• Keine Ergebnisse gefunden

Twist-2 matching of transverse momentum dependent distributions

N/A
N/A
Protected

Academic year: 2021

Aktie "Twist-2 matching of transverse momentum dependent distributions"

Copied!
6
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Twist-2 matching of transverse momentum dependent distributions

Daniel Gutiérrez-Reyesa,, Ignazio Scimemia, Alexey A. Vladimirovb

aDepartamentodeFísicaTeóricaII,UniversidadComplutensedeMadrid(UCM),28040Madrid,Spain bInstitutfürTheoretischePhysik,UniversitätRegensburg,D-93040Regensburg,Germany

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received28February2017 Accepted16March2017 Availableonline21March2017 Editor:B.Grinstein

Wesystematicallystudythelarge-qT (orsmall-b)matchingoftransversemomentumdependent(TMD) distributionstothetwist-2integratedpartondistributions.Performingoperatorproductexpansionfora genericTMDoperatoratthenext-to-leadingorder(NLO)wefoundthecompletesetofTMDdistributions thatmatchtwist-2.Theseareunpolarized,helicity,transversity,pretzelosityandlinearlypolarizedgluon distributions. The NLO matching coefficients for these distributions are presented. The pretzelosity matching coefficientis zero at the presented order,however, it is evident that it is non-zeroin the following orders. This result offers a naturalexplanation of the small value of pretzelosityfound in phenomenologicalfits.Wealsodemonstratethatthecancellationofrapiditydivergencesbytheleading ordersoftfactorimposesthenecessaryrequirementontheLorentzstructureofTMDoperators,whichis supportedonlybytheTMDdistributionsofleadingdynamicaltwist.Additionally,thisrequirementputs restrictionsontheγ5-definitioninthedimensionalregularization.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Thetransversemomentumdependent(TMD)factorizationthe- orems for semi-inclusive deep inelastic scattering (SIDIS) and Drell–Yan type processes formulated in [1–4] allow a consistent treatmentofrapidity divergencesinthe definitionofspin(in)de- pendent TMD distributions. They also provide a self-contained definitionofTMDoperators whichcanbeconsidered individually bystandardmethodsofquantumfield theorywithoutreferringto ascatteringprocess.Inparticular,thelarge-qT (orsmall-b)match- ingofTMDdistributionsonthecorrespondingintegratedfunctions canbeevaluated. Suchconsiderationispracticallyvery important becausetheresultingmatchingcoefficientsserveasaninitialinput tomanymodelsandphenomenologicalansatzesforTMDdistribu- tions. Theunpolarized TMD distributionis themoststudied case and it has been treated using different regularization schemes atthe next-to-leading order (NLO) [1,5,2,4,6–8] andthe next-to- next-to-leading order (NNLO) [9–12]. For polarized distributions suchaprogram hasbeenperformedonlyforhelicity,transversity andlinearlypolarizeddistributionsatNLO[13,14].However,these worksmiss a systematicdiscussion on the relevant renormaliza- tionschemes,whicharefundamentaltoestablishtheircalculation and to provide a spring to higher order analysis. By this article

* Correspondingauthor.

E-mailaddresses:dangut01@ucm.es(D. Gutiérrez-Reyes),ignazios@fis.ucm.es (I. Scimemi),vladimirov.aleksey@gmail.com(A.A. Vladimirov).

we open a seriesof articles devoted to the studyof thesmall-b matchingofpolarizedTMDdistributions.Theprimary goalofthis letteristoprovideadedicatedandconsistentstudyoftheleading twist(twist-2)matchingoftheTMDoperators.

ThequarkandgluoncomponentsofthegenericTMDoperators are

i j(x,b)=

2πe

ixp+λq¯i(λn+b)W(λ,b)qj(0) , (1)

μν(x,b)= 1 xp+

2πe

ixp+λF+μ(λn+b)W(λ,b)F+ν(0) , (2) where n is the lightlike vector and we use the standard nota- tionforthelightconecomponentsofvector vμ=nμv+ ¯nμv++ gμν

T vν (withn2= ¯n2=0,n· ¯n=1,andgμνT =gμνnμn¯ν− ¯nμnν).

TheoperatorWis

W(λ,b)= ˜WnT(λn+b)

X

|XX| ˜WnT(0) , (3) with Wilson lines W taken in the appropriate representation of gauge group. The staple contourof the gauge link results in the rapidity divergences, the unique feature of TMD operators. The rapiditydivergencesareremovedbytheproperrapidityrenormal- izationfactorR,whichisbuiltfromtheTMDsoftfactor,

S(b)=Trcolor Nc 0|

SnT†˜SnT¯

(b) ˜STn¯SnT

(0)|0, (4)

http://dx.doi.org/10.1016/j.physletb.2017.03.031

0370-2693/©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

where Sn and ˜Sn¯ stand for soft Wilsonlines along n andn¯ (for the precise definition of WT and ˜ST see e.g. [10]). The struc- tureof factor R follows from the TMD factorization theorem [1, 2,4,10,3]anddependsontherapidityregularizationscheme.How- ever,the expressions forrapidity-divergence-free quantities, such asevolutionkernelsandmatchingcoefficientsareindependenton thescheme.In thefollowingwe use theδ-regularizationscheme formulatedin[15,10].Thisschemeusestheinfinitesimalparame- terδ asa regulator forrapidity divergences incombination with theusual dimensionalregularization (withd=42, >0) for ultravioletandcollineardivergences.Suchcombinationappearsto be very visual and practically convenient. The central statement ofthe TMD factorization theoremis the complete eliminationof rapidity divergences by the rapidity renormalization factor R. In theδ-regularizationschemewhere R=1/

S(b),the rapidity di- vergencestakethe formoflnδ anddo notmix withdivergences in , which yield the exact cancellation of lnδ at finite . This non-trivialdemandis necessaryfora consistenthigher-then-NLO evaluationandrequiresthematchingofregularizationsfordiffer- entfieldmodes(see[10]).Italsoresultsintothecorrespondence betweenTMDprocessesandthejetproduction[16].

Thehadron matrix elements of theTMD operators with open vector and spinor indices (1), (2) are to be decomposed over all possible Lorentz variants, which define TMD parton distribu- tionfunctions(TMDPDFs).Intheliterature,thisdecompositionhas beenmadein themomentum space(for spin-1/2 hadronsit can befoundin[17,18](forquarkoperators)andin[19](forgluonop- erators)).However, itisconvenientto considerTMD distributions intheimpactparameter space, whereitisnaturally defined. The correspondencebetweendecompositioninmomentumandimpact parameter spaces can be found in e.g. [20,14]. In this work we needonlyapartofthecompletedecomposition,

qh,i j(x,b)= h|i j(x,b)|h

=1 2

f1γi j+g1LSL5γ)i j+(SμT5σ+μ)i jh1 +(iγ5σ+μ)i j

gμνT 2 +bμbν

b2 SνT

2 h1T+... , (5)

gh,μν(x,b)= h|μν(x,b)|h

=1 2

gμνT f1giTμνSLg1Lg

+2h1g gμνT

2 +bμbν b2

+... ,

(6)

wherethevector bμ isa 4-dimensionalvector oftheimpact pa- rameter(b+=b=0 andb2b2>0),andST,Larecomponents of the hadron spin vector defined in Eq. (11). On the r.h.s. of Eqs. (5), (6) and in the rest of the letter we omit arguments of TMD distributions (x,b), unless they are necessary. Note that in Eq.(5)weusethenormalizationforthedistributionh1T different fromthetraditionalone [17].Thetraditionaldefinitioncanbere- covered substituting h1Th1Tb2M2,with M being the massof hadron.Inthesection4wearguethatsuchnormalizationisnatu- ral.

InEqs.(5),(6)wewriteonlytheTMDdistributionsthatmatch thetwist-2integrateddistributions.ThedotsincludetheTMDdis- tributions that matchthe twist-3 andhigher parton distribution functions(PDF). The reported distributions are usually addressed ashelicity(g1L and g1Lg), transversity (h1), pretzelosity (h1T) and linearlypolarizedgluon(h1g)distributions. Thesmall-b matching of these distributions has been performed separately for quarks [13]andgluons[14]indifferentrenormalizationschemes.Further- more,the pretzelosity distribution has beenoverlooked by these

groups. In this letter, we present a uniform and consistent NLO matchingoftheseTMDdistributions.

2. Small-boperatorproductexpansion

The small-b operator product expansion (OPE) is the relation betweenTMDoperatorsandlightconeoperators.Itsleading order canbewrittenas

i j(x,b)= (7)

Cqq(b)ab i jφab

(x)+ Cqg(b)αβ i jφαβ

(x)+...,

μν(x,b)= (8)

Cgq(b)ab μνφab

(x)+ Cgg(b)αβ μνφαβ

(x)+...,

wheresymboldenotestheMellinconvolutioninthevariablex.

The functionsC(b) aredimensionless, i.e.they dependon b only logarithmically. The dots represent the power suppressed contri- butions, whichpresently havebeenstudied onlyforthe unpolar- ized case(see discussion in[21]). At thisorderofOPE,the func- tions φ (x) aretheformallimit oftheTMD operators(x,0).The hadronicmatrixelementsofφarethePDFs

φqh,i j(x)= h|φi j(x)|h (9)

=1 2

fq(x)γi j+fq(x)SL5γ)i j

+(SμT5σ+μ)i jδfq(x) +O M

p+

,

φgh,μν(x)= hμν(x)|h (10)

=1 2

gμνT fg(x)iμνT SLfg +O

M p+

,

whereMisthemassofhadron,SL andST arethecomponentsof thehadronspinvector

Sμ=SL

p+

Mn¯μM 2p+nμ

+SμT, (11) and μν

T =+−μν=nαn¯βαβμν.Forfutureconvenience weintro- ducetheuniversalnotation

[]q =Tr()

2 , []g =μνμν. (12)

Both sidesofEqs.(7),(8)shouldbesupplementedby theultravi- oletrenormalizationconstants. Additionally,the TMDoperator on the l.h.s.is to be multiplied by the rapidity renormalization fac- torR.TherenormalizedTMDoperatorhastheform

ren(x,b;μ, ζ )=Z(μ, ζ|)R(b,μ, ζ|, δ)(x,b|, δ), (13) where we explicitly show the dependence on regularization pa- rameters on the r.h.s. The dependence on and δ cancels in the product. The renormalization factors are independent on the Lorentzstructure butdependentonpartonflavor.Theexplicitex- pressionsforthesefactorsuptoNNLOcanbefoundin[10,15].

Thecancellationofrapiditydivergencesforthespin-dependent distributionsisanon-trivialstatement.Letusconsiderthesmall-b OPEforagenericTMDquarkoperator.Atoneloopwefind

[]q =abφab+asCFBBB(−)

+γ+γγ+)ab (14)

+ ¯x gαTβ

2 −bαbβ 4BBB

μγαγβγμ)ab

(3)

+ 1

(1−x)+ln δ

p+

×

γ+γ+γγ++iγ+/b

2BBB +ib/γ+

2BBB ab

iπ

2

γ+γγγ++iγ+b/

2BBBib/γ+

2BBB ab

φab+O(a2s),

where BBB=b2/4>0, as=g2/(4π)d/2, and we use the standard PDFnotation,[f(x)]+=f(x)δ(¯x)

dy f(y)andx¯=1x.Inthis expression, we omit thegluon operator contribution forsimplic- ity. The complex term in the last line of Eq. (14) is the artifact ofδ-regularization. Thelogarithm ofδ representstherapidity di- vergencewhich istobe eliminatedby thefactor R whichatthis perturbativeorderreads

R=1+2asCFBBB(−)

×

Lζ+2 ln δ

p+

ψ ()γE +O(a2s), (15) where LX =ln

BBB X2e2γE

. The rapidity divergence cancels in the productRifandonlyif

γ+=γ+=0, (16) yielding

R[]q =abφab+asCFBBB() (17)

×

4+ 4

(1−x)+ +2δ(¯x)(Lζψ ()γE)

ab + ¯x

gαTβ 2 −bαbβ

4BBB

μγαγβγμ)ab

φab+O(a2s) .

The cancellation of rapidity divergences is the fundamental pre- requisite to obtain the matchingcoefficients of the renormalized operatorandφ.

TheconditionsanaloguetoEq.(16)forthegluonoperatorare

+μ=μ=μ+=μ=0. (18) TheyfollowfromOPEforagenericgluonTMDoperatorμν sim- ilar to Eq.(14),which we do not presenthere, since it is rather lengthy and not instructive.The conditions inEqs. (16), (18)are satisfiedonlyforthefollowingLorentzstructures

q= {γ++γ5+μ}, g= {gμνT ,μνT ,bμbν/b2}, (19) which exactly correspond to the Lorentz structures for the so called“leadingdynamicaltwist”TMDdistributions.Inthisway,the relationsEqs.(16),(18)provideadefinitionoftheleadingdynam- ical twistfor TMD operators that can be used withno reference to a particular cross-section. On the other hand, our considera- tion shows that TMD operators of non-leading dynamical twist have rapidity singularities that are not canceled by the soft fac- torinEq.(4).Whilewehavenoknowledgeofacalculationofthe correction to the leading order of TMD factorization, ourfinding demonstrates that it has a different structure of rapidity diver- gences(whichcanspoilthefactorization).TherelationinEq.(16) willbe usedinthenext sectionto fixthedefinitionof γ5 inthe dimensionalregularization.

Inordertocalculatethematchingcoefficients,weconsiderthe quark andgluon matrixelements withthe momentumof parton settopμ=p+n¯μ.Thischoiceofkinematicisallowedforconsider- ationoftwist-2contributiononly(whichisthecaseofthisarticle).

Then,thecalculationsaregreatlysimplified.Inparticular,theper- turbativecorrectionstothepartonmatrixelementofφ’sarezero, due to the absence of a scale in the dimensional regularization.

Therefore,suchmatrixelementsareequaltotheirrenormalization constant, i.e.has notfinitein -terms.Inpractice,it impliesthat the matchingcoefficient is the -finitepart ofthe partonmatrix element of the renormalized TMD operator (13). The evaluation ofOPE fora generalLorentzstructure (asinEq.(17)) isnot very representativebecauseoneneedsonlythecomponentsassociated withtheTMDPDFs.Therefore,weprojectouttherequiredcompo- nentsandpresenttheexpressionsforeachparticulardistribution.

3. Helicitydistribution

In the case ofhelicity distributions the Lorentz structuresfor quarkandgluonoperatorsare

=γ+γ5, μν=iμνT . (20) Thecorresponding“orthogonal”projectorsare

=Nsch.

γγ5

2 , μν=iNsch.

Tμν

2 , (21)

where thefactorNsch. dependsonthe definitionofγ5 matrixin dimensionalregularization.Historicallythemostpopularschemes (forQCDcalculations)are’t Hooft–Veltman–Breitenlohner–Maison (HVBM) [22,23], and Larin scheme [24,25]. In both schemes the combination γ+γ5canbepresentedas

γ+γ5= i

3!+ναβγνγαγβ, (22)

where μναβ is the antisymmetric Levi-Civita tensor. The differ- ence between schemes is hidden in the definition of Levi-Civita tensor.InHVBMthe μναβisdefinedonlyfor4-dimensionalsetof indices.I.e. μναβ=1 if{μναβ}isevenpermutationof{0,1,2,3}, μναβ= −1 if the permutation is odd, and μναβ=0 for any another case. In Larin scheme the -tensor is non-zero for all set ofd-dimensionalindices. Thevalue of individual components are undefined, however,the product oftwo -tensors isdefined,

μ1ν1α1β1μ2ν2α2β2= −gμ1μ2gν1ν2gα1α2gβ1β2+gμ1ν2gν1μ2gα1α2× gβ1β2.., wherethedotsmeanall 4!permutationsofindiceswith alternatingsigns.

ThedrawbackofbothschemesistheviolationofAdler–Bardeen theorem for the non-renormalization of the axial anomaly. This mustbefixedbyan extrafiniterenormalizationconstant Zqq5,de- rived from an external condition, see detaileddiscussion in [24, 26,27].TheNNLOcalculationofpolarizeddeep-inelastic-scattering andDrell–Yanprocessinrefs.[26,27]madein(HVBM)haveshown that the finiterenormalization is required only forthe quark-to- quark part (both singlet and non-singlet cases). The same finite renormalization constant can be used for Larin scheme up to

-singulartermsatNNLO [28].However, itseems thatforhigher orderterms(in orinthecouplingconstant)theconstantshould bemodified[28].

Needlesstosay,thatLarinschemeisfarmoreconvenientthen HVBM, because it does not violate Lorentz invariance. However, Larinscheme,asitisoriginallyformulatedandusedinthemodern applications[28],isinapplicableforTMDcalculations.Thepointis that it doesviolate the definitionof the leading dynamical twist Eq.(16).Indeed,intheLarinschemewehave

γ+=γ+

γ+γ5

Larin= i

3!+ναβγ+γνγαγβ=0, (23) becausethereisa contributionwhenallindices{ναβ} aretrans- verse.Note,thatinHVBMschemethereisnotsuchproblem,since

Referenzen

ÄHNLICHE DOKUMENTE

Abstract We derive the leading order matching of the quark generated polarized transverse momentum dependent (TMD) distributions onto the collinear functions at small val- ues of

Abstract: We study the power corrections to Transverse Momentum Distributions (TMDs) by analyzing renormalon divergences of the perturbative series.. The renormalon divergences

The results for the TMD ratios obtained in the SIDIS and DY limits, i.e., using staple-shaped gauge connections, agree within uncertainties for all four observables studied once

The procedure is applied to studies of the double longitudinal spin asymmetry in semi- inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which

However, it is especially true in the case of Imran Khan and the PTI who are trying to come across as the national guardian of political moral- ity and its defender of norms and

Purpose of this paper is to point out that major part of theoretical problems in the calculations of parton distributions is due to the fact that distribution functions in

Aircraft borne optical in situ size distribution measurements were performed within Arctic boundary layer clouds with a special emphasis on the cloud top layer during the

Applying the diagonal matrix has no effect on the basis, it describes a simple transformation in that new basis.. And finally multiplying with U transforms the resulting vector