficientsˆbkare known analytically (Ewald summation)

• 0d-periodic: NFFT based fast summation (3D)

• 1d-periodic: Ewald summation (1D) and fast summation (2D)

• 2d-periodic: Ewald summation (2D) and fast summation (1D) Long range parts of the forces: Use gradient NFFT.

Extended method for computation of interactions with dipoles.[N., Appl. Numer. Math. 2016]

New NFFT modules: Hessian NFFT, adjoint gradient NFFT.[M. Pippig, PNFFT library, https://github.com/mpip/pfft]

P2NFFT is publicly available at www.scafacos.de

Numerical results for systems with charges and dipoles: going to be published.

Thank you for your attention!

(37)

Summary

P

2

NFFT for charged particle systems

Long range parts of the potentials: same structure for all types of periodic boundary conditions.

[N., Pippig, Potts, J. Comput. Phys. 2015], [N., Pippig, Potts, Comput. Trends in Solvation and Transport in Liquids 2015]

• 3d-periodic: coefficientsˆbkare known analytically (Ewald summation)

• 0d-periodic: NFFT based fast summation (3D)

• 1d-periodic: Ewald summation (1D) and fast summation (2D)

• 2d-periodic: Ewald summation (2D) and fast summation (1D) Long range parts of the forces: Use gradient NFFT.

Extended method for computation of interactions with dipoles.[N., Appl. Numer. Math. 2016]

New NFFT modules: Hessian NFFT, adjoint gradient NFFT.[M. Pippig, PNFFT library, https://github.com/mpip/pfft]

P2NFFT is publicly available at www.scafacos.de

Numerical results for systems with charges and dipoles: going to be published.

Thank you for your attention!

Referenzen

ÄHNLICHE DOKUMENTE

For mixed periodic as well as open boundary conditions the Fourier coefficients are not known analytically, in contrast to the 3d-periodic case, and the contributions in the

At first, we must determine the appropriate Ewald splitting parameter α and a suitable grid size M. Therefore, we adopt the parameter tuning given in [35] such that it works with

Abstract—The efficient computation of interactions in charged particle systems is possible based on the well known Ewald summation formulas and the fast Fourier transform for

In the case of 3d-periodic boundary conditions the nonequispaced fast Fourier trans- form (NFFT) 30 can be directly applied to the Fourier space sum in order to achieve a

Abstract—Ewald summation has established as basic element of fast algorithms evaluating the Coulomb interaction energy of charged particle systems in three dimensions subject

• new approach to fast Ewald summation under mixed boundary conditions: [Nestler, Pippig, Potts 2013 (Preprint)]. • 2d-periodic: Ewald + fast summation

Fast Ewald summation for charged particle systems Mixed periodic boundary conditions. Ewald summation with

Potts: Parallel three-dimensional nonequispaced fast Fourier transforms and their application to particle simulation. Porto: Ewald summation of electrostatic interactions of