• Keine Ergebnisse gefunden

Exercise No. 3 – Matrix Trinity

N/A
N/A
Protected

Academic year: 2021

Aktie "Exercise No. 3 – Matrix Trinity"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Mathematical Foundations of Computer Vision

Michael Breuß Released:18.11.2011

Assigned to:Tutorial at 24.11.2011

Assignment 4 – Matrix Reloaded

Exercise No. 1 – Enter the Matrix

We consider a functiony=ϕ(x)withy∈IRm,x∈IRn, and whereϕis some transformation.

TheJacobian matrixofϕis defined as

∂y

∂x =

∂y1

∂x1 · · · ∂x∂y1 .. n

. . .. ...

∂ym

∂x1 · · · ∂y∂xm

n

∈IRm×n (1)

(a) Lety=Axwithy∈IRm,x∈IRn, and whereA= (aij),A∈IRm×n, does not depend onx.

Prove or disprove: ∂y∂x =A (2pts)

(b) Letf =x>Axbe given wheref ∈IR,x∈IRn,A= (aij),A∈IRn×n.

Compute ∂f∂x for(i)Anot symmetric, and for(ii)Asymmetric. (4pts) (c) Letf(z) =y>(z)x(z)wherez∈IRn,x(z)∈IRn,y(z)∈IRn.

Compute ∂f∂z. (2pts)

(d) Letϕ(x) =kx−vk2, wherex, v∈IRn.

Compute ∂ϕ∂x. (2pts)

Exercise No. 2 – Differentiate the Matrix

Now, letA= (aij)be am×nmatrix withaij =aij(t),t∈IR. Then

d

dtA(t) = A(t) =˙

da11

dt · · · dadt1n ... . .. ...

dam1

dt · · · dadtmn

∈IRm×n (2)

(a) LetB, C ∈IRn×nwithB = (bij),bij =bij(t)andC= (cij),cij=cij(t).

LetBC=I. Compute the equation resulting out of d

dt[BC] = d dt[I]

(4pts)

(b) LetA= (aij)∈IRm×nbe invertible, withaij =aij(t).

Compute dtd A−1

. (4pts)

1

(2)

Exercise No. 3 – Matrix Trinity

We consider again thesimilarityproperty.

We remember, that for given A ∈ IRn×n there is a similar matrix Λ if we have an orthogonal matrix Q∈IRn×nwithA=QΛQ>.

(a) Prove that the following implication holds:

IfA can be made similar to a diagonal matrixΛ,thenAis symmetric. (4pts) We have made use already of such matricesQcomposed of the eigenvectors ofA. We give this some more basement:

(b) Prove that the following assertion holds:

For a symmetric matrixA, the eigenvalues are real. (4pts)

We supplement this by:

(c) Prove that the following assertion holds:

For a symmetric matrixA, the eigenvectors to different eigenvalues are orthogonal. (4pts)

2

Referenzen

ÄHNLICHE DOKUMENTE

[2] Ciuiu, D.: Solving Linear Systems of Equations and Differential Equations with Partial Derivatives by the Monte Carlo Method using Service Systems, Analele UniversităŃii Bucure8ti

Der Text sollte nach einem Jahr eines Mathematikstudiums nachvollziehbar sein und als Bonus für die jüngeren ambitionierten Kolleginnen und Kollegen flechten wir eine offene Frage

6 As Bradach (1997) reports, franchisees have to be managed vastly different than managers of company-owned units. While unit managers are treated rather as employees of the

Diplom – VP Informatik/Numerik 25. Bestimmen Sie die Parameter a und b optimal im Sinne der kleinsten Fehlerquadrate. Stellen Sie das Polynom nicht explizit auf, sondern verwenden

x = 3 mit dem hornerartigen Schema aus, und geben Sie speziell f¨ ur diese Stelle eine m¨ oglichst gute Fehlerabsch¨ atzung an... Grades ben¨ otigen wir 3 St¨ utzstellen. Grades

[r]

A benzene ring is composed of six carbon atoms. This system can be modeled as single- particle levels with energy ε coupled by a hopping amplitude t. Determine the eigenvalues

Apply the methods with θ = 0, 1/2, 1 at the perturbed signal for some time steps and discuss the results with respect to the damping of the oscialltions and the accu- racy of