• Keine Ergebnisse gefunden

Fast Ewald summation for mixed periodic boundary conditions based on the nonuniform FFT

N/A
N/A
Protected

Academic year: 2022

Aktie "Fast Ewald summation for mixed periodic boundary conditions based on the nonuniform FFT"

Copied!
26
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Fast Ewald summation for mixed periodic boundary conditions based on the nonuniform FFT

Fast Ewald summation for mixed periodic boundary conditions based on the nonuniform FFT

Franziska Nestler and Michael Pippig Technische Universität Chemnitz

Faculty of Mathematics

SIAM Conference on

Computational Science and Engineering Salt Lake City, 03/2015

Franziska Nestler and Michael Pippig TU Chemnitz, Faculty of Mathematics

(2)

Fast Ewald summation for mixed periodic boundary conditions based on the nonuniform FFT

1 Introduction

2 Fast Ewald summation for mixed periodic boundary conditions

3 Numerical results

4 Conclusion

(3)

Introduction

The 3d-NFFT (FFT for nonequispaced data)

Notation

define the torusT:=R/Z'[−1/2,1/2)

forM∈2NsetIM :={−M/2, . . . ,M/2−1}3⊂Z3

NFFT: f(xj) := X

k∈IM

ke2πik·xj xj∈T3, j= 1, . . . , N

adjoint NFFT: h(k) :=

N

X

j=1

fje−2πik·xj k∈ IM

Complexity:O(|IM|log|IM|+N)

[Dutt, Rokhlin 1993] [Beylkin 1995]

[Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

Franziska Nestler and Michael Pippig TU Chemnitz, Faculty of Mathematics

(4)

Introduction

The 3d-NFFT (FFT for nonequispaced data)

Notation

define the torusT:=R/Z'[−1/2,1/2)

forM∈2NsetIM :={−M/2, . . . ,M/2−1}3⊂Z3

NFFT: f(xj) := X

k∈IM

ke2πik·xj xj∈T3, j= 1, . . . , N

adjoint NFFT: h(k) :=

N

X

j=1

fje−2πik·xj k∈ IM

Complexity:O(|IM|log|IM|+N)

[Dutt, Rokhlin 1993] [Beylkin 1995]

[Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

(5)

Introduction

Coulomb interactions, mixed periodicity

LetNchargesqj∈Rat positionsxj∈[−L/2,L/2]3be given.

Coulomb interaction energy (xij:=xi−xj) s.t. periodic boundary conditions:

E:=1 2

N

X

j=1

qjφ(xj) with φ(xj) :=X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Lnk, whereS ⊂Z3. Forces:F(xj) :=−∇xjφ(xj).

2d-periodic:S:=Z2× {0}. 1d-periodic:S:=Z× {0}2.

Franziska Nestler and Michael Pippig TU Chemnitz, Faculty of Mathematics

(6)

Introduction

Coulomb interactions, mixed periodicity

LetNchargesqj∈Rat positionsxj∈[−L/2,L/2]3be given.

Coulomb interaction energy (xij:=xi−xj) s.t. periodic boundary conditions:

E:=1 2

N

X

j=1

qjφ(xj) with φ(xj) :=X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Lnk, whereS ⊂Z3. Forces:F(xj) :=−∇xjφ(xj).

2d-periodic:S:=Z2× {0}.

L

L

1d-periodic:S:=Z× {0}2.

L

(7)

Introduction

Coulomb interactions, mixed periodicity

LetNchargesqj∈Rat positionsxj∈[−L/2,L/2]3be given.

Coulomb interaction energy (xij:=xi−xj) s.t. periodic boundary conditions:

E:=1 2

N

X

j=1

qjφ(xj) with φ(xj) :=X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Lnk, whereS ⊂Z3. Forces:F(xj) :=−∇xjφ(xj).

2d-periodic:S:=Z2× {0}.

Fast particle mesh methods P3M[Hockney, Eastwood 1988]

PME[Darden et al. 1993], SPME[Essmann et al. 1995]

Non-smooth approximated Ewald[Martyna et al. 2002]

Gaussian split Ewald[Shan et al. 2004]

NFFT based fast summation[Nieslony, Potts, Steidl 2004]

NFFT based fast Ewald[Hedman, Laaksonen 2006]

Spectrally accurate Ewald[Lindbo, Tornberg 2011, 2012]

P2NFFT [Nestler, Pippig, Potts 2013, 2015]

Other methods

Multigrid[Brandt, Hackbusch, Trottenberg 1977], FMM[Greengard, Rokhlin 1987]

1d-periodic:S:=Z× {0}2.

3dp 2dp 1dp 0dp

X 7 7 7

X 7 7 7

7 X X X

X 7 7 7

7 7 7 X

X 7 7 7

X X 7 7

X X X X

Franziska Nestler and Michael Pippig TU Chemnitz, Faculty of Mathematics

(8)

Fast Ewald Summation

Ewald summation

Apply the well known Ewald splitting

1

r = erfc(αr)

r +erf(αr) r withr:=kxij+Lnkand obtain

φ(xj) =X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Lnk

=X

n∈S N

X

i=1 i6=jifn=0

qi

erfc(αkxij+Lnk) kxij+Lnk +

φL(xj) :=X

n∈S N

X

i=1

qi

erf(αkxij+Lnk) kxij+Lnk − 2α

√πqj

short range partcan be obtained via direct evaluation after truncation

lim

r→0 erf(αr)

r = π⇒substractself potential

write thelong range partas a sum in Fourier space

(9)

Fast Ewald Summation

Ewald summation

Apply the well known Ewald splitting

1

r = erfc(αr)

r +erf(αr) r withr:=kxij+Lnkand obtain

φ(xj) =X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Lnk=X

n∈S N

X

i=1 i6=jifn=0

qi

erfc(αkxij+Lnk) kxij+Lnk +

φL(xj) :=X

n∈S N

X

i=1

qi

erf(αkxij+Lnk) kxij+Lnk − 2α

√πqj

short range partcan be obtained via direct evaluation after truncation

lim

r→0 erf(αr)

r = π⇒substractself potential

write thelong range partas a sum in Fourier space

Franziska Nestler and Michael Pippig TU Chemnitz, Faculty of Mathematics

(10)

Fast Ewald Summation

Ewald summation

Apply the well known Ewald splitting

1

r = erfc(αr)

r +erf(αr) r withr:=kxij+Lnkand obtain

φ(xj) =X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Lnk=X

n∈S N

X

i=1 i6=jifn=0

qi

erfc(αkxij+Lnk) kxij+Lnk +

φL(xj) :=

X

n∈S N

X

i=1

qi

erf(αkxij+Lnk) kxij+Lnk − 2α

√πqj

short range partcan be obtained via direct evaluation after truncation

lim

r→0 erf(αr)

r = π⇒substractself potential

write thelong range partas a sum in Fourier space

(11)

Fast Ewald Summation

Ewald summation

Apply the well known Ewald splitting

1

r = erfc(αr)

r +erf(αr) r withr:=kxij+Lnkand obtain

φ(xj) =X

n∈S N

X

i=1 i6=jifn=0

qi

kxij+Lnk=X

n∈S N

X

i=1 i6=jifn=0

qi

erfc(αkxij+Lnk) kxij+Lnk +

φL(xj) :=X

n∈S N

X

i=1

qi

erf(αkxij+Lnk) kxij+Lnk

− 2α

√πqj

short range partcan be obtained via direct evaluation after truncation

lim

r→0 erf(αr)

r = π⇒substractself potential

write thelong range partas a sum in Fourier space

Franziska Nestler and Michael Pippig TU Chemnitz, Faculty of Mathematics

(12)

Fast Ewald Summation

Ewald summation s.t. 2d-periodic boundary conditions

Long range part under 2d-periodic b.c.[Grzybowski, Gwó´zd´z, Bródka 2000]

We writexij= (˜xij, xij,3)and obtain

φL(xj) = X

k∈Z2\{0}

N

X

i=1

qie2πik·x˜ij/LΘp2(kkk, xij,3) −

N

X

i=1

qiΘp2(0, xij,3)

2d Fourier series k=0part

Θp2(k, r)

k= 1 k=√

2 k=√

3 . . .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

e2πkr/L 2Lk erfc

πk αL+αr

+e−2πkr/L2Lk erfc πk αLαr

Θp2(0, r) =2

π

αL2e−α2r2+2rπ L2erf(αr)

(13)

Fast Ewald Summation

Ewald summation s.t. 2d-periodic boundary conditions

Long range part under 2d-periodic b.c.[Grzybowski, Gwó´zd´z, Bródka 2000]

We writexij= (˜xij, xij,3)and obtain

φL(xj) = X

k∈Z2\{0}

N

X

i=1

qie2πik·x˜ij/LΘp2(kkk, xij,3) −

N

X

i=1

qiΘp2(0, xij,3)

2d Fourier series k=0part

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0 0.1 0.2 0.3 0.4 0.5

Θp2(k, r)

k= 1 k=√

2 k=√

3 . . .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

e2πkr/L 2Lk erfc

πk αL+αr

+e−2πkr/L2Lk erfc πk αLαr

Θp2(0, r) =2

π

αL2e−α2r2+2rπ L2erf(αr)

Franziska Nestler and Michael Pippig TU Chemnitz, Faculty of Mathematics

(14)

Fast Ewald Summation

Ewald summation s.t. 2d-periodic boundary conditions

Long range part under 2d-periodic b.c.[Grzybowski, Gwó´zd´z, Bródka 2000]

We writexij= (˜xij, xij,3)and obtain

φL(xj) = X

k∈Z2\{0}

N

X

i=1

qie2πik·x˜ij/LΘp2(kkk, xij,3) −

N

X

i=1

qiΘp2(0, xij,3)

2d Fourier series k=0part

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0 0.1 0.2 0.3 0.4 0.5

Θp2(k, r)

k= 1 k=√

2 k=√

3 . . .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

e2πkr/L 2Lk erfc

πk αL+αr

+e−2πkr/L2Lk erfc πk αLαr

Θp2(0, r) =2

π

αL2e−α2r2+2rπ L2erf(αr)

(15)

Fast Ewald Summation

Approximation by Fourier sums

k= 0and smallk6= 0 k6= 0large enough

0

−L L

h/2 h/2

R(k,·) Θp2(k,·)

polynomial polynomial

1

h/2 h/2

Θp2(k, r) X n=−∞

Θp2(k, r+nh) Θp2(k,·) h-periodization

1

Choose an appropriate periodh >2L:

embedΘp2(k,·)into a smooth function R(k,·)(regularization)

interpolate the derivatives at the boundary up to orderpN

approximate function byFFT

approximate the function by itsh-periodic version

useanalytical Fourier coefficients (Poisson summation formula)

Result: Θp2(k, r)≈

M3/2−1

P

l=−M3/2

ˆbk,le2πilr/h , r∈[−L, L].

Franziska Nestler and Michael Pippig TU Chemnitz, Faculty of Mathematics

(16)

Fast Ewald Summation

Long range part under 2d-periodic b.c.

φL(xj) = X

k∈Z2

e2πik·x˜ij/L

N

X

i=1

qiΘp2(kkk, xij,3)

truncate:Z2→ IM :={−M/2. . . ,M/21}2

For eachk=kkkandM32Nlarge enough we have:

Θp2(k, xij,3)

M3/2−1

X

l=−M3/2

ˆbk,le2πilxij,3/h

(precompute by FFT or use analytical Fourier transform)

we obtain withxˆi:=x

i,1

L ,xi,2L ,xi,3h

[−1/2,1/2]3the approximation

(17)

Fast Ewald Summation

Long range part under 2d-periodic b.c.

φL(xj) = X

k∈Z2

e2πik·x˜ij/L

N

X

i=1

qiΘp2(kkk, xij,3)

truncate:Z2→ IM :={−M/2. . . ,M/21}2

For eachk=kkkandM32Nlarge enough we have:

Θp2(k, xij,3)

M3/2−1

X

l=−M3/2

ˆbk,le2πilxij,3/h (precompute by FFT or use analytical Fourier transform)

we obtain withxˆi:=x

i,1

L ,xi,2L ,xi,3h

[−1/2,1/2]3the approximation

φL(xj) X

k∈IM M3/2−1

X

l=−M3/2

ˆbkkk,l

N

X

i=1

qie

2πi

k1

k2

l

·ˆxi

e

−2πi

k1

k2

l

·ˆxj

Franziska Nestler and Michael Pippig TU Chemnitz, Faculty of Mathematics

(18)

Fast Ewald Summation

Long range part under 2d-periodic b.c.

φL(xj) = X

k∈Z2

e2πik·x˜ij/L

N

X

i=1

qiΘp2(kkk, xij,3)

truncate:Z2→ IM :={−M/2. . . ,M/21}2

For eachk=kkkandM32Nlarge enough we have:

Θp2(k, xij,3)

M3/2−1

X

l=−M3/2

ˆbk,le2πilxij,3/h

(precompute by FFT or use analytical Fourier transform)

we obtain withxˆi:=x

i,1

L ,xi,2L ,xi,3h

[−1/2,1/2]3the approximation

φL(xj) X

k∈IM M3/2−1

X

l=−M3/2

ˆbkkk,l

N

X

i=1

qie

2πi

k1

k2

l

·ˆxi

e

−2πi

k1

k2

l

·ˆxj

(19)

Fast Ewald Summation

Long range part under 2d-periodic b.c.

φL(xj) = X

k∈Z2

e2πik·x˜ij/L

N

X

i=1

qiΘp2(kkk, xij,3)

truncate:Z2→ IM :={−M/2. . . ,M/21}2

For eachk=kkkandM32Nlarge enough we have:

Θp2(k, xij,3)

M3/2−1

X

l=−M3/2

ˆbk,le2πilxij,3/h

(precompute by FFT or use analytical Fourier transform)

we obtain withxˆi:=x

i,1

L ,xi,2L ,xi,3h

[−1/2,1/2]3the approximation

φL(xj) X

k∈IM M3/2−1

X

l=−M3/2

ˆbkkk,l

N

X

i=1

qie

2πi

k1

k2

l

·ˆxi

| {z }

3d adj. NFFT

e

−2πi

k1

k2

l

·ˆxj

| {z }

3d NFFT,j=1,...,N

Franziska Nestler and Michael Pippig TU Chemnitz, Faculty of Mathematics

(20)

Numerical Results

Parameter choice

Consider the case of a cubic box:xj∈[−L/2,L/2]3,j= 1, . . . , N.

Choose the NFFT mesh size as follows:

2d-periodc 3d-periodic

periodic dims. non periodic dim. periodic dims.

box length L h:= 2L+δ L

# grid points M M3:= 2M+P M

If the parameters are chosen appropriately, the achieved rms errors are comparable:

0.5 1 1.5 2

10−14 10−11 10−8 10−5 10−2

splitting parameterα

FZ2×{0}

M= 16, P= 8, h= 25 M= 32, P= 16, h= 25 M= 64, P= 30, h24.67 M= 128, P= 44, h23.44 M= 256, P= 76, h22.97

0.5 1 1.5 2

10−14 10−11 10−8 10−5 10−2

splitting parameterα

FZ3

Figure:Achieved rms force errors for the 2d-periodic (left) compared to the 3d-periodic (right) case. (L= 10,N= 300)

(21)

Numerical Results

Parameter choice

Consider the case of a cubic box:xj∈[−L/2,L/2]3,j= 1, . . . , N.

Choose the NFFT mesh size as follows:

2d-periodc 3d-periodic

periodic dims. non periodic dim. periodic dims.

box length L h:= 2L+δ L

# grid points M M3:= 2M+P M

If the parameters are chosen appropriately, the achieved rms errors are comparable:

0.5 1 1.5 2

10−14 10−11 10−8 10−5 10−2

splitting parameterα

FZ2×{0}

M= 16, P= 8, h= 25 M= 32, P= 16, h= 25 M= 64, P= 30, h24.67 M= 128, P= 44, h23.44 M= 256, P= 76, h22.97

0.5 1 1.5 2

10−14 10−11 10−8 10−5 10−2

splitting parameterα

FZ3

Figure:Achieved rms force errors for the 2d-periodic (left) compared to the 3d-periodic (right) case. (L= 10,N= 300)

Franziska Nestler and Michael Pippig TU Chemnitz, Faculty of Mathematics

(22)

Numerical Results

Results for large particle systems

Idea: Tune parameters for asmallsystem and use the same parameters.

rms force error

N L M P 2M+P h 2d-periodic 3d-periodic

300 10 16 8 40 25 1.3771e-04 1.6261e-04

2400 20 32 8 72 45 1.5115e-04 1.6261e-04

19200 40 64 8 126 85 1.5815e-04 1.6261e-04

153600 80 128 8 264 165 1.6192e-04 1.6261e-04

1228800 160 256 8 520 325 1.6415e-04 1.6261e-04

Table:Achieved rms force errors and applied parameters for particle systems of different size.

We use the same splitting parameterαas well as the same near field cutoff.

103 104 105 106

10−2 10−1 100 101 102 103

#charges

time[s]

N

NlogN

Figure:Comparison of the computation times (2dp:*, 3dp:4).

(23)

Conclusion

Conclusion

new approach to fast Ewald summation under mixed boundary conditions:

[Nestler, Pippig, Potts, J. Comput. Phys. 2015]

2d-periodic: Ewald + fast summation in 1d

1d-periodic: Ewald + fast summation in 2d

good choice of parameters: accuracy and computation times comparable to 3d-periodic implementation[Pippig, Potts 2011]

P2NFFT is publicly available at www.scafacos.de

related questions:

error estimates + automatic tuning of the parameters [Nestler 2015, Preprints]

Thank you for your attention!

www.tu-chemnitz.de/~nesfr www.tu-chemnitz.de/~mpip

Franziska Nestler and Michael Pippig TU Chemnitz, Faculty of Mathematics

(24)

Conclusion

Conclusion

new approach to fast Ewald summation under mixed boundary conditions:

[Nestler, Pippig, Potts, J. Comput. Phys. 2015]

2d-periodic: Ewald + fast summation in 1d

1d-periodic: Ewald + fast summation in 2d

good choice of parameters: accuracy and computation times comparable to 3d-periodic implementation[Pippig, Potts 2011]

P2NFFT is publicly available at www.scafacos.de

related questions:

error estimates + automatic tuning of the parameters [Nestler 2015, Preprints]

Thank you for your attention! www.tu-chemnitz.de/~nesfr www.tu-chemnitz.de/~mpip

(25)

Conclusion

Conclusion

new approach to fast Ewald summation under mixed boundary conditions:

[Nestler, Pippig, Potts, J. Comput. Phys. 2015]

2d-periodic: Ewald + fast summation in 1d

1d-periodic: Ewald + fast summation in 2d

good choice of parameters: accuracy and computation times comparable to 3d-periodic implementation[Pippig, Potts 2011]

P2NFFT is publicly available at www.scafacos.de

related questions:

error estimates + automatic tuning of the parameters [Nestler 2015, Preprints]

Thank you for your attention!

www.tu-chemnitz.de/~nesfr www.tu-chemnitz.de/~mpip

Franziska Nestler and Michael Pippig TU Chemnitz, Faculty of Mathematics

(26)

Conclusion

Conclusion

new approach to fast Ewald summation under mixed boundary conditions:

[Nestler, Pippig, Potts, J. Comput. Phys. 2015]

2d-periodic: Ewald + fast summation in 1d

1d-periodic: Ewald + fast summation in 2d

good choice of parameters: accuracy and computation times comparable to 3d-periodic implementation[Pippig, Potts 2011]

P2NFFT is publicly available at www.scafacos.de

related questions:

error estimates + automatic tuning of the parameters [Nestler 2015, Preprints]

Thank you for your attention!

www.tu-chemnitz.de/~nesfr www.tu-chemnitz.de/~mpip

Referenzen

ÄHNLICHE DOKUMENTE

For mixed periodic as well as open boundary conditions the Fourier coefficients are not known analytically, in contrast to the 3d-periodic case, and the contributions in the

At first, we must determine the appropriate Ewald splitting parameter α and a suitable grid size M. Therefore, we adopt the parameter tuning given in [35] such that it works with

Abstract—The efficient computation of interactions in charged particle systems is possible based on the well known Ewald summation formulas and the fast Fourier transform for

In the case of 3d-periodic boundary conditions the nonequispaced fast Fourier trans- form (NFFT) 30 can be directly applied to the Fourier space sum in order to achieve a

Abstract—Ewald summation has established as basic element of fast algorithms evaluating the Coulomb interaction energy of charged particle systems in three dimensions subject

N., Pippig, Potts: NFFT based fast Ewald summation for various types of periodic boundary conditions. Sutmann, Grotendorst, Gompper, Marx (Eds.), Computational Trends in Solvation

Fast Ewald summation for electrostatic systems with charges and dipoles for various types of periodic boundary conditions.. Franziska Nestler Chemnitz University

Fast Ewald summation for charged particle systems Mixed periodic boundary conditions. Ewald summation with