• Keine Ergebnisse gefunden

2.1. Setup and Tissue Preparation

Nearly  all  mapping  systems  consist  of  a  number  of  sensitive  detectors,  from  which  the  signal  gets   amplified,  processed,  displayed  and  then  stored  for  further  analysis.    

2.1.1. vECG and Pacing Electrodes

vECG   recordings   associated   with   spontaneous   sinus   and   paced   rhythms,   were   obtained   steadily   throughout  the  experiment  and  stored  for  off-­‐line  analysis  (Figure  5b).  Signals  were  amplified  and   low-­‐pass  filtered  at  200Hz  using  an  electronic  amplifier  (HSE,  Germany)  and  digitally  sampled  at  10   kHz   with   a   16-­‐bit   resolution   using   the   NI   USB-­‐6216   BNC   (National   Instruments)   digitizer   and   custom-­‐made  software  using  LabView  (National  Instruments).  At  the  center  of  the  left  ventricular   wall,   a   bipolar   specialized   cardiac   pacing   electrode   (50-­‐100   kOhm,   FHC,   USA)   was   gently   placed,   stimulating   the   preparations   at   a   BCL   of   100ms   at   2.5 diastolic   threshold,   with   2ms   impulse   duration.  Capture  was  confirmed  both  electronically  and  optically.  

2.1.2. Murine Heart Isolation and Langendorff Perfusion

Mice  were  heparinized  (40  units)  and  anesthetized  using  volatile  100%  Isoflurane  (Floren,  Abbat-­‐

Germany).   Excised   through   a   sternotomy,   intact   hearts   were   carefully   cannulated,   connected   to   a   custom-­‐made  perfusion  setup  and  retrogradely  perfused  at  2.5-­‐3  mL.min-­‐1  via  the  aorta  with  Tyrode   solution,  under  quasiphysiological  conditions.  The  temperature  was  set  to  38±1°C,  oxygen  content   (95%O2  and  95%  CO2),  pH  to  7.4  and  ionic  concentration  (in  mmol.L-­‐1):  NaCl  130,  NaHCO3  24,  KCl  4,   MgCl2  1,  CaCl2  1.8,  KH2PO4  1.2,  C6H12O6    5.6,  1%  albumin  (Bovine  Serum  Albumin,  Sigma)  and  insulin   (Insuman   Rapid,   Sanofi-­‐Aventis,   5IU/L).   Hearts   were   immersed   with   constantly   warm   Tyrode   solution,  within  a  custom-­‐made  glass  chamber  that  ensures  adequate  temperature  throughout  the   experimental  period,  where  the  solution  within  serves  as  a  conducting  medium  for  in-­‐vitro  custom-­‐

made  Ag-­‐AgCl  ECG  electrodes  placed  horizontally  and  parallel  to  the  septum,  at  a  distance  of  1mm   from   the   epicardial   surface.   Hearts   with   a   spontaneous   beating   rate   exceeding   450beats/min   for   more   than   20min   after   connecting   them   to   the   perfusion   setup   were   exclusively   used   for   further   measurements.  The  left  ventricular  free  wall  was  projected  with  maximal  cross-­‐sectional  diameter   in   the   objective   light   path   to   ensure   consistent   mapping   of   the   conduction   spread,   by   maximizing   the  exposed  stimulated  area  to  the  exciting  monochromatic  beam  (Figure  5a).  

!

"

Setup  and  Tissue  Preparation          53  

   

2.1.3. Excitation-Contraction Decoupler and VSD Staining

Of  the  limitations  of  cardiac  optical  mapping  of  the  heart  are  imaging  artifacts,  caused  by  successive   contractions.  Motion  artifacts  can  strongly  distort  or  obscure  voltage  optical  measurements.  Several   strategies   are   adopted   to   overcome   this   obstacle,   which   could   be   mechanical   in   nature,  

large   time   constants,   are   not   suitable   for   mapping   fast   activities   like   the   ones   taking   place   in   the   murine  heart,  where  the  entire  ventricular  AP  starts  and  terminates  in  ~40ms.  

Fast   dyes,   on   the   other   hand,   do   not   rely   on   movement   back   and   forth   between   the   different   compartments  of  the  cardiac  cell,  but  change  their  optical  characteristics  by  changing  conformation.  

These   dyes   provide   rapid   absorbance   and   fluorescence   responses   to   membrane   potential   (time   constants  in  the  order  of  one  ms)  and  are  capable  of  recording  fast  AP525.  Fast  dyes  are  divided  into   different   categories   based   on   their   chemistry.   Several   mechanisms   account   for   a   given   dye’s   sensitivity,  including  changing  its  conformation,  its  orientation  within  the  plasma  membrane  or  its   charge   distribution   (electrochromism)   within   the   plasma   membrane526.   The   rotation-­‐dimer  

Setup  and  Tissue  Preparation          55  

to  membrane  voltage  changes  by  an  electrochromic  mechanism,  i.e.  by  charge  redistribution  of  the   surface   of   the   molecule527.   For   a   comprehensive   review   on   organic   dyes,   their   chemistry,   mechanisms  and  sensitivity  in  optical  mapping,  refer  to  the  book  chapter  by  Loew  “Design  and  Use   of  Organic  Voltage  Sensitive  Dyes”  (2010)526.  

2.1.4. 2D Optical Mapping Setup

After  the  heart  rate  reached  steady  state  (typically  20min  from  initiation  of  retrograde  perfusion),   measurements  were  carried  out  after  staining  the  heart  with  a  voltage-­‐reporter  dye  (Di-­‐4-­‐ANEPPS,   Molecular   Probes,   Portland,   OR),   by   injecting   a   1mL   bolus   at   30μmol.L-­‐1,   into   a   10mL   compliance   chamber   proximal   to   the   aorta   (section   2.1.2).   Concisely,   excitation   light   from   a   100W   short-­‐arc   mercury   lamp   (HBO103W/2,   Olympus,   Germany)   was   collocated,   using   an   upright   macroscope   (MVX10,   Olympus)   and   made   monochromatic   using   an   interference   filter   (515±15nm)   and   dichromatic  filter  (570nm),  then  collected  using  a  long-­‐pass  filter  (>590nm)  and  projected  onto  a   100     100   pixel   CMOS   (Complementary   Metal   Oxide   Semiconductor   camera,   Ultima-­‐L,   SciMedia)   recording  array  (Figure  5b).  Imaging  with  Di-­‐4-­‐ANEPPS  was  obtained  at  a  frame  rate  of  2  kHz.  To   reveal  the  signal,  background  noise  was  subtracted  from  each  frame.  Imaging  was  carried  out  using   a  0.63  objective  (MVPLAPO  0.63X,  NA  0.15;  Olympus),  at  a  zoom  of  2.5  in  order  to  provide  the   largest  view  of  the  left  ventricular  free  wall  with  a  pixel  resolution  of  100µm.  Prior  to  any  further   analysis,  the  optical  signal  was  modified  in  order  to  optimize  the  fluorescence  change  and  increase   the  SNR.  To  study  conduction  spread  at  steady  state  pacing  of  10Hz,  preparations  were  paced  using   a  bipolar  electrode  (Figure  5b,  section2.1.1).  The  raw  data  collected  from  the  camera  were  frame-­‐

selected  using  custom-­‐made  open  source  software  written  in  Java  that  was  optimized  for  the  mouse   heart,   constituting   a   platform   input   into   another   custom-­‐made   routine   written   in   MATLAB   (the   Mathworks)  for  further  analysis.  

2.1.5. Animal Models Used in the Current Study and Drugs

Adult  12-­‐16weeks  male  dystrophin-­‐deficientlv  B6Ros.CG-­‐Dmd(mdx-­‐5cv)/J  micelvi  (nlvii=17+7)  along   with  their  WT  gender  and  age  matched  controls  C57BL6/J  (n=17+10);  and  20-­‐22  weeks  old  male   heterozygous   ∆KPQ   micelviii   (n=3+4)   with   their   corresponding   WT   control   (n=3+4)   were   selected   for  the  following  studies.  To  avoid  any  position  induced  changes  in  fiber  orientation,  to  maximally   expose   the   region   of   fluorescence   and   to   provide   a   supposedly   homogeneous   area   of   conduction   spread;   we   restricted   the   measurements   to   the   LV   free   wall   for   all   excised   hearts.   Hearts   were   stained   with   a   Di-­‐4-­‐ANEPPS   and   activations   were   recorded   as   waves   emanated   from   the   tip   of   a   bipolar  electrode,  placed  at  the  centre  of  the  LV  free  wall,  under  automated  steady  state  pacing  at   BCL=100ms.   The   pharmacological   intervention   consisted   of   perfusing   the   cannulated   hearts   with   the   regular   Tyrode   solution   (section   2.1.2)   containing   1µM   Flecainide   (Flecainide   Acetate,   Sigma   Aldrich)   after   the   control   (non-­‐treated)   measurement   was   recorded   and   showed   an   elliptical   behavior.  Measurements  with  Flecainide  were  taken  at  time  points  0,  1,  3,  5,  7  and  10  min,  to  assure   close  monitoring  of  activation  changes  due  to  the  drug.  Unlike  the  experimental  protocol  used  for   the  mdx  and  their  WT  counterpart  that  lasted  up  to  10min  exposure  to  Flecainide,  steady  state  was                                                                                                                                                                                                                                                                                                                                                                                                            

(Biophys   J   (2006)   90:2938-­‐2945),   fluorescence   in   rabbit   hearts   loaded   with   Di-­‐4-­‐Anepps   is   optimal   between   0.5-­‐1mm   below  the  epicardial  surface.  

lv  Dystrophin-­‐deficiency  is  described  in  the  Introduction  section  1.2.2.    

lvi  These  mice  will  be  referred  to  as  mdx  (for  simplicity)  throughout  this  work.  

lvii  n  =  number  of  experiments.  Two  major  experimental  studies  were  conducted  in  this  thesis.  n  =  x  +  y  means  the  total   number  of  animals  used  for  both  studies,  where  x  indicates  the  number  of  animals  used  in  the  study  that  investigated  the   different   analytical   strategies   in   CV   evaluation   using   optical   mapping,   and   y   indicates   the   number   of   animals   used   to   conduct  the  heterogeneity  study  with  Flecainide.    

lviii  The  ΔKPQ  mouse,  harboring  the  mutation  for  Long  QT  syndrome  3,  is  described  in  the  Introduction  section  1.4.3.  

!

"

!

"

!

"

no   longer   achievable   for   the   ∆KPQ   beyond   5min   of   treatment   (i.e.   either   entrainment   at   10Hz   frequency  was  no  longer  possible  or  consecutive  APs  showed  considerable  beat-­‐to-­‐beat  variability   which  prevented  temporal  averaging).  All  animal  procedures  were  reviewed  and  approved  by  the   Institutional   Animal   Care   and   Use   Committee   of   the   University   Medical   Center   Göttingen   and   by   veterinarian   state   authority   LAVES   (Niedersächsisches   Landesamt   für   Verbraucherschutz   und   Lebensmittelsicherheit)  in  compliance  with  the  humane  care  and  use  of  laboratory  animals.  

  wave  front,  segregating  the  depolarized  tissue  from  the  quiescent  tissue;  consequently  boundaries   at  0.5ms  interval  (corresponding  to  the  sampling  rate)  were  computed  by  a  linear  interpolation  of