• Keine Ergebnisse gefunden

SampTA2017SamplingTheoryandApplications,12thInternationalConferenceJuly3–7,2017,Tallinn,Estonia FranziskaNestlerChemnitzUniversityofTechnologyFacultyofMathematics FastEwaldsummationforelectrostaticsystemswithchargesanddipolesforvarioustypesofperiodicbound

N/A
N/A
Protected

Academic year: 2022

Aktie "SampTA2017SamplingTheoryandApplications,12thInternationalConferenceJuly3–7,2017,Tallinn,Estonia FranziskaNestlerChemnitzUniversityofTechnologyFacultyofMathematics FastEwaldsummationforelectrostaticsystemswithchargesanddipolesforvarioustypesofperiodicbound"

Copied!
42
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Fast Ewald summation for electrostatic systems with charges and dipoles

Fast Ewald summation for electrostatic systems with charges and dipoles for various types of periodic boundary conditions

Franziska Nestler Chemnitz University of Technology

Faculty of Mathematics

joint work with M. Hofmann, M. Pippig, D. Potts

SampTA 2017

Sampling Theory and Applications, 12th International Conference

July 3 – 7, 2017, Tallinn, Estonia

(2)

Fast Ewald summation for electrostatic systems with charges and dipoles

1 Introduction: Electrostatic interactions in particle systems

2 Nonequispaced FFT and fast summation

3 P2NFFT for systems with charges and dipoles

4 Numerical results

5 Summary

(3)

Introduction: Electrostatic interactions in particle systems

The Coulomb problem

Charged particle system: Let N charges q

j∈R

at positions

xj∈R3

be given.

Are interested in the electrostatic potentials (x

ij

:=

xi−xj

):

φ(j) :=

N

X

i=1 i6=j

q

i

kxijk

, j = 1, . . . , N.

→ O

(N

2

)?

3d-periodic boundary conditions Choose

S

:=

Z3

,

xj

[

L

/

2

,

L

/

2

)

3

and set

φ(j) :=

X

n∈S N

X

i=1 i6=jifn=0

q

i

kxij

+ Ln

k

crystals, . . .

→conditional convergence for electrical neutral particle systems

(4)

Introduction: Electrostatic interactions in particle systems

The Coulomb problem

Charged particle system: Let N charges q

j∈R

at positions

xj∈R3

be given.

Are interested in the electrostatic potentials (x

ij

:=

xi−xj

):

φ(j) :=

N

X

i=1 i6=j

q

i

kxijk

, j = 1, . . . , N.

→ O

(N

2

)?

3d-periodic boundary conditions Choose

S

:=

Z3

,

xj∈[−L/2,L/2)3

and set

φ(j) :=

X

n∈S N

X

i=1 i6=jifn=0

q

i

kxij

+ Ln

k

crystals, . . .

L

→conditional convergence for electrical neutral particle systems

(5)

Introduction: Electrostatic interactions in particle systems

The Coulomb problem

Charged particle system: Let N charges q

j∈R

at positions

xj∈R3

be given.

Are interested in the electrostatic potentials (x

ij

:=

xi−xj

):

φ(j) :=

N

X

i=1 i6=j

q

i

kxijk

, j = 1, . . . , N.

→ O

(N

2

)?

3d-periodic boundary conditions Choose

S

:=

Z3

,

xj

[

L

/

2

,

L

/

2

)

3

and set

φ(j) :=

X

n∈S N

X

i=1 i6=jifn=0

q

i

kxij

+ Ln

k

crystals, . . .

→conditional convergence for electrical neutral particle systems

(6)

Introduction: Electrostatic interactions in particle systems

The Coulomb problem

Charged particle system: Let N charges q

j∈R

at positions

xj∈R3

be given.

Are interested in the electrostatic potentials (x

ij

:=

xi−xj

):

φ(j) :=

N

X

i=1 i6=j

q

i

kxijk

, j = 1, . . . , N.

→ O

(N

2

)?

3d-periodic boundary conditions Choose

S:=Z3

,

xj

[

L

/

2

,

L

/

2

)

3

and set

φ(j) :=

X

n∈S N

X

i=1 i6=jifn=0

q

i

kxij

+

Lnk

crystals, . . .

→conditional convergence for electrical neutral particle systems

(7)

Introduction: Electrostatic interactions in particle systems

Extension to systems with charges and dipoles

Add

dipole particles. Given

N

c

charges q

j∈R

at positions

xj

, j = 1, . . . , N

c

,

N

d

dipoles with

dipole momentsµj∈R3

at positions

xj

, j = N

c

+ 1, . . . , N

c

+ N

d

. Total number of particles N := N

c

+ N

d

.

Replace the charges q

j

by the operators ξ

j

:

q

j7→ξj:=

(qj :j∈ {1, . . . , Nc}, µ>jxj :j∈ {Nc+ 1, . . . , N}.

Electrostatic potentials:

φ(j) :=

X

n∈S N

X

i=1 i6=jifn=0

ξi

kxij

+ Ln

k

, j = 1, . . . , N.

(8)

Introduction: Electrostatic interactions in particle systems

Periodic boundary conditions

3d-periodic

S

:=

Z3

crystals, . . .

L L

L

1

open boundary conditions

S

:=

{

0

}3

1

2d-periodic

S

:=

Z2× {

0

} →

thin liquid films, . . .

L L

1

1d-periodic

S

:=

Z× {

0

}2

nano channels, . . .

L

1

(9)

Introduction: Electrostatic interactions in particle systems

Periodic boundary conditions

3d-periodic

S

:=

Z3

crystals, . . .

L L

L

1

open boundary conditions

S

:=

{

0

}3

1

2d-periodic

S

:=

Z2× {

0

} →

thin liquid films, . . .

L L

1d-periodic

S

:=

Z× {

0

}2

nano channels, . . .

L

Franziska Nestler, TU Chemnitz, Faculty of Mathematics 5/17

(10)

Introduction: Electrostatic interactions in particle systems

Ewald splitting

Idea of Ewald summation

[Ewald 1921]

:

Ewald splitting

1

r =

erf(αr) r

| {z } long ranged, continuous

+

erfc(αr) r

| {z } singular in 0, short ranged

0 0.2 0.4 0.6 0.8 1

0 2 4 6 8 10

r

erf(x) :=

2π

Rx

0

e

t2

dt (error function),

lim

r0 erf(αr)

r =π

erfc(x) := 1

erf(x) (complementary error function)

α > 0 (scaling parameter)

(11)

Introduction: Electrostatic interactions in particle systems

3d-periodic boundary conditions

φ(j) = X

n∈Z3 N

X

i=1 i6=jifn=0

ξierfc(αkxij+Lnk) kxij+Lnk + X

n∈Z3 N

X

i=1

ξierf(αkxij+Lnk)

kxij+Lnk −φself(j)

• short range part:direct evaluation (truncation)

• long range part:

Fourier coefficientsare known analytically.

φself(j) = (

πqj :charges

0 :dipoles

φlong(j) = X

k∈Z3\{0} N

X

i=1

ξie−π2kkk2/(α2L2)

πLkkk2 e2πik>xij/L

→good choice of truncation parameters:O(N3/2)

How to compute the long range part even more efficiently?

→ O

(N log N)

3d-periodic constraints: FFT for nonequispaced data –

NFFT

open and mixed periodic b.c.:

NFFT based fast summation

(12)

Introduction: Electrostatic interactions in particle systems

3d-periodic boundary conditions

φ(j) = X

n∈Z3 N

X

i=1 i6=jifn=0

ξierfc(αkxij+Lnk) kxij+Lnk + X

n∈Z3 N

X

i=1

ξierf(αkxij+Lnk)

kxij+Lnk −φself(j)

• short range part:direct evaluation (truncation)

• long range part:Fourier coefficientsare known analytically. φself(j) = (

πqj :charges

0 :dipoles

φlong(j) = X

k∈Z3\{0} N

X

i=1

ξie−π2kkk2/(α2L2)

πLkkk2 e2πik>xij/L

→good choice of truncation parameters:O(N3/2)

How to compute the long range part even more efficiently?

→ O

(N log N)

3d-periodic constraints: FFT for nonequispaced data –

NFFT

open and mixed periodic b.c.:

NFFT based fast summation

(13)

Introduction: Electrostatic interactions in particle systems

3d-periodic boundary conditions

φ(j) = X

n∈Z3 N

X

i=1 i6=jifn=0

ξierfc(αkxij+Lnk) kxij+Lnk + X

n∈Z3 N

X

i=1

ξierf(αkxij+Lnk)

kxij+Lnk −φself(j)

• short range part:direct evaluation (truncation)

• long range part:Fourier coefficientsare known analytically. φself(j) = (

πqj :charges

0 :dipoles

φlong(j) = X

k∈Z3\{0} N

X

i=1

ξie−π2kkk2/(α2L2)

πLkkk2 e2πik>xij/L

→good choice of truncation parameters:O(N3/2)

How to compute the long range part even more efficiently?

→ O

(N log N )

3d-periodic constraints: FFT for nonequispaced data –

NFFT

open and mixed periodic b.c.:

NFFT based fast summation

(14)

Nonequispaced FFT and fast summation

FFT for nonequispaced data – NFFT

Notation For M

2

N

set

IM

:=

{−M

/

2

, . . . ,

M

/

2

1

}d⊂Zd

.

Torus

T

:=

R

/

Z'

[

1

/

2

,

1

/

2

)

NFFT:

f(x

j

) :=

X

k∈IM

f ˆ

k

e

2πik>xj xj∈Td

, j = 1, . . . , N

(inverse) FFT: f(j) :=

X

k∈IM

f ˆ

k

e

2πik>j/M j∈IM

, N :=

|IM|

= M

d

adjoint NFFT:

h(k) :=

N

X

j=1

f

j

e

2πik>xj k∈ IM

Complexity:

O

(

|IM|

log

|IM|

+ N )

[Dutt, Rokhlin 1993] [Beylkin 1995] [Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

(15)

Nonequispaced FFT and fast summation

FFT for nonequispaced data – NFFT

Notation For M

2

N

set

IM

:=

{−M

/

2

, . . . ,

M

/

2

1

}d⊂Zd

. Torus

T

:=

R

/

Z'

[

1

/

2

,

1

/

2

)

NFFT:

f(x

j

) :=

X

k∈IM

f ˆ

k

e

2πik>xj xj∈Td

, j = 1, . . . , N

(inverse) FFT: f(j) :=

X

k∈IM

f ˆ

k

e

2πik>j/M j∈ IM

, N :=

|IM|

= M

d

adjoint NFFT:

h(k) :=

N

X

j=1

f

j

e

2πik>xj k∈ IM

Complexity:

O

(

|IM|

log

|IM|

+ N )

[Dutt, Rokhlin 1993] [Beylkin 1995]

[Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

(16)

Nonequispaced FFT and fast summation

FFT for nonequispaced data – NFFT

Notation For M

2

N

set

IM

:=

{−M

/

2

, . . . ,

M

/

2

1

}d⊂Zd

. Torus

T

:=

R

/

Z'

[

1

/

2

,

1

/

2

)

NFFT:

f(x

j

) :=

X

k∈IM

f ˆ

k

e

2πik>xj xj∈Td

, j = 1, . . . , N

(inverse) FFT: f(j) :=

X

k∈IM

f ˆ

k

e

2πik>j/M j∈ IM

, N :=

|IM|

= M

d

adjoint NFFT:

h(k) :=

N

X

j=1

f

j

e

2πik>xj k∈ IM

Complexity:

O

(

|IM|

log

|IM|

+ N )

[Dutt, Rokhlin 1993] [Beylkin 1995]

[Potts, Steidl, Tasche 2001] [Greengard, Lee 2004]

(17)

Nonequispaced FFT and fast summation

Further implemented variants (d = 3)

Gradient NFFT: Approximate

f(x

j

) =

− X

k∈IM

2πik f ˆ

k

e

−2πik>xj

j = 1, . . . , N.

Hessian NFFT: Approximate

H

f(x

j

) =

− X

k∈IM

2kk>

f ˆ

k

e

2πik>xj

j = 1, . . . , N.

Adjoint gradient NFFT: For given

fj∈C3

approximate

N

X

j=1

f>jx

e

2πik>x x=x

j

=

N

X

j=1

2πif

>jk

e

2πik>xj ∀k∈ IM

.

Complexity:

O

(

|IM|

log

|IM|

+ N )

X [M. Pippig, PNFFT library, https://github.com/mpip/pfft]

(18)

Nonequispaced FFT and fast summation

Further implemented variants (d = 3)

Gradient NFFT: Approximate

f(x

j

) =

− X

k∈IM

2πik f ˆ

k

e

−2πik>xj

j = 1, . . . , N.

Hessian NFFT: Approximate

H

f(x

j

) =

− X

k∈IM

2kk>

f ˆ

k

e

2πik>xj

j = 1, . . . , N.

Adjoint gradient NFFT: For given

fj∈C3

approximate

N

X

j=1

f>jx

e

2πik>x x=x

j

=

N

X

j=1

2πif

>jk

e

2πik>xj ∀k∈ IM

.

Complexity:

O

(

|IM|

log

|IM|

+ N )

X [M. Pippig, PNFFT library, https://github.com/mpip/pfft]

(19)

Nonequispaced FFT and fast summation

NFFT based fast summation in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xi−xj) withxj∈[−L/2,L/2] ⇒xi−xj∈[−L, L].

EmbedK(·)into a periodic function:

−L L

K(x)

→Two-point-Taylor interpolation

periodh >2L. . .

KR(x)≈ X

`∈IM

ˆb`e2πi`x/h

Sampleperiodic func.at equispaced nodes. Use the FFT to approximate the FKˆb`.

f(xj)≈

N

X

i=1

ci

X

`∈IM

ˆb`e2πi`(xi−xj)/h= X

`∈IM

ˆb`

N

X

i=1

cie2πi`xi/h

!

| {z }

adj. NFFT

e−2πi`xj/h

| {z }

NFFT

(20)

Nonequispaced FFT and fast summation

NFFT based fast summation in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xi−xj) withxj∈[−L/2,L/2] ⇒xi−xj∈[−L, L].

EmbedK(·)into a periodic function:

−L L

h2 h2 hL K(x)

→Two-point-Taylor interpolation

periodh >2L. . .

KR(x)≈ X

`∈IM

ˆb`e2πi`x/h

Sampleperiodic func.at equispaced nodes. Use the FFT to approximate the FKˆb`.

f(xj)≈

N

X

i=1

ci

X

`∈IM

ˆb`e2πi`(xi−xj)/h= X

`∈IM

ˆb`

N

X

i=1

cie2πi`xi/h

!

| {z }

adj. NFFT

e−2πi`xj/h

| {z }

NFFT

(21)

Nonequispaced FFT and fast summation

NFFT based fast summation in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xi−xj) withxj∈[−L/2,L/2] ⇒xi−xj∈[−L, L].

EmbedK(·)into a periodic function:

−L L

h2 h2 hL K(x) KB(x)

Cp−1

→Two-point-Taylor interpolation

periodh >2L. . .

KR(x)≈ X

`∈IM

ˆb`e2πi`x/h

Sampleperiodic func.at equispaced nodes. Use the FFT to approximate the FKˆb`.

f(xj)≈

N

X

i=1

ci

X

`∈IM

ˆb`e2πi`(xi−xj)/h= X

`∈IM

ˆb`

N

X

i=1

cie2πi`xi/h

!

| {z }

adj. NFFT

e−2πi`xj/h

| {z }

NFFT

(22)

Nonequispaced FFT and fast summation

NFFT based fast summation in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xi−xj) withxj∈[−L/2,L/2] ⇒xi−xj∈[−L, L].

EmbedK(·)into a periodic function:

h2 h2

KR(x) Cp−1

→Two-point-Taylor interpolation

periodh >2L. . .

KR(x)≈ X

`∈IM

ˆb`e2πi`x/h

Sampleperiodic func.at equispaced nodes.

Use the FFT to approximate the FKˆb`.

f(xj)≈

N

X

i=1

ci

X

`∈IM

ˆb`e2πi`(xi−xj)/h= X

`∈IM

ˆb`

N

X

i=1

cie2πi`xi/h

!

| {z }

adj. NFFT

e−2πi`xj/h

| {z }

NFFT

(23)

Nonequispaced FFT and fast summation

NFFT based fast summation in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xi−xj) withxj∈[−L/2,L/2] ⇒xi−xj∈[−L, L].

EmbedK(·)into a periodic function:

h2 h2

KR(x) Cp−1

→Two-point-Taylor interpolation

periodh >2L. . .

KR(x)≈ X

`∈IM

ˆb`e2πi`x/h

Sampleperiodic func.at equispaced nodes.

Use the FFT to approximate the FKˆb`.

f(xj)≈

N

X

i=1

ci

X

`∈IM

ˆb`e2πi`(xi−xj)/h

= X

`∈IM

ˆb`

N

X

i=1

cie2πi`xi/h

!

| {z }

adj. NFFT

e−2πi`xj/h

| {z }

NFFT

(24)

Nonequispaced FFT and fast summation

NFFT based fast summation in 1d

[Potts, Steidl 2003]

Computef(xj) :=

N

X

i=1

ciK(xi−xj) withxj∈[−L/2,L/2] ⇒xi−xj∈[−L, L].

EmbedK(·)into a periodic function:

h2 h2

KR(x) Cp−1

→Two-point-Taylor interpolation

periodh >2L. . .

KR(x)≈ X

`∈IM

ˆb`e2πi`x/h

Sampleperiodic func.at equispaced nodes.

Use the FFT to approximate the FKˆb`.

f(xj)≈

N

X

i=1

ci

X

`∈IM

ˆb`e2πi`(xi−xj)/h= X

`∈IM

ˆb`

N

X

i=1

cie2πi`xi/h

!

| {z }

adj. NFFT

e−2πi`xj/h

| {z }

NFFT

(25)

Nonequispaced FFT and fast summation

For d ≥ 2 dimensions, radial kernels

Computef(xj) :=

N

X

i=1

ciK(kxi−xjk), assumekxi−xjk ≤L.

h2 −L L h

2 h−L 3h

2 Cp−1

K(x)

KB(x)

→regularization in 1d

→two-point-Taylor interpolation

→modification: claim vanishing derivatives inh/2

K(kxk) KB(kxk)

−L L

h2 h

2 3h

h−L 2

−L L

h2 h

2 Rotation inRd:

KR(x) :=





K(kxk) :kxk ≤L KB(kxk) :L <kxk ≤h/2

KB(h/2) :else

→h-periodization with respect to all dimensions is a smooth function

→approximateKR(·)by ad-variate trigonometric polynomial (FFT) and proceed analogously to 1d

(26)

Nonequispaced FFT and fast summation

For d ≥ 2 dimensions, radial kernels

Computef(xj) :=

N

X

i=1

ciK(kxi−xjk), assumekxi−xjk ≤L.

h2 −L L h

2 h−L 3h

2 Cp−1

K(x)

KB(x)

→regularization in 1d

→two-point-Taylor interpolation

→modification: claim vanishing derivatives inh/2

K(kxk) KB(kxk)

−L L

h2 h

2 3h

h−L 2

−L L

h2 h

2 Rotation inRd:

KR(x) :=





K(kxk) :kxk ≤L KB(kxk) :L <kxk ≤h/2

KB(h/2) :else

→h-periodization with respect to all dimensions is a smooth function

→approximateKR(·)by ad-variate trigonometric polynomial (FFT) and proceed analogously to 1d

(27)

P2NFFT for systems with charges and dipoles

3d-periodic boundary conditions

φ(j) =

X

n∈Z3 N

X

i=1 i6=jifn=0

ξierfc(αkxij+Lnk) kxij+Lnk

+

X

n∈Z3 N

X

i=1

ξierf(αkxij+Lnk)

kxij+Lnk −

φ

self

(j)

short:

direct evaluation (truncation)

long:

Fourier coefficients are known analytically. ˆ b

k

:=

e−π2πLkkkk2k/(αk22L2 )

,

k6

=

0.

φ

long

(j)

≈ X

k∈IM

ˆ b

k Nc

X

i=1

q

i

e

2πik>xi/L

| {z }

adj. NFFT

+

N

X

i=Nc+1

µ>ixi

e

2πik>xi/L

| {z }

adj. grad. NFFT

!

e

−2πik>xj/L

| {z }

NFFT

Computation of the forces:

charges: F(j) =−∇xjφ(j)·qj →gradient NFFT dipoles: F(j) =−∇xj>xjφ(j)·µj →Hessian NFFT

[Hofmann, N., Pippig 2016 (preprint)]

(28)

P2NFFT for systems with charges and dipoles

3d-periodic boundary conditions

φ(j) =

X

n∈Z3 N

X

i=1 i6=jifn=0

ξierfc(αkxij+Lnk) kxij+Lnk

+

X

n∈Z3 N

X

i=1

ξierf(αkxij+Lnk)

kxij+Lnk −

φ

self

(j)

short:

direct evaluation (truncation)

long:

Fourier coefficients are known analytically. ˆ b

k

:=

e−π2πLkkkk2k/(αk22L2 )

,

k6

=

0.

φ

long

(j)

≈ X

k∈IM

ˆ b

k Nc

X

i=1

q

i

e

2πik>xi/L

| {z }

adj. NFFT

+

N

X

i=Nc+1

µ>ixi

e

2πik>xi/L

| {z }

adj. grad. NFFT

!

e

−2πik>xj/L

| {z }

NFFT

Computation of the forces:

charges: F(j) =−∇xjφ(j)·qj →gradient NFFT dipoles: F(j) =−∇xj>xjφ(j)·µj →Hessian NFFT

Fast algorithm: particle-particle NFFT,O(NlogN)[Pippig, Potts 2011] [Hofmann, N., Pippig 2016 (preprint)]

(29)

P2NFFT for systems with charges and dipoles

3d-periodic boundary conditions

φ(j) =

X

n∈Z3 N

X

i=1 i6=jifn=0

ξierfc(αkxij+Lnk) kxij+Lnk

+

X

n∈Z3 N

X

i=1

ξierf(αkxij+Lnk)

kxij+Lnk −

φ

self

(j)

short:

direct evaluation (truncation)

long:

Fourier coefficients are known analytically. ˆ b

k

:=

e−π2πLkkkk2k/(αk22L2 )

,

k6

=

0.

φ

long

(j)

≈ X

k∈IM

ˆ b

k Nc

X

i=1

q

i

e

2πik>xi/L

| {z }

adj. NFFT

+

N

X

i=Nc+1

µ>ixi

e

2πik>xi/L

| {z }

adj. grad. NFFT

!

e

−2πik>xj/L

| {z }

NFFT

Computation of the forces:

charges: F(j) =−∇xjφ(j)·qj →gradient NFFT dipoles: F(j) =−∇xj>xjφ(j)·µj →Hessian NFFT

(30)

P2NFFT for systems with charges and dipoles

Open and mixed periodic boundary conditions

[N., Pippig, Potts 2015]

φlong(j) regularization / fast summation

0dp =

N

X

i=1

ξi

erf(αkxijk) kxijk

erf(αkxijk) kxijk ≈ X

`∈IM

ˆb`e2πi`>xij/h d= 3

1dp

≈ X

k∈IM N

X

i=1

ξie2πikxij,1/LΘp1k,α(kx˜ijk) Θp1k,α(kx˜ijk)≈ X

`∈IM

ˆbk,`e2πi`>x˜ij/h d= 2

2dp

≈ X

k∈IM N

X

i=1

ξie2πik>˜xij/LΘp2k,α(|xij,3|) Θp2k,α(|xij,3|)≈ X

`∈IM

ˆbk,`e2πi`xij,3/h d= 1

→Ewald summation for 1d- and 2d-periodic constraints [M. Porto 2000] [Grzybowski, Gwó´zd´z, Bródka 2000]

φlong(j)≈ X

(,)∈IM

ˆb(,) Nc

X

i=1

qie2πi(,)>x˘i

| {z }

adj. NFFT

+

N

X

i=Nc+1

µ>ixie2πi(,)>x˘i

| {z }

adj. grad. NFFT

!

e2πi(,)>x˘j

| {z }

NFFT

→same structure as for 3d-periodic boundary conditions

* periodic dimensions * non periodic dimensions

(31)

P2NFFT for systems with charges and dipoles

Open and mixed periodic boundary conditions

[N., Pippig, Potts 2015]

φlong(j) regularization / fast summation

0dp =

N

X

i=1

ξi

erf(αkxijk) kxijk

erf(αkxijk) kxijk ≈ X

`∈IM

ˆb`e2πi`>xij/h d= 3

1dp

≈ X

k∈IM N

X

i=1

ξie2πikxij,1/LΘp1k,α(kx˜ijk) Θp1k,α(kx˜ijk)≈ X

`∈IM

ˆbk,`e2πi`>x˜ij/h d= 2

2dp

≈ X

k∈IM N

X

i=1

ξie2πik>˜xij/LΘp2k,α(|xij,3|) Θp2k,α(|xij,3|)≈ X

`∈IM

ˆbk,`e2πi`xij,3/h d= 1

→Ewald summation for 1d- and 2d-periodic constraints [M. Porto 2000] [Grzybowski, Gwó´zd´z, Bródka 2000]

φlong(j)≈ X

(,)∈IM

ˆb(,) Nc

X

i=1

qie2πi(,)>x˘i

| {z }

adj. NFFT

+

N

X

i=Nc+1

µ>ixie2πi(,)>x˘i

| {z }

adj. grad. NFFT

!

e2πi(,)>x˘j

| {z }

NFFT

→same structure as for 3d-periodic boundary conditions

* periodic dimensions * non periodic dimensions

(32)

P2NFFT for systems with charges and dipoles

Open and mixed periodic boundary conditions

[N., Pippig, Potts 2015]

φlong(j) regularization / fast summation

0dp =

N

X

i=1

ξi

erf(αkxijk) kxijk

erf(αkxijk) kxijk ≈ X

`∈IM

ˆb`e2πi`>xij/h d= 3

1dp ≈ X

k∈IM N

X

i=1

ξie2πikxij,1/LΘp1k,α(kx˜ijk)

Θp1k,α(kx˜ijk)≈ X

`∈IM

ˆbk,`e2πi`>x˜ij/h d= 2

2dp ≈ X

k∈IM N

X

i=1

ξie2πik>˜xij/LΘp2k,α(|xij,3|)

Θp2k,α(|xij,3|)≈ X

`∈IM

ˆbk,`e2πi`xij,3/h d= 1

→Ewald summation for 1d- and 2d-periodic constraints [M. Porto 2000] [Grzybowski, Gwó´zd´z, Bródka 2000]

φlong(j)≈ X

(,)∈IM

ˆb(,) Nc

X

i=1

qie2πi(,)>x˘i

| {z }

adj. NFFT

+

N

X

i=Nc+1

µ>ixie2πi(,)>x˘i

| {z }

adj. grad. NFFT

!

e2πi(,)>x˘j

| {z }

NFFT

→same structure as for 3d-periodic boundary conditions

* periodic dimensions

* non periodic dimensions

(33)

P2NFFT for systems with charges and dipoles

Open and mixed periodic boundary conditions

[N., Pippig, Potts 2015]

φlong(j) regularization / fast summation

0dp =

N

X

i=1

ξi

erf(αkxijk) kxijk

erf(αkxijk) kxijk ≈ X

`∈IM

ˆb`e2πi`>xij/h d= 3

1dp ≈ X

k∈IM N

X

i=1

ξie2πikxij,1/LΘp1k,α(kx˜ijk) Θp1k,α(kx˜ijk)≈ X

`∈IM

ˆbk,`e2πi`>x˜ij/h d= 2

2dp ≈ X

k∈IM N

X

i=1

ξie2πik>˜xij/LΘp2k,α(|xij,3|) Θp2k,α(|xij,3|)≈ X

`∈IM

ˆbk,`e2πi`xij,3/h d= 1

→Ewald summation for 1d- and 2d-periodic constraints [M. Porto 2000] [Grzybowski, Gwó´zd´z, Bródka 2000]

φlong(j)≈ X

(,)∈IM

ˆb(,) Nc

X

i=1

qie2πi(,)>x˘i

| {z }

adj. NFFT

+

N

X

i=Nc+1

µ>ixie2πi(,)>x˘i

| {z }

adj. grad. NFFT

!

e2πi(,)>x˘j

| {z }

NFFT

→same structure as for 3d-periodic boundary conditions

(34)

P2NFFT for systems with charges and dipoles

Open and mixed periodic boundary conditions

[N., Pippig, Potts 2015]

φlong(j) regularization / fast summation

0dp =

N

X

i=1

ξi

erf(αkxijk) kxijk

erf(αkxijk) kxijk ≈ X

`∈IM

ˆb`e2πi`>xij/h d= 3

1dp ≈ X

k∈IM N

X

i=1

ξie2πikxij,1/LΘp1k,α(kx˜ijk) Θp1k,α(kx˜ijk)≈ X

`∈IM

ˆbk,`e2πi`>x˜ij/h d= 2

2dp ≈ X

k∈IM N

X

i=1

ξie2πik>˜xij/LΘp2k,α(|xij,3|) Θp2k,α(|xij,3|)≈ X

`∈IM

ˆbk,`e2πi`xij,3/h d= 1

→Ewald summation for 1d- and 2d-periodic constraints [M. Porto 2000] [Grzybowski, Gwó´zd´z, Bródka 2000]

φlong(j)≈ X

(,)∈IM

ˆb(∗,∗)

Nc

X

i=1

qie2πi(,)>x˘i

| {z }

adj. NFFT

+

N

X

i=Nc+1

µ>ixie2πi(,)>˘xi

| {z }

adj. grad. NFFT

!

e2πi(,)>x˘j

| {z }

NFFT

→same structure as for 3d-periodic boundary conditions

* periodic dimensions * non periodic dimensions

(35)

Numerical results

Error estimates for 3d-periodic boundary conditions

Root mean square (rms) errors in the forces

∆F:=

v u u t 1 N

N

X

j=1

kF(j)−F(j)k2≈ ?

Two types of errors:

1

Truncation of Ewald sums

Fshort(j)≈Fshorttrunc.(j),Flong(j)≈Flongtrunc.(j)

X

charge-charge interactions (3d-p.)

[Kolafa, Perram 1992] X

dipole-dipole interactions (3d-p.)

[Wang, Holm 2001]

X

extension to charge-dipole systems (3d-p.)

[Hofmann, N., Pippig 2016 (preprint)]

2

NFFT based approximation errors

Flongtrunc.(j)≈FlongNFFT(j)

(36)

Numerical results

Error estimates for 3d-periodic boundary conditions

Root mean square (rms) errors in the forces

∆F:=

v u u t 1 N

N

X

j=1

kF(j)−F(j)k2≈ ?

Two types of errors:

1 Truncation of Ewald sums Fshort(j)≈Fshorttrunc.(j),Flong(j)≈Flongtrunc.(j)

X

charge-charge interactions (3d-p.)

[Kolafa, Perram 1992]

X

dipole-dipole interactions (3d-p.)

[Wang, Holm 2001]

X

extension to charge-dipole systems (3d-p.)

[Hofmann, N., Pippig 2016 (preprint)]

2

NFFT based approximation errors

Flongtrunc.(j)≈FlongNFFT(j)

(37)

Numerical results

Truncation errors in the Ewald sums (3d-periodic)

Based on existing estimates: Ewald truncation errors are predicted accurately.

charges:

0.5 1 1.5 2

10−14 10−11 10−8 10−5 10−2

rcut

=3.5 rcut

=4.0 rcut

=4.5 rcut

= 5.0 M= 16

M=24 M=32

α

rmsforceerror

dipoles:

0.5 1 1.5 2

10−14 10−11 10−8 10−5 10−2

rcut

=3.5 rcut

=4.0 rcut

=4.5 rcut

= 5.0 M= 16

M=24 M=32

α

rmsforceerror

Figure:

• Solid: Measured rms force errors in a small particle system.Nc=Nd= 50, L= 10.

• Dotted: Predicted rms force errors in the short range part.

• Dasheded: Predicted rms force errors in the Fourier space part.

(38)

Numerical results

Approximation errors: P

2

NFFT method

• Usage of NFFT algorithms introduces further approximation errors.

• Choose NFFT parameters such that additional errors are sufficiently small.

→Error analysis: Quite well understood for 3d-periodic boundary conditions.

• Use the same parameters for open and mixed periodic boundary conditions.

• Mesh size: apply the same resolution in per. and non per. dimensions→Mper L

=! Mnp h =:β.

0.5 1 1.5 2

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

rcut= 3 rcut= 4 rcut= 5

β= 2

β= 3

β= 4

α

rmsforceerror

charges

0.5 1 1.5 2

10−7 10−6 10−5 10−4 10−3 10−2 10−1

100 rcut= 3

rcut= 4 rcut= 5

β= 2

β= 3 β= 4

α

dipoles

system:Nc=Nd= 100,L= 10.

3d-periodic

,0d-periodic

Referenzen

ÄHNLICHE DOKUMENTE

For mixed periodic as well as open boundary conditions the Fourier coefficients are not known analytically, in contrast to the 3d-periodic case, and the contributions in the

At first, we must determine the appropriate Ewald splitting parameter α and a suitable grid size M. Therefore, we adopt the parameter tuning given in [35] such that it works with

Abstract—The efficient computation of interactions in charged particle systems is possible based on the well known Ewald summation formulas and the fast Fourier transform for

In the case of 3d-periodic boundary conditions the nonequispaced fast Fourier trans- form (NFFT) 30 can be directly applied to the Fourier space sum in order to achieve a

Abstract—Ewald summation has established as basic element of fast algorithms evaluating the Coulomb interaction energy of charged particle systems in three dimensions subject

NFFT based particle simulation for various types of periodic boundary conditions Introduction: What are we interested in?. Extension to systems with charges

N., Pippig, Potts: NFFT based fast Ewald summation for various types of periodic boundary conditions. Sutmann, Grotendorst, Gompper, Marx (Eds.), Computational Trends in Solvation

Fast Ewald summation for charged particle systems Mixed periodic boundary conditions. Ewald summation with