• Keine Ergebnisse gefunden

(WEPP23) Optimization of GaAs based field effect transistors for THz detection at particle accelerators

N/A
N/A
Protected

Academic year: 2022

Aktie "(WEPP23) Optimization of GaAs based field effect transistors for THz detection at particle accelerators"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Technische Universität Darmstadt | Terahertz Devices and Systems | Rahul Yadav | yadav@imp.tu-darmstadt.de

Optimization of GaAs based field

effect transistors for THz detection at particle accelerators

Rahul Yadav

(1,2)

, Stefan Regensburger

(1)

, Andreas Penirschke

(2)

, and Sascha Preu

(1)

(1)

Technische Universität Darmstadt, Germany,

(2)

Technische Hochschule Mittelhessen, Friedberg (Hessen), Germany

MOTIVATION

Schottky diodes are faster, but break easily at higher power levels

• No direct locking between free electron laser (FEL) and near infrared (NIR) laser for pump and probe experiments

• Jitter and drift at picosecond scale while synchronizing the repetition rate between FEL and NIR laser

• Roll off at higher frequencies

• Precise on wafer de-embedding

FABRICATED AND SIMULATED DEVICES

• Simulations fit to measurements

• On wafer TRL de-embedding performed successfully

• DC resistance of CL/CW is in agreement with expected values

• Value of lumped elements calculated for transmission line

• Lumped elements’ values for 2DEG is under investigation

• Results will help in optimizing future FETs for accelerator applications

ACKNOWLEDGMENT

This work is supported by the Hessen Ministry for Science & Arts and Technical University of Darmstadt

[1]

Regensburger, Stefan, et al. "Broadband THz detection from 0.1 to 22 THz with large area field-effect transistors." Optics express 23.16 (2015): 20732-20742’.

[2] Preu, S., et al. "An improved model for non-resonant terahertz detection in field-effect transistors." Journal of Applied Physics 111.2 (2012): 024502.

[3] Regensburger, Stefan, et al. "Broadband Terahertz Detection With Zero-Bias Field-Effect Transistors Between 100 GHz and 11.8 THz With a Noise Equivalent Power of 250 pW/ 𝐻𝑧 at 0.6 THz." IEEE Transactions on Terahertz Science and Technology 8.4 (2018):

465-471.

[4] Cascade microtech, user guide for ‘On wafer VNA measurements.

[5] Guoping, Tang, et al. "On-wafer de-embedding techniques from 0.1 to 110 GHz." Journal of Semiconductors 36.5 (2015): 054012.

REFERENCES CONCLUSION AND OUTLOOK

• GaAs based field effect transistor (FET) THz detectors:

- Higher damage threshold compared to Schottky detectors

- Higher mobility of GaAs compared to other substrates (e.g. GaN)

• Simultaneous detection of amplitude and timing at ps scale for THz and NIR pulses [1]

• Investigation of THz coupling in rectifying elements

• Antenna-coupled and large area FETs are promising candidates

THz

NIR

DUT

2DEG : Two dimensional electron gas

(WEPP23)

FET device CL

n~UG~ETHz

Source Gate Drain

2DEG

n(2D)~UG(t)~UTHz(t)

v~UDS(t)~UTHz(t) j=en(2D)(t)v(t)~[UTHz(t)]2

=[UTHz,0]2.(1+cos(2ωTHzt))

DC component ~[UTHz,0]2~PTHz

RESULTS

𝑟0 𝑙0

𝑐0 𝑔0 ZTL Zacc

CGD ZA UTHz

UTHz = THz bias

ZA = Antenna radiation impedance

Zacc = Access impedance due to ungated part ZTL = Impedance of transmission line

CGD = Gate-Drain capacitance

Lumped elements equivalent circuit of FETs

𝜕𝑈𝑇𝐻𝑧

𝜕𝑥 = −(𝑟0 + 𝑗𝜔𝑙0)𝐼𝑇𝐻𝑧(𝑥)

𝜕𝐼𝑇𝐻𝑧

𝜕𝑥 = −(𝑔0 + 𝑗𝜔𝑐0)𝑈𝑇𝐻𝑧(𝑥)

𝛾 = ± (𝑟0 + 𝑗𝜔𝑙0)(𝑔0 + 𝑗𝜔𝑐0) 𝑍𝑇𝐿 = (𝑟0 + 𝑗𝜔𝑙0) (𝑔0 + 𝑗𝜔𝑐0)

On wafer TRL de-embedding and error boxes CPA and CPB calculation [5]

Reflection coefficient Transmission coefficient

Derivation of r0 for coplanar waveguide (CPW) with constant G and variable W

• Transmission (S21) and Reflection (S11) coefficients

• Fast, simple, analytical and more accurate method for device characterization at higher frequencies

• Derivation of lumped elements of a transmission line

a1

b1

b2

a2

b1 = S11a1 + S12a2 b2 = S21a1 + S22a2

𝑟0 = resistance/length 𝑔0 = conductance/length 𝑐0 = capacitance/length 𝑙0 = inductance/length 2 port network

From Ref. [4]

From Ref. [2]

DEVICE CHARACTERIZATION BY S-PARAMETERS THEORY OF THz DETECTION WITH FETs

From Ref. [3]

Line Impedance 2DEG channel width of 66 µm 3D view

Substrate height (H)

= 500 µm 250 µm

150 µm

Top view Ground

plane Line Ground

plane

Width (W) = 66 µm Gap (G)= 50 µm

a1

a2 b1

b2

CPA00 CPB00

CPB01

CPB10 CPA01

CPA10

CPB11 CPA11

𝑒−𝛾𝑙

𝑒−𝛾𝑙 𝑙

Signal flow graph of transmission line including error boxes A and B

Error box A Error box B ETHz

CW

CW = Channel width CL = Channel length

𝑅 = 𝑟0𝐶𝐿

𝛾 = propagation constant

Calibration structure

Resistance (𝑟0Τ𝑙)

Good agreement between expected and measured values

Source DrainGate

Referenzen

ÄHNLICHE DOKUMENTE

The growth of transition metal oxides in the form of a thin film on a single crystal substrate gives the possibility to tailor the properties of the material by defining

PDGl: Funktionalanalytische Methoden Bálint

[r]

Hinweis: Um mit dem Begriff vertraut zu werden, zeigen Sie zunächts, dass eine ganze Zahl nicht Liouville-Zahl sein kann.. Wir behaupten, dass C der gewünschten

A TECHNISCHE UNIVERSITÄT DARMSTADT. Problemseminar

The rapid development of numerical methods for optimization and optimal control which has let to highly efficient algorithms which are applicable even to large scale non-

have predicted that carbon-based conductive materials are advantageous over metal contacts for electrically contacting carbon nanostructures. [128] This is due to the possibility

Wie Christiane Salge zu Beginn erinnerte, wurde die kunst- historische Professur bereits 1869 mit der Gründung der Polytechnischen Schule – der Vorgänger- institution der