• Keine Ergebnisse gefunden

Characterization of Natural Killer Cells after Allogeneic Stem Cell Transplantation in Humans,

Gabriele Hintzen

In humans NK cells are the first reconstituting lymphocyte population after allogeneic stem cell transplantation. They are capable to eliminate cells with altered expression of HLA-I due to infection or tumor transformation. NK cells are able to discriminate between self and non-self by recognizing HLA-I on target cells via corresponding re-ceptors. In different individuals the expression of these receptors is varying substan-tially with each NK cell expressing five to six different HLA-I-specific receptors on average but at least one.

During reconstitution after allogeneic stem cell transplantation no uniform pattern of expression level or –frequency for the different receptors could be detected. In oppo-site to the results in the murine system expression appears to be independent from the HLA environment.

Two distinct NK cell subpopulations differing in density of CD56 expression (CD56dim and CD56bright) are both considerably expanded after stem cell tranplantation with a particular increase of CD56bright cells. CD56bright cells exceed the CD56dim cells in re-gard to production of proinflammatory cytokines like IFNγ and TNFα attributing these cells a more regulatory role. Compared to CD56bright cells CD56dim cells exhibit more cytotoxic potential.

In early reconstitution most NK cells express CD26 which is normally borne only by CD56bright NK cells. Crosslinking of this molecule renders the cell to suppress pro-duction of IFNγ but not TNFα. In contrast, neither expression of activation markers nor cytotoxic function are affected by CD26 crosslinking.

In this study, we further characterized phenotypical and functional aspects of NK cells and their subpopulations after human allogeneic stem cell transplantation. In addition, we were able to exclude an substantial influence of the HLA-I environment on reconstitution of NK cells and expression pattern of their HLA-I specific receptors.

1. Timonen,T., Ortaldo,J.R., and Herberman,R.B., Characteristics of human large granular lymphocytes and relationship to natural killer and K cells.

J.Exp.Med. 1981. 153: 569-582.

2. Kiessling,R., Klein,E., and Wigzell,H., "Natural" killer cells in the mouse. I.

Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur.J.Immunol. 1975. 5: 112-117.

3. Kiessling,R., Klein,E., Pross,H., and Wigzell,H., "Natural" killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells.

Characteristics of the killer cell. Eur.J.Immunol. 1975. 5: 117-121.

4. Ojo,E. and Wigzell,H., Natural killer cells may be the only cells in normal mouse lymphoid cell populations endowed with cytolytic ability for antibody-coated tumour target cells. Scand.J.Immunol. 1978. 7: 297-306.

5. Takasugi,M., Mickey,M.R., and Terasaki,P.I., Reactivity of lymphocytes from normal persons on cultured tumor cells. Cancer Res. 1973. 33: 2898-2902.

6. Shanahan,F., Brogan,M., and Targan,S., Human mucosal cytotoxic effector cells. Gastroenterology 1987. 92: 1951-1957.

7. Puccetti,P., Santoni,A., Riccardi,C., and Herberman,R.B., Cytotoxic effec-tor cells with the characteristics of natural killer cells in the lungs of mice.

Int.J.Cancer 1980. 25: 153-158.

8. Luo,D., Vanderkerken,K., Bouwens,L., Kuppen,P.J., Crabbe,E., and Wis-se,E., The number and distribution of hepatic natural killer cells (pit cells) in normal rat liver: an immunohistochemical study. Hepatology 1995. 21: 1690-1694.

9. Norris,S., Doherty,D.G., Collins,C., McEntee,G., Traynor,O., Hegarty,J.E., and O'Farrelly,C., Natural T cells in the human liver: cytotoxic lymphocytes with dual T cell and natural killer cell phenotype and function are phenotypi-cally heterogenous and include Valpha24-JalphaQ and gammadelta T cell re-ceptor bearing cells. Hum.Immunol. 1999. 60: 20-31.

10. Westermann,J. and Pabst,R., Distribution of lymphocyte subsets and natural killer cells in the human body. Clin.Investig. 1992. 70: 539-544.

11. Si,L. and Whiteside,T.L., Tissue distribution of human NK cells studied with anti-Leu-7 monoclonal antibody. J.Immunol. 1983. 130: 2149-2155.

12. King,A., Burrows,T., and Loke,Y.W., Human uterine natural killer cells.

Nat.Immun. 1996. 15: 41-52.

13. Sanchez,M.J., Muench,M.O., Roncarolo,M.G., Lanier,L.L., and Phil-lips,J.H., Identification of a common T/natural killer cell progenitor in human fetal thymus. J.Exp.Med. 1994. 180: 569-576.

14. Mrozek,E., Anderson,P., and Caligiuri,M.A., Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood 1996. 87: 2632-2640.

15. Young,J.D. and Cohn,Z.A., Cellular and humoral mechanisms of cytotoxicity:

structural and functional analogies. Adv.Immunol. 1987. 41: 269-332.

16. Schmidt,R.E., MacDermott,R.P., Bartley,G., Bertovich,M., Amato,D.A., Austen,K.F., Schlossman,S.F., Stevens,R.L., and Ritz,J., Specific release of proteoglycans from human natural killer cells during target lysis. Nature 1985. 318: 289-291.

17. Schmidt,R.E., Bartley,G., Levine,H., Schlossman,S.F., and Ritz,J., Func-tional characterization of LFA-1 antigens in the interaction of human NK clo-nes and target cells. J.Immunol. 1985. 135: 1020-1025.

18. Podack,E.R., Perforin, killer cells and gene transfer immunotherapy for can-cer. Curr.Top.Microbiol.Immunol. 1995. 198: 121-130.

19. Bossi,G. and Griffiths,G.M., Degranulation plays an essential part in regula-ting cell surface expression of Fas ligand in T cells and natural killer cells.

Nat.Med. 1999. 5: 90-96.

20. Zamai,L., Ahmad,M., Bennett,I.M., Azzoni,L., Alnemri,E.S., and Perus-sia,B., Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J.Exp.Med.

1998. 188: 2375-2380.

21. Handa,K., Suzuki,R., Matsui,H., Shimizu,Y., and Kumagai,K., Natural killer (NK) cells as a responder to interleukin 2 (IL 2). II. IL 2-induced interferon gamma production. J.Immunol. 1983. 130: 988-992.

22. Degliantoni,G., Murphy,M., Kobayashi,M., Francis,M.K., Perussia,B., and Trinchieri,G., Natural killer (NK) cell-derived hematopoietic colony-inhibiting activity and NK cytotoxic factor. Relationship with tumor necrosis factor and synergism with immune interferon. J.Exp.Med. 1985. 162: 1512-1530.

23. Warren,H.S., Kinnear,B.F., Phillips,J.H., and Lanier,L.L., Production of IL-5 by human NK cells and regulation of IL-5 secretion by IL-4, IL-10, and IL-12.

J.Immunol. 1995. 154: 5144-5152.

24. Paya,C.V., Kenmotsu,N., Schoon,R.A., and Leibson,P.J., Tumor necrosis factor and lymphotoxin secretion by human natural killer cells leads to antiviral cytotoxicity. J.Immunol. 1988. 141: 1989-1995.

25. Mehrotra,P.T., Donnelly,R.P., Wong,S., Kanegane,H., Geremew,A., Mostowski,H.S., Furuke,K., Siegel,J.P., and Bloom,E.T., Production of IL-10 by human natural killer cells stimulated with IL-2 and/or IL-12. J.Immunol.

1998. 160: 2637-2644.

26. Hoshino,T., Winkler-Pickett,R.T., Mason,A.T., Ortaldo,J.R., and

Young,H.A., IL-13 production by NK cells: IL-13-producing NK and T cells are present in vivo in the absence of IFN-gamma. J.Immunol. 1999. 162: 51-59.

27. Cuturi,M.C., Anegon,I., Sherman,F., Loudon,R., Clark,S.C., Perussia,B., and Trinchieri,G., Production of hematopoietic colony-stimulating factors by human natural killer cells. J.Exp.Med. 1989. 169: 569-583.

28. Fehniger,T.A., Shah,M.H., Turner,M.J., VanDeusen,J.B., Whitman,S.P., Cooper,M.A., Suzuki,K., Wechser,M., Goodsaid,F., and Caligiuri,M.A., Differential cytokine and chemokine gene expression by human NK cells fol-lowing activation with IL-18 or IL-15 in combination with IL-12: implications for the innate immune response. J.Immunol. 1999. 162: 4511-4520.

29. Saito,S., Kasahara,T., Sakakura,S., Enomoto,M., Umekage,H., Harada,N., Morii,T., Nishikawa,K., Narita,N., and Ichijo,M., Interleukin-8 production by CD16-CD56bright natural killer cells in the human early pregnancy decidua.

Biochem.Biophys.Res.Commun. 1994. 200: 378-383.

30. Hoglund,P., Sundback,J., Olsson-Alheim,M.Y., Johansson,M., Salce-do,M., Ohlen,C., Ljunggren,H.G., Sentman,C.L., and Karre,K., Host MHC class I gene control of NK-cell specificity in the mouse. Immunol.Rev. 1997.

155: 11-28.

31. Jimenez,P., Canton,J., Collado,A., Cabrera,T., Serrano,A., Real,L.M., Gar-cia,A., Ruiz-Cabello,F., and Garrido,F., Chromosome loss is the most fre-quent mechanism contributing to HLA haplotype loss in human tumors.

Int.J.Cancer 1999. 83: 91-97.

32. del Val,M., Hengel,H., Hacker,H., Hartlaub,U., Ruppert,T., Lucin,P., and Koszinowski,U.H., Cytomegalovirus prevents antigen presentation by blok-king the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J.Exp.Med. 1992. 176: 729-738.

33. Valiante,N.M., Uhrberg,M., Shilling,H.G., Lienert-Weidenbach,K., Ar-nett,K.L., D'Andrea,A., Phillips,J.H., Lanier,L.L., and Parham,P., Functio-nally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity. 1997. 7: 739-751.

34. Held,W. and Kunz,B., An allele-specific, stochastic gene expression process controls the expression of multiple Ly49 family genes and generates a diverse, MHC-specific NK cell receptor repertoire. Eur.J.Immunol. 1998. 28: 2407-2416.

35. Sentman,C.L., Olsson,M.Y., and Karre,K., Missing self recognition by natural killer cells in MHC class I transgenic mice. A 'receptor calibration' model for how effector cells adapt to self. Semin.Immunol. 1995. 7: 109-119.

36. Korten,S., Wilk,E., Gessner,J.E., Meyer,D., and Schmidt,R.E., Altered do-nor and recipient Ly49+ NK cell subsets in allogeneic H-2d --> H-2b and H-2b --> H-2d bone marrow chimeras. J.Immunol. 1999. 163: 5896-5905.

37. Valiante,N.M., Lienert,K., Shilling,H.G., Smits,B.J., and Parham,P., Killer cell receptors: keeping pace with MHC class I evolution. Immunol.Rev. 1997.

155: 155-164.

38. Westgaard,I.H., Berg,S.F., Orstavik,S., Fossum,S., and Dissen,E., Identifi-cation of a human member of the Ly-49 multigene family. Eur.J.Immunol.

1998. 28: 1839-1846.

39. Barten,R., Torkar,M., Haude,A., Trowsdale,J., and Wilson,M.J., Divergent and convergent evolution of NK-cell receptors. Trends Immunol. 2001. 22: 52-57.

40. Renard,V., Cambiaggi,A., Vely,F., Blery,M., Olcese,L., Olivero,S., Bou-chet,M., and Vivier,E., Transduction of cytotoxic signals in natural killer cells:

a general model of fine tuning between activatory and inhibitory pathways in lymphocytes. Immunol.Rev. 1997. 155: 205-221.

41. Tomasello,E., Olcese,L., Vely,F., Geourgeon,C., Blery,M., Moqrich,A., Gautheret,D., Djabali,M., Mattei,M.G., and Vivier,E., Gene structure, ex-pression pattern, and biological activity of mouse killer cell activating receptor-associated protein (KARAP)/DAP-12. J.Biol.Chem. 1998. 273: 34115-34119.

42. Winter,C.C. and Long,E.O., A single amino acid in the p58 killer cell inhibitory receptor controls the ability of natural killer cells to discriminate between the two groups of HLA-C allotypes. J.Immunol. 1997. 158: 4026-4028.

43. Vales-Gomez,M., Reyburn,H.T., Erskine,R.A., and Strominger,J., Differen-tial binding to HLA-C of p50-activating and p58-inhibitory natural killer cell re-ceptors. Proc.Natl.Acad.Sci.U.S.A 1998. 95: 14326-14331.

44. Seaman,W.E., Natural killer cells and natural killer T cells. Arthritis Rheum.

2000. 43: 1204-1217.

45. Lopez-Botet,M., Carretero,M., Perez-Villar,J., Bellon,T., Llano,M., and Na-varro,F., The CD94/NKG2 C-type lectin receptor complex: involvement in NK cell-mediated recognition of HLA class I molecules. Immunol.Res. 1997. 16:

175-185.

46. Lee,N., Llano,M., Carretero,M., Ishitani,A., Navarro,F., Lopez-Botet,M., and Geraghty,D.E., HLA-E is a major ligand for the natural killer inhibitory re-ceptor CD94/NKG2A. Proc.Natl.Acad.Sci.U.S.A 1998. 95: 5199-5204.

47. Renedo,M., Arce,I., Rodriguez,A., Carretero,M., Lanier,L.L., Lopez-Botet,M., and Fernandez-Ruiz,E., The human natural killer gene complex is located on chromosome 12p12-p13. Immunogenetics 1997. 46: 307-311.

48. Wu,J., Song,Y., Bakker,A.B., Bauer,S., Spies,T., Lanier,L.L., and Phil-lips,J.H., An activating immunoreceptor complex formed by NKG2D and DAP10. Science 1999. 285: 730-732.

49. Wu,J., Cherwinski,H., Spies,T., Phillips,J.H., and Lanier,L.L., DAP10 and DAP12 form distinct, but functionally cooperative, receptor complexes in natu-ral killer cells. J.Exp.Med. 2000. 192: 1059-1068.

50. Lanier,L.L., Chang,C., and Phillips,J.H., Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J.Immunol. 1994. 153: 2417-2428.

51. Huard,B. and Karlsson,L., KIR expression on self-reactive CD8+ T cells is controlled by T-cell receptor engagement. Nature 2000. 403: 325-328.

52. Mingari,M.C., Moretta,A., and Moretta,L., Regulation of KIR expression in human T cells: a safety mechanism that may impair protective T-cell respon-ses. Immunol.Today 1998. 19: 153-157.

53. Ansorge,S. and Schon,E., Dipeptidyl peptidase IV (DP IV), a functional mar-ker of the T lymphocyte system. Acta Histochem. 1987. 82: 41-46.

54. Ansorge,S., Buhling,F., Kahne,T., Lendeckel,U., Reinhold,D., Tager,M., and Wrenger,S., CD26/dipeptidyl peptidase IV in lymphocyte growth regulati-on. Adv.Exp.Med.Biol. 1997. 421: 127-140.

55. Hegen,M., Kameoka,J., Dong,R.P., Morimoto,C., and Schlossman,S.F., Structure of CD26 (dipeptidyl peptidase IV) and function in human T cell

acti-56. Hegen,M., Kameoka,J., Dong,R.P., Schlossman,S.F., and Morimoto,C., Cross-linking of CD26 by antibody induces tyrosine phosphorylation and acti-vation of mitogen-activated protein kinase. Immunology 1997. 90: 257-264.

57. Buhling,F., Reinhold,D., Lendeckel,U., Faust,J., Neubert,K., and Ansor-ge,S., CD26 is involved in regulation of cytokine production in natural killer cells. Adv.Exp.Med.Biol. 1997. 421: 141-147.

58. Schmidt,R.E., Hercend,T., Fox,D.A., Bensussan,A., Bartley,G., Daley,J.F., Schlossman,S.F., Reinherz,E.L., and Ritz,J., The role of interleukin 2 and T11 E rosette antigen in activation and proliferation of human NK clones.

J.Immunol. 1985. 135: 672-678.

59. Roncarolo,M.G., Bigler,M., Haanen,J.B., Yssel,H., Bacchetta,R., de Vries,J.E., and Spits,H., Natural killer cell clones can efficiently process and present protein antigens. J.Immunol. 1991. 147: 781-787.

60. Maier,S., Tertilt,C., Chambron,N., Gerauer,K., Huser,N., Heidecke,C.D., and Pfeffer,K., Inhibition of natural killer cells results in acceptance of cardiac allografts in CD28-/- mice. Nat.Med. 2001. 7: 557-562.

61. Jacobs,R., Stoll,M., Stratmann,G., Leo,R., Link,H., and Schmidt,R.E., CD16- CD56+ natural killer cells after bone marrow transplantation. Blood 1992. 79: 3239-3244.

62. Kumar,V., George,T., Yu,Y.Y., Liu,J., and Bennett,M., Role of murine NK cells and their receptors in hybrid resistance. Curr.Opin.Immunol. 1997. 9: 52-56.

63. Manilay,J.O. and Sykes,M., Natural killer cells and their role in graft rejection.

Curr.Opin.Immunol. 1998. 10: 532-538.

64. Wilk, E., Korten, S., Zielinska-Skowronek, M., Schmidt, R. E., and Meyer-Olson, D. Modulation of Ly49 D expression after allogeneic bone marrow transplantation and functional consequences. Immunobiology 2002.

65. Laver,J., Jhanwar,S.C., O'Reilly,R.J., and Castro-Malaspina,H., Host origin of the human hematopoietic microenvironment following allogeneic bone mar-row transplantation. Blood 1987. 70: 1966-1968.

66. Huard,B., Karlsson,L., and Triebel,F., KIR down-regulation on NK cells is associated with down-regulation of activating receptors and NK cell inactivati-on. Eur.J.Immunol. 2001. 31: 1728-1735.

67. Schneider,L.C., Antin,J.H., Weinstein,H., Abrams,J.S., Pearce,M.K., Ge-ha,R.S., and Vercelli,D., Lymphokine profile in bone marrow transplant reci-pients. Blood 1991. 78: 3076-3080.

68. Lum,L.G. and Ueda,M., Immunodeficiency and the role of suppressor cells after human bone marrow transplantation. Clin.Immunol.Immunopathol. 1992.

63: 103-109.

69. Ruggeri,L., Capanni,M., Casucci,M., Volpi,I., Tosti,A., Perruccio,K., Urba-ni,E., Negrin,R.S., Martelli,M.F., and Velardi,A., Role of natural killer cell al-loreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 1999. 94: 333-339.

70. Raulet,D.H., Development and tolerance of natural killer cells.

Curr.Opin.Immunol. 1999. 11: 129-134.

71. Mingari,M.C., Schiavetti,F., Ponte,M., Vitale,C., Maggi,E., Romagnani,S., Demarest,J., Pantaleo,G., Fauci,A.S., and Moretta,L., Human CD8+ T lym-phocyte subsets that express HLA class I-specific inhibitory receptors repre-sent oligoclonally or monoclonally expanded cell populations.

Proc.Natl.Acad.Sci.U.S.A 1996. 93: 12433-12438.

72. Young,N.T., Uhrberg,M., Phillips,J.H., Lanier,L.L., and Parham,P., Diffe-rential expression of leukocyte receptor complex-encoded Ig-like receptors correlates with the transition from effector to memory CTL. J.Immunol. 2001.

166: 3933-3941.

73. D'Andrea,A., Chang,C., Phillips,J.H., and Lanier,L.L., Regulation of T cell lymphokine production by killer cell inhibitory receptor recognition of self HLA class I alleles. J.Exp.Med. 1996. 184: 789-794.

74. Phillips,J.H., Gumperz,J.E., Parham,P., and Lanier,L.L., Superantigen-dependent, cell-mediated cytotoxicity inhibited by MHC class I receptors on T lymphocytes. Science 1995. 268: 403-405.

75. Jacobs,R., Hintzen,G., Kemper,A., Beul,K., Kempf,S., Behrens,G., Syko-ra,K.W., and Schmidt,R.E., CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur.J.Immunol. 2001. 31: 3121-3127.

76. Campbell,J.J., Qin,S., Unutmaz,D., Soler,D., Murphy,K.E., Hodge,M.R., Wu,L., and Butcher,E.C., Unique subpopulations of CD56+ NK and NK-T pe-ripheral blood lymphocytes identified by chemokine receptor expression re-pertoire. J.Immunol. 2001. 166: 6477-6482.

77. Frey,M., Packianathan,N.B., Fehniger,T.A., Ross,M.E., Wang,W.C., Ste-wart,C.C., Caligiuri,M.A., and Evans,S.S., Differential expression and func-tion of L-selectin on CD56bright and CD56dim natural killer cell subsets.

J.Immunol. 1998. 161: 400-408.

78. Carson,W.E., Fehniger,T.A., and Caligiuri,M.A., CD56bright natural killer cell subsets: characterization of distinct functional responses to interleukin-2 and the c-kit ligand. Eur.J.Immunol. 1997. 27: 354-360.

79. Reinhold,D., Kahne,T., Tager,M., Lendeckel,U., Buhling,F., Bank,U., Wrenger,S., Faust,J., Neubert,K., and Ansorge,S., The effect of anti-CD26 antibodies on DNA synthesis and cytokine production (IL-2, IL-10 and IFN-gamma) depends on enzymatic activity of DP IV/CD26. Adv.Exp.Med.Biol.

1997. 421: 149-155.

80. Fleischer,B., CD26: a surface protease involved in T-cell activation. Immu-nol.Today 1994. 15: 180-184.

81. Dokun,A.O., Kim,S., Smith,H.R., Kang,H.S., Chu,D.T., and Yokoya-ma,W.M., Specific and nonspecific NK cell activation during virus infection.

Nat.Immunol. 2001. 2: 951-956.

82. Bauer,S., Groh,V., Wu,J., Steinle,A., Phillips,J.H., Lanier,L.L., and

Spies,T., Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999. 285: 727-729.

ADCC Antikörper-abhängige zelluläre Zytotoxizität (antibody-dependent cell-mediated cytotoxicity)

ALL akute lymphatische Leukämie AML akute myeloische Leukämie

APC Allophycocyanin

BSA Rinderserumalbumin (bovine serum albumin) CD Cluster of Differentiation

CML chronische myeloische Leukämie

CMV Cytomegalovirus

DNTP Desoxyribonucleosintriphosphat DPP IV Dipeptidylpeptidase IV

EBV Epstein-Barr Virus

EDTA Ethylendiamintetraacetat E:T Effektor:Target

FACS Fluoreszenz-aktivierter Zellsortierer (fluorescence-activated cell sor-ter)

FcγR Fc-Rezeptor für IgG

FCS fetales Kälberserum (fetal calf serum) FITC Fluorescein-Isothiocyanat

GM-CSF Granulozyten-Makrophagen stimulierender Faktor (granulocyte macrophage colony stimulating factor)

GvHD Graft versus Host Disease GvL Graft versus leukemia

HLA humanes Leukozytenantigen (human leukocyte antigen) I.E. Internationale Einheiten

IFN Interferon

Ig Immunglobulin

IL Interleukin

ITAM immunoreceptor tyrosin-based activating motif ITIM immunoreceptor tyrosin-based inhibitory motif KARAP killer cell activating receptor-asscociated protein KIR killer cell immunoglobulin-like receptor

KMT Knochenmarktransplantation

KO Knock out

mAk monoklonaler Antikörper MDS myelodysplastisches Syndrom MFI mittlere Fluoreszenzintensität

MHC Haupthistokompatibilitätskompelx (major histocompatibility complex) NK-Zellen Natürliche Killerzellen

NKR NK-Zellrezeptoren ns nicht signifikant

PBMC periphere mononukleäre Zellen (peripheral blood mononuclear cells) PBS Phosphat-gepufferte Salzlösung (phosphate-buffered saline)

PBL periphere Blutlymphozyten

PCR Polymerase-Kettenreaktion (polymerase chain reaction)

PE Phycoerythrin

PMA Phorbol-Myristat-Azetat

rpm Umdrehungen pro Minute (rounds per minute) SCTX Stammzelltransplantation (stem cell transplantation) TAE Tris-Acetat-EDTA-Puffer

TCR T-Zellrezeptor (T cell receptor) TNF Tumor-Nekrose Faktor

TRAIL TNF-related apoptosis-inducing ligand WT Wildtyp

Originalpublikation

• Jacobs,R., Hintzen,G., Kemper,A., Beul,K., Behrens,G., Kempf,S., Sykora,K.W., and Schmidt,R.E., CD56bright cells differ in their KIR repertoire and function from CD56dim NK cells. Eur J Immunol 2001. 31: 3121-3126.

Abstracts

• Jacobs, R., Hintzen, G., Kemper, A., Schrauder, A., Sykora, K. W., Reiter, A., and Schmidt, R. E. Differential expression of killer inhibitory receptors on CD56dim and CD56bright NK cells. Immunobiology 200, 438. 1999.

• Hintzen, G., Jacobs, R., Behrens, G., Kemper, A., Biersack, H., and Schmidt, R.

E. Killer inhibitory receptors during immune reconstitution after allogeneic stem cell transplantation. Abstract DGFI-Frühjahrstagung, Köln 2000.

• Hintzen, G., Behrens, G., Kemper, A., Biersack, H., Schmidt, R. E., and Jacobs, R. Killer cell inhibitory receptors during immune reconstitution after human alloge-neic stem cell transplantation. Immunobiology 203, 239. 2000.

• Jacobs, R., Hintzen, G., Kemper, A., and Schmidt, R. E. CD56bright NK cells differ from CD56dim NK cells by diminished perforin expression and conjugate forma-tion. Immunobiology 203, 174. 2000.

• Hintzen, G., Wendt, K., Schmidt, R. E., and Jacobs, R. Cytokine production of human CD56bright NK cells is regulated via CD26. Immunobiology . 2001.

Hiermit möchte ich mich herzlich bei allen bedanken, die zum Gelingen dieser Arbeit beigetragen haben.

Professor Dr. R.E. Schmidt danke ich für die Möglichkeit, diese Arbeit in seiner Ab-teilung durchführen zu können und die ausgezeichnete wissenschaftliche Betreuung innerhalb des Ph.D.-Studiums und in allen Phasen der Dissertationszeit.

Dr. Roland Jacobs möchte ich herzlich danken, dass er die Betreuung der Arbeit übernommen hat, mir während der ganzen Zeit zur Seite gestanden hat und stets für alle meine Fragen offen war.

Esther Wilk danke ich für ihren vor allem fachlichen und auch sonstigen Beistand während des gemeinsamen Ph.D.-Studiums und ihre tatkräftige Unterstützung beim Verfassen der Arbeit.

Ich danke allen Mitgliedern der Abteilung Klinische Immunologie für die gute Zusammenarbeit, die nette Atmosphäre und die „corporate identity”.

Insbesondere danke ich Almut Kemper und Sabine Buyny, die mir in vielen techni-schen Dingen geholfen haben und für eine lustige Atmosphäre in Labor 1 gesorgt haben.

Ganz besonderer Dank gilt meiner Familie! Meinen Eltern danke ich für ihre immer-währende Unterstützung und Katrin und Marco dafür, dass sie an mich geglaubt ha-ben und immer für mich da waren.

Einen ganz lieben Dank an Tammo für die praktische Hilfe beim Erstellen der Arbeit, für die seelische Unterstützung und ständige Motivation.