• Keine Ergebnisse gefunden

In Complex Transition Metal Oxides

N/A
N/A
Protected

Academic year: 2022

Aktie "In Complex Transition Metal Oxides"

Copied!
9
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Correlated Electrons

In Complex Transition Metal Oxides

Prof. Thomas Brückel FZJ - IFF - Institute for Scattering Methods

& RWTH Aachen - Experimental Physics IV c

School on Pulsed Neutrons -

October 2007 - ICTP Trieste Correlated Electron Systems

Novel Phenomena and functionalities:

• high temperature superconductivity (1986: Bednorz & Müller)

• colossal magneto resistence CMR

• magnetocaloric effect

• multiferroic effect

• metal-insulator transition

• negative thermal expansion

• ???

for you to discover

Strongly correlated electrons: movement of one electron depends on positions of all other electrons due to long ranged Coulomb repulsion

2

0

( ) 1 4 V R e

πε R

= ⋅

Outline

• electronic structure of solids

• electronic correlations

• example: doped manganites – complex ordering phenomena

• experimental techniques:

neutron & x-ray scattering

• multiferroics

•summary

Electronic Structure of Solids

• adiabatic approximation(Born-Oppenheimer)

separates lattice and electronic degrees of freedom

• Fermi gas: free electron model: single electron moves in 3d potential well with infinitely high walls (crystal surfaces)

• Fermi liquid: electron-electron interaction accounted for by quasiparticles

“dressed electrons” with charge e, spin ½, but effective mass m*

• band structure: takes into account periodic potential of atomic cores at rest;

e-moves in average potential from atomic cores and other e- pot. energy

free electrons:

potential well atomic core pot.

single particle wave function

• electronic correlations: strong Coulomb interaction! Model (LDA+U; DMFT,…) ? extreme many body problem !!

Band Structure of Solids

tight binding model:

delocalization

nonmagnetic magnetic

itinerant localized Width of band structures W for trans. & RE metals:

Width of electronic bands:

Band Structures and Conductivity

semi conductor conduction

band

valence band

core level Fermi energy

E

metal insulator

… but where are the electronic correlations?

Fermi- Dirac distrib.

(2)

Outline

• electronic structure of solids

• electronic correlations

• example: doped manganites – complex ordering phenomena

• experimental techniques:

neutron & x-ray scattering

• multiferroics

• summary

Breakdown of Band Theory

Typical example: transition metal oxides e. g. CoO CoO: rock salt structure →1 Co & 1 O per unit cell electron configuration: Co: [Ar] 3d74s2

O: [He] 2s22p4

⇒ total number of electrons per unit cell: 9 + 6 = 15

uneven number of electrons →at least one partially filled band (spin up and down!)

→CoO≡metal !

in reality: CoO≡ insulator (ρ ≈108Ωcm @ RT; compare: Fe → ρ ≈10-7Ωcm) with activation energies ≈0.6 eV≈7000 K !

LDA: doubtful that insulating character can be reproduced

Mott Transition : Sodium

Tight-binding picture of band structure of Na: [Ne] 3s1= 1s22s22p63s1

ok but should hold for a →∞ 3s-band is half filled ⇒ Na ≡metal

according to Heisenberg Δ ⋅Δ ≥p x / 2 we gain in kinetic energy if electrons are delocalized

conductivity is connected with charge fluctuations:

⇒ charge transfer costs energy U (1 … 10 eV)

Mott transitionfrom metal to insulator for a critical value of a

Na0 Na0 e-

Na+ Na- ε3s ε3s 0 2ε3s + U3s single particle

energy for 3s electron

intraatomic Coulomb repulsion hopping t

Hubbard-Model: "Lattice Fermion Model"

single band Hubbard Hamiltonian:

(in second quantization)

+:

σ

cj σ: nj

creates electron in tight binding (Wannier)-stateΦ(rRj)σ occupation operatorc+jσcjσ

U : Coulomb repulsion in one orbital: =

∫ ∫

Φ Φ

2 1 0

2 2 2 1 2 2

1 4

) ( ) (

r r

R r R r dre dr

U j j

πε

•Simplest way to incorporate correlations due to Coulomb-interaction:

only the strongest contribution (on-site interaction ≈ 20 eV) is taken into account.

•Rich physics: FM / AF metals & insulators, charge and spin density waves, …

•Realistic Hamiltonian should contain many intersite terms (Coulomb-interaction is long ranged! Nearest neighbors ≈ 6 eV) → additional new physics??

t : hopping amplitude ( )

)4

( 2

2 0

2

1 r R

R r R e r r d

t Φ −

− − Φ

=

πε

∑∑

+

+ + +

=

j j j j l l N nl j

j U

t cc cc n n

H ( )

. . ,

σ σ σ σσ

= HBand + HCoulomb

“hopping” “on-site Coulomb repulsion”

Na0 Na0 e-

Na+ Na- ε3s ε3s 0 2ε3s+ U3s hopping t

Hopping Processes & Hubbard Bands

1. Hopping processes with transition between Hubbard-bands (→change of Coulomb energy):

neutral neutral + -

U

neutral neutral

- +

U

2. Hopping process without transition

(same Coulomb-energy):

- neutral neutral -

UHB

+ neutral

neutral +

LHB

3. Forbidden hopping processes:

⇒ in correlated systems, the energy terms for simple hopping processes depend on the occupation of neighboring sites; hopping transports "spin-information"; the apparently simple single electron operator Hbandgets complex many body aspects

upper Hubbard band

lower Hubbard band E

E

E

Hubbard-Subbands

single site spectrum in Hubbard-model (occupation-number dependent!):

at+U

ε

εat U

for one electron: for two electrons:

solid:

hopping

t

⇒ level broadened due to hopping into band with width W = z · t (z = number of nearest neighbors) (compare tight binding band theory)

Hubbard bands

E

W = z · t

g (E) W = z · t U

at+U ε

εat

occupation number dependent band structure!

(3)

Mott- Hubbard Transition

at half band filling (e.g. CoO)

U = W = z · t

→Metal-insulator- transition

g (E) E

EF

g (E) E

EF

U < W

→Metal

g (E) E

EF

U = 0

→Band metal without correlations E

W = z · t

g (E) W = z · t

U

U >> W = z · t:

Mott-insulator EF

Correlations lead to band splitting!

For U/t >>1: •away from half-filling →propagating motion of e-even for U →∞

•half-filling: Mott-Hubbard insulator (see above) In latter case: - all sites are just single occupied

- for t ≠0: virtual hopping between neighbors occurs Pauli-principle: hopping only possible for antiparallel nearest neighbour spins ⇒ antiferromagnetic insulator

t-J and Heisenberg model

t/U

gain in kinetic energy of Ut 22

no hopping can occur (Pauli!)

At half filling, the effective Hamiltonian in the limit U/t>>1 is given by the Heisenberg- Hamiltonian with

for less than half filling, a band term has to be added →HtJ U

t J

J

N n j i

j i

/ 42

. . ,

=

=

S S H

+

= +

ij j i ij j i ij

ij

tJ tc c JS S

H σ σ

σ

Separation of low energy spin fluctuations from high energy

charge fluctuations!

Outline

• electronic structure of solids

• electronic correlations

• example: doped manganites – complex ordering phenomena

• experimental techniques:

neutron & x-ray scattering

• multiferroics

• summary

Cubic Cell a0 (e. g. CaTiO3)

orthorhombic setting

a ≈b ~ a2 0; c ~ 2 a0 Distorted Perovskites

Sizable octahedral tilts due to misfit of mean ionic radii of A,B ions

→ orthorhombic (LaMnO3Pbnm) or rhombohedral structures, if tolerance factor T ≠ 1:

A ,B O

MN O

R R

T 1

R R

2

= + + A: trivalent cation (A= La, Pr, Nd; Sm; Eu; Gd; Tb, Dy, Ho, Er, Y, Bi) B: divalent cation (B = Sr, Ca, Ba, Pb)

A

1-x

B

x

MnO

3:

[ ][

4

]

3

x 3

x 1 2 x 3

x

1

Sr Mn Mn O

La

+ + + + [ ]Ar3d4 [ ]Ar3d3 Charge neutrality →mixed valence Manganese

(ionic model!) Structure: Perovskite related

Example: Mixed Valence Manganites

Crystal Field Effect

Loops point between negative charges:

Lower Coulomb energy!

Loops of electron density distribution point towards negative charges:

Coulomb repulsion→ higher energy ! 3z2-r2

zx yz xy

Mn ions with 3d orbitals in octahedra of O2-(“ionic model”)

x2-y2

Jahn-Teller Effekt

d4

≈2 eV

< JH≈4 eV eg

t2g

≈0.6 eV

free ion cubic environment

Jahn-Teller distortion

[ ][ ]

3

4 x 3

x 1 2 x 3

x

1

Sr Mn Mn O

La

+ + + + [ ]Ar3d4 [ ]Ar3d3

Electron ↔ lattice coupling effect!

Mn

3+

ion:

(4)

LaMnO

3

: Spin and Orbital Order

Below TJT≈780 K:

cooperative Jahn-Teller distortion (minimal macroscopic lattice deform.)

Orbital order

LaMnO3: "d"-type orbital ordering and "A"-type antiferromagnetic ordering result from interplay between structural, orbital and spin degrees of freedom and the relative strength of different coupling mechanisms.

spin order below TN≈145 K:

•Ferromagnetic in a-b planes ("Kugel-Khomskii")

•Antiferromagnetic along c (small overlap of eg- orbitals⇒ AF superexchange of t2gdominates)

J ≈- 10 K J' ≈7 K

CaMnO3: (only t2g⇒ AF exchange) LaMnO3:

Charge-, Orbital- & Spin-Order

Mn3+

Mn4+

O2-

CE-type charge/orbital in half-doped manganites Mn4+

Mn3+

Example:

Half-doped Manganites

3 2 3 4

1 2 1 2 1 2 1 2 3

La Sr

+ +

Mn Mn

+ +

O

⎡ ⎤ ⎡ ⎤

⎣ ⎦ ⎣ ⎦

Complex ordering phenomena; subtle interplay between lattice-, charge-, orbital- and spin degrees of freedom; leads to new phenomena like colossal magneto resistance

Magneto-Resistance CMR

Urushibara et al. PRB 51 (1995), 14103

Zero Field Magnetoresistance

Colossal MagnetoResistance (note: 1T ≈ 0.12 meV ≈ 1.3K)

PMI FMM FMI

Double Exchange

• FM exchange connected with conductivity

• t

ij

= t · cos

ϑij

/

2

→ conductivity depends on magnetic order

• But: Double Exchange: wrong magnitude of resistivity

(Millis et al. PRL 74 (1995), 5144)

→ electron phonon interaction? Zener polarons? …

t2g eg

JH

t2g eg

JH

JAF t

Mn3+ Mn4+

t2g eg

Mn4+ O2- Mn3+

t2g

eg

Coupling between different degrees of freedom

Electron-phonon

Jahn Teller active

→Jahn Teller inactive

Electron-orbit Electron↔spin

Mn3+ Mn4+

S = 2 S = 3/2

S = 3/2 S = 2 e- hopping

Double-exchange interaction coupled to conductivity

Charge mobility depends on orbital arrangement!

Charge mobility coupled to phonon bath!

Outline

• electronic structure of solids

• electronic correlations

• example: doped manganites – complex ordering phenomena

• experimental techniques:

neutron & x-ray scattering

• multiferroics

• summary

(5)

Lattice and Spin Structure

powdered single x-tal

H. Li, Th. Brückel et al.

• ferromagnetic order:

- intensity on top of structural Bragg peaks

• antiferromagnetic order:

- larger unit cell

⇒additional superstructure reflections

• low T-structure:

monoclinic

• structural info

charge and orbital order

↓ CMR-effect

Charge Order – With Neutrons?

“Bond- Valence Sum”: Bond length depends on valence

0 ij

ij

R R

s exp B

⎛ − ⎞

= ⎜ ⎟

⎝ ⎠

with B=0.37 and R0tabulated for cation-oxygen bonds:

Empirical correlation between chemical bond length and “bond valence”:

The sum of the bond valences around an atom i is (nearly) equal to its valence or oxidation state:

i ij

ij

V=

s

G.H. Rao, K. Bärner & I.D. Brown J. Phys.: Condens. Matter 10 (1998), L757

Similar: Bond length depends on orbital order

resonant non resonant

→→orbital order visible in superstructure reflectionsorbital order visible in superstructure reflections εF

E

γL

III Templeton & Templeton Acta Cryst. A36 (1980), 436

Anisotropic Anomalous X-Ray Scattering

6.50 6.52 6.54 6.56 6.58 6.60

100 101 102 103

La7/8Sr1/8MnO3 - Resonant Superlattice Ref.

Inorm (cps)

Photon Energy (KeV)

@ 60 K & σ-π (1,0,4.5) (1,0,5.5) (1,0,3.5) (3,0,0.5) (3,0,-0.5)

Orbital Polaron Lattice

• Resonant X-Ray Scattering

x z

y Mn3+

Mn4+

O2-

• Lattice of orbital polarons in the ferromagnetic insulating phase of La7/8Sr1/8MnO3(T≤155 K)

Anisotropic anomalous x-ray scattering:

Detailed information on charge- and orbital ordering element specific; combines diffraction and spectroscopy Y. Su, Th. Brückel et al

see also J. Geck et al

Quasielastic Neutron Scattering T = 170 K magnetic Bragg-peaks T = 120 K

magnetic diffuse

scattering superstructure:

charge- and orbital order

Qx

Qy

La

0.875

Sr

0.125

MnO

3

single crystal

Information on magnetic correlations and interactions

Spinwaves in La

0.875

Sr

0.125

MnO

3

@ 120K

Q E

Single crystal- TOF-spectrometer yields full information

on structure and excitations in one go!

(6)

Spinwaves in La0.875Sr0.125MnO3

E

Qx

Qy

Intensity in 3 /4 Dimensions Peculiar spin-wave excitations

0.0 0.1 0.2 0.3 0.4 0.5 0

5 10 15 20 25 30

21.6 meV

15.3 meV 11.2 meV

5.7 meV T = 120 K, H // Q , H = 3.5 T

Energy (meV)

[0, 0, 1+

ξ

]cubic (r.l.u.)

LO-phonon branch Calculated spin wave dispersion (E = 4 Jeff S [1-cos(2π ξ])

Y. Su, W. Schweika et al - see also Hennion et al

Inelastic neutron scattering:

Modified spin wave dispersion due to complex ordering

Outline

• electronic structure of solids

• electronic correlations

• example: doped manganites – complex ordering phenomena

• experimental techniques:

neutron & x-ray scattering

• multiferroics

• summary

Magnetism:

ordering of spins axial vector

Ferroelectricity:

polar arrangement of charges polar vector

PZT Piezoelectricity

Ferromagnets & Ferroelectrics

breaks time inversion symmetry t breaks spatial inversion symmetry i

i

t

- +

i

t

-

+ -

+

requires partially occupied d orbitals requires unoccupied d0orbitals mutually

exclusive?

Multiferroics:

materials that combine different ferroic properties, e.g.

materials that are simultaneously ferromagnetic and ferroelectric with a strong coupling between them.

Induction ofpolarization by a magnetic field Induction of magnetization byan electric field

Multiferroics

⇒potential for applications, e.g. in data storage

Cheong et al., Nature Mater. 6, 13 (2006).

Origin of ferroelectricity

(7)

Geometric ferroelectrics

Buckling of MnO

5

bipyramids and displacements of Y ions Polarization

van Aken et al., Nature Mater. 3, 164 (2004) Y

MnO5

YMnO

3

P63/mmc P63cm Hexagonal perovskite

Electronic ferroelectrics

Ikeda et al., Nature. 436, 1136 (2005).

LuFe

2

O

4 Charge frustrated system

R-3m

FE magnetic

order

coupling between electric and magnetic degrees of freedom:

Electronic ferroelectrics

Electric polarization was induced by charge ordering in a non-symmetric fashion

Site-centered charge order

Combination of bond-centered and site-centered charge order Efremov et al., Nature Mater. 3, 853 (2004).

Bond-centered charge order

Ferroelectric intermediate state O

TM

Pr

1-x

Ca

x

MnO

3

Magnetic ferroelectrics

TbMnO

3

Inversion symmetry broken

15 K 35 K

TbMn

2

O

5

Strong coupling between ferroelectricty and magnetism Magnetic field induces a sign reversal of the electric polarization.

Kenzelmann et al., PRL. 95, 087206 (2005).

N. Hur et al., Nature. 429, 392 (2004).

Frustrated spin systems

TbMnO 3

Multiferroic TbMnO

3

:

orthorhombically distorted perovskite Pbnm layered modulated AF order below 41 K accompanied by lattice modulation FE below 27 K

magnetic field induced electric

polarization flop T. Kimura et al. Nature 426 (2003), 55

Multiferroic TbMnO 3

T. Kimura et al. Nature 426 (2003), 55

“Giant” coupling between Magnetism (breaking time reversal) and Ferroelectricity (spatial inversion):

in rather small field (> 5T) along b, FE polarization flips from parallel c to parallel a

(would be very interesting for applications e.g. in memory devices, if TCwas higher!)

Origin of FE in TbMnO

3

? - no empty d orbitals - no lone s electron pairs

→ magnetic spiral structure

(breaks inversion symmetry) ?

(8)

Magnetic structure TbMnO 3

M. Kenzelmann et al. PRL 95 (2004), 087206

Neutron diffraction:

→(0,k,1)

Magnetic structure (Mn):

41K > T > 28K:Mn: longitudinally (sinusoidal) modulated AF with propagation vector (0,q,1), q≈0.28; moment direction along b;

Tb: no l.r.o. ;

28K > T > 7K:Mn: elliptical spiral in b-c plane; squaring up (3rd order harmonics) Tb: modulated moment along a;

7K > T: Tb: bunched incommensurate structure (0,t,1), t≈0.425

Excitations inTbMnO 3

D. Senff et al; PRL 2007

• Crystal field @ 5 meV

• Degeneracy lifted in FE phase

• Mode (1) couples strongly to polarization via DM interaction

coupled magnetic (spin waves) and lattice (phonons) excitations ?

XRES inTbMnO 3

• Magnetic resonant scattering observed at Tb L

III

edge (also at Tb L

II

and Mn K)

• strong temperature dependence of magnetic propagation vector

• „quasi“- lock-in at FE transition with strong

hysteresis

J. Voigt et al; PRB 76 (2007), 104431-1

XRES inTbMnO 3

• energy dependence of resonance shows many features due to complex band structure

• unusual strong enhancement at Mn K edge

• above FE transition: T- dependence desribed by Mn spin moment only: Tb 4f magnetization induced by Mn 3d moment

• below FE transition:

additional Tb 4f ordering

J. Voigt et al; PRB 76 (2007), 104431-1

Strong Coupling of 4f and 3d moments inTbMnO

3 DFT calculation:

partial density of states Magnetization density of 1st unoccupied Mn peak (0 <E − EF< 2 eV)

for an insulator an unusual strong coupling between the spin polarization in the Mn 3d and Tb 4f bands was revieled by combining XRES and DFT

⇒local mobility of charge carriers?

J. Voigt et al; PRB 76 (2007), 104431-1

Outline

• electronic structure of solids

• electronic correlations

• example: doped manganites – complex ordering phenomena

• experimental techniques:

neutron & x-ray scattering

• multiferroics

• summary

(9)

Complexity in Correlated Electron Systems

charge spin

lattice orbit competing degrees of freedom

High sensitivity

External Fields/

Parameters H E µ T Pσ d

Complex Collective Behaviour / Novel Ground States CO / OO / SO / JT Spin-Peierls Transition Metal-Insulator Trans.

Cooper Pairs Orbital-/Spin-Liquid

?

Novel functionalities Colos. Magnetores.CMR, High Tc Supercond. HTSC negative thermal exp.

Multiferroica

?

Outstanding challenge in condensed matter physics.

Neutron & X-Ray Scattering are indispensable tools to disentangle complexity!

Referenzen

ÄHNLICHE DOKUMENTE

nimmt, daß es sie zerbricht oder zerschmettert. Gar nicht einleuchtend aber ist es, wenn auch ürmibhib plnvamänab sich auf das „rötliche Roß&#34;. beziehen soll. Oij)enbebo's

This story of Abü 'Abdallah Muhammad is told in essentially the same. way by the Muslim Ibn

any text or inscription written in the Middle Iranian languages; this should. not really surprise us as the extant texts, grosso modo, deal with

Hammerschmiclt (Hrsg.): Proceedings ofthe XXXII Intemational Congress for Asian and Nonh African Studies, Hamburg, 25th-30lh August 1986 (ZDMG-Suppl... in Los Angeles in

Based on a meta-analysis of case-control investigations for IL-6 and several other candidate genes, the authors concluded protective effects of an IL-6 promoter

Wer sich nun trotzdem bei Reisen in benachbarte EU-Länder um die Akzeptanz seines &#34;alten Lappens&#34; sorgt, darf beruhigt sein: Die Rechtslage ist eindeutig: Sofern

Bei einer Versorgungsanpassung in 2003 beträgt der Korrekturfaktor des ermittelten Ruhegehaltssatzes 0,99375, entsprechend fällt er in 2004 auf 0,98750 und erreicht dann nach

Die nachfolgenden Äquivalenzlisten der Pflichtlehrveranstaltungen gelten in beide Richtungen, das heißt auch für den Ersatz alter Lehrveranstaltungen durch neue, wenn erstere