• Keine Ergebnisse gefunden

Hypothetical Mechanisms Behind Bistability and Arrhythmogenesis The  current  experimental  outcomes  with  Flecainide  motivated  a  search  for  a  possible  mechanism

4.3. A Novel Mechanism Behind Flecainide Proarrhythmia

4.3.3. Hypothetical Mechanisms Behind Bistability and Arrhythmogenesis The  current  experimental  outcomes  with  Flecainide  motivated  a  search  for  a  possible  mechanism

This   symbiosis   between   slowed   conduction   and   heterogeneous   repolarization   would   be   of   a   particular   importance   in   pathological   diseases   of   the   heart483,   where   structural   heterogeneity   can   amplify   the   predisposition   of   cardiac   patients   to   drug-­‐induced   arrhythmias485,   486,   in   concordance   with   the   outcomes   of   CAST   I474.   In   a   normal   epicardium,   bistability   is   expected   to   give   rise   to   reentrant  patterns  in  the  presence  of  premature  stimuli497.  These  data  support  the  hypothesis  that   electrophysiological   heterogeneity   upon   exposure   to   Flecainide   could   play   a   critical   role   in   the   proarrhythmic   effects   of   the   drug411.   Given   that   arrhythmias   are   multicellular292,   it   becomes   legitimate  to  question  the  efficacy  and  applicability  of  antiarrhythmic  drugs  as  a  primary  mean  of   patients’   management,   when   their   outcomes   were   established   based   on   isolated   “single”   cell   measurements643,  644.  

4.3.3. Hypothetical Mechanisms Behind Bistability and Arrhythmogenesis The  current  experimental  outcomes  with  Flecainide  motivated  a  search  for  a  possible  mechanism   that   could   potentially   account   for   the   observed   bistability   in   healthy   tissue.   Cardiac   excitation   involves  local  regenerative  processes  at  the  individual  cell  level  and  transmission  of  this  transient   dynamic   process   from   one   cell   to   another   via   intercellular   connections   through   the   flow   of   depolarizing  charges.  However,  spread  of  excitation  from  one  point  to  another  in  the  cardiac  tissue   occurs   exclusively   when   a   critical   “amount”   of   cells   (source)   is   simultaneously   excited,   as   to   generate  a  depolarizing  current  sufficient  to  overcome  the  sink  provided  by  the  quiescent  tissue  in   order   to   bring   downstream   cells   to   threshold645.   Therefore,   several   cells   below   this   critical   mass   cannot   entrain   its   neighbors   to   acquire   the   same   characteristics.   Given   that   myocytes   in   an   intact   tissue   are   well   coupled   to   their   neighbors,  how   do   these   cells   synchronously   develop   two   almost   opposing  dynamics  in  such  a  small  sized  heart?    

 

We  hypothesize  about  the  generic  mechanism  that  could  have  lead  to  the  bistability  observed  in  our   experiments.  We  start  by  considering  two  observed  properties  of  bistability:    First,  bistability  is  not   dependent   on   anatomy   or   structure   and   its   spatial   configuration,   whenever   it   appears,   was   not   conserved   across   preparations   (i.e.   among   the   WT   preps).   Second,   WT   hearts   that   eventually   showed   a   steep   repolarization   gradient   with   Flecainide   and   the  mdx   hearts   that   failed   to   do   so,   shared  similar  APD  distributions  at  initial  conditions  (i.e.  in  the  absence  of  the  drug).  Henceforth,  we   are  reluctant  to  associate  bistability  to  differences  in  the  ionic  machinery  of  individual  cells,  which   was   shown   by   Szentadrassy  et   al.   to   account   for   apico-­‐basal   differences   in   APD   in   the   canine   ventricle646.   We,   therefore,   make   the   assumption   that   all   cells   of   the   LV   free   wall   epicardium   are   homogeneously  equipped  with  the  same  ionic  channels.  The  first  possibility  assumes  that  each  and   every  individual  cell  has  the  capacity  to  either  acquire  a  long  or  a  short  APD.  The  presence  of  two   adjacent   zones   with   a   dominating   APD   on   each   side   suggests   that   cells,   when   present   in   a   tightly   coupled  mesh,  have  the  potential  to  help  their  neighboring  cells  deciding  on  which  APD  to  display,   creating  finally  two  zones  (they  could  be  hypothetically  more  than  just  two)  with  each  zone  sharing   similar   electrophysiological   characteristics.   Another   possibility   assumes   the   presence   of   “leader   cells”  (that  form  a  “critical  mass”  as  explained  earlier),  which  pick  the  initial  conditions  (i.e.  a  long  or   a  short  APD)  and  force  the  remaining  mass  of  cells  in  the  mesh  to  follow  their  lead.  The  emphasis  in   either  hypothetical  behavior  is  on  these  tight  electrotonic  interactions  that  overturn  the  cells  in  a   multistable  system  to  acquire  one  particular  electrophysiology  over  another.  Since  we  are  not  aware   of   the   intrinsic   dynamics   occurring   at   the   level   of   one   cell,   we   cannot   predict   which   possibility   is   more  dominant.  

 

A  Novel  Mechanism  Behind  Flecainide  Proarrhythmia          137  

From  an  electrophysiological  perspective,  we  hypothesize  that  Flecainide-­‐induced  bistability  in  the   murine  epicardium  could  originate  from  competing  currents  (one  outward  repolarizing  and  another   inward  depolarizing)  acting  between  the  end  of  phase  0  (i.e.  the  upstroke)  and  before  the  phase  2  of   the  AP  (i.e.  the  plateau)  gains  momentum.  The  reason  for  this  assumption  is  simple:  bistability  was   prominent  after  25%  AP  repolarization,  and  wasn’t  detectable  prior  to  this  level  (Figure  28,  Figure   31).   The   two   competing   currents   are   Ito,1   and   ICa,L.   The   idea   behind   the   “competing   currents”  

hypothesis   is   similar   to   the   elegantly   presented   work   by   Weiss  et   al.   in  Heart   Rhythm   (2010)308,   which  provided  a  consistent  explanation  for  the  dynamics  of  afterdepolarizations  at  the  end  of  the   plateau  phase,  using  a  rabbit  heart  numerical  model.  

 

The  bidirectional  influence  of  membrane  voltage  and  Ca2+  on  each  other  is  well  documented  in  the   literature647,   648.  In  a  murine  or  rat  ventricular  myocyte,  Ca2+  homeostasis  is  strictly  controlled  via   uptake   in   the   sarcoplasmic   reticulum   or   SR   (more   than   95%   of   the   cytoplasmic   Ca2+   available   for   mechanical  contraction  is  taken  up  by  the  SR,  the  remaining  5%  through  plasma  channels)113.  We   consider  first  the  dynamics  of  Ca2+  entry  into  the  cell  and  its  intricate  modulation  by  the  Ito,1  current.  

Although  the  INa,f  -­‐dependent  rapid  depolarization  activates  ICa,L,  the  amplitude  of  ICa,L  doesn’t  reach   its  maximum  at  the  peak  and  consequently  doesn’t  contribute  substantially  to  the  upstroke  of  the   AP.  Bers  explains  that  this  phenomenon  is  partly  due  to  the  fact  that  the  activation  of  ICa,L  is  not  just   voltage-­‐dependent  but  also  acquires  some  intrinsic  time  scale  of  activation,  leading  to  a  trade-­‐off  in   the   co-­‐existence   of   relatively   high   channel   conductance   (gCa)   and   low   driving   force   (Embr  -­‐   ECa)peak,   with   ICa,L   being   the   product   of   these   two   components649.   In   reality,   at   the   AP   overshoot,   the   membrane  voltage  is  ~30-­‐40mV,  which  is  relatively  close  to  the  reversal  potential  of  Ca2+  (ERev,Ca),   which  is  measured  under  physiological  conditions  to  be  ~50-­‐60mVlxxxii,  so  the  driving  force  of  Ca2+  is   low  by  the  end  of  phase  0.  As  the  NaV1.5  channels  inactivate  and  the  Ito,1  has  already  activated,  phase   1  lowers  the  membrane  potential,  increasing  the  driving  force  of  Ca2+  into  the  cell.  In  conclusion,  ICa,L   activates  over  two  phases:  A  rapid  increase  in  conductance  followed  by  an  increase  in  the  driving   force,   with   Ito,1   directly   modulating   Ca2+   influx649.   Inactivation   of   ICa,L   is   both   voltage   and   Ca2+  

dependentlxxxiii,  with  the  latter  being  a  far  more  predominant  component  of  inactivationlxxxiv,  hence   ICa,L  inactivation  is  extremely  slow113.  

 

On   the   other   hand,   Ito,1   is   not   a   voltage   dependent   current   only,   but   also   acquires   outward   rectification  properties107,  which  means  that  the  amplitude  of  this  current  is  strongly  dependent  on   the  amplitude  and  velocity  of  the  preceding  upstroke,  in  other  words  on  INa,f.  The  sizeable  amplitude   of  this  current  in  rat  and  mouse  ventricular  cells  abbreviates  the  APD  and  reduces  the  plateau  phase   substantially113,   650.   A   decrease   in   INa,f   in   ventricular   cells   is   expected   to   lower   the   intensity   of   Ito,1,   henceforth  decrease  the  early  repolarization  phase.  This  implies  that  the  plateau  will  start  at  higher   membrane  voltages  than  usual,  an  effect  which  might  decrease  the  driving  force  of  Ca2+  into  the  cell,   potentially   altering   ICa,L   peak   in   amplitude   and   time.   The   intricate   balance   in   time   (and   within   a   limited  range  of  membrane  voltages)  between  Ito,1  and  ICa,L  peaks  has  the  potential  to  tip  the  intrinsic   dynamics   of   the   cells   into   one   stable   trajectory   or   another.   In   the   case   of   the   observed   APD   bistability  in  our  measurements,  one  stable  state  is  APD  prolongation,  the  other  APD  abbreviation.    

 

                                                                                                                         

lxxxii   ERev,Ca,   the   reversal   potential   of   Ca2+   in   physiological   experiments   is   measured   to   be   ~50-­‐60mV,   in   contrast   to   its   thermodynamical  equilibrium  potential  (ECa),  which  is  ~120-­‐125mV.  Substantial  amount  of  Ca2+  flows  across  the  L-­‐type   channels  between  ERev,Ca  and  ECa.  But  in  a  real  cell  at  ERev,Ca  the  inward  ICa,L  is  counterbalanced  by  the  outward  K-­‐current   (Ito,1),  so  the  electrophysiologically  important  ICa,L  becomes  negligible  at  the  peak,  despite  some  influx  of  Ca2+  (Reference:  J   Physiol  (2000)  523:57-­‐66).  

lxxxiii  Refer  to  Introduction  section  1.1.4  on  Ca2+  inactivation.    

lxxxiv  Since  the  predominant  factor  in  Ca2+  inactivation  is  metabolic,  this  process  is  considered  relatively  slow  compared  to   inactivation  of  other  currents  which  are  completely  voltage  or  time  dependent  (like  INa  and  Ito,1).  

Henceforth  we  hypothesize  that  by  lowering  INa,f  with  Flecainide  and  continuously  reducing  its  rate   of  increase  as  the  treatment  progresses,  Ito,1  activation  and  inactivation  processes  are  also  altered.  A   plateau   phase   is   sustainable   whenever   repolarizing   currents   (K+   currents)   are   not   fully   activated   and   depolarizing   currents   still   didn’t   inactivate   (ICa,L).   Following   the   upstroke   phase,   if   Ito,1   peaks   early  enough,  it  will  lower  the  membrane  voltage  and  allow  for  the  increase  in  Ca2+  driving  force.  Ito,1   inactivates  very  quickly,  allowing  ICa,L  to  peak  at  a  later  stage  as  Ca2+  rush  into  the  cell,  which  would   ultimately  keep  the  plateau  phase  at  higher  voltages.  As  Flecainide  also  affects  IKr,  the  current  would   be  further  weakened  to  counteract  Ca2+  influx  and  the  plateau  is  substantially  increased.  If  on  the   other  hand,  Ito,1  activation  is  delayed  enough  to  peak  at  a  later  stage,  phase  1  is  prolonged  and  Ca2+  

influx  could  face  a  fierce  competing  opposing  current  as  it’s  trying  to  reach  its  maximum.  This  would   obliterate  the  plateau  and  bring  the  cell  into  resting  potential,  abbreviating  the  APD.    

 

This  hypothesis  on  competing  currents  following  the  upstroke  has  to  await  further  experiments  and   numerical  simulations  to  be  approved  as  valid  or  disapproved.  One  way  to  elucidate  the  role  of  Ito,1   would  be  to  disable  it  by  introducing  4-­‐aminopyridine  (4-­‐Ap)  into  the  protocol,  which  could  provide   important   and   specific   insights   on   the   role   played   by   Ito,1   in   creating   this   bistability   in   the   epicardium.   We   expect   that   the   presence   of   this   antagonist   molecule   may   potentially   alter   the   responsiveness   of   the   epicardium   to   Flecainidelxxxv   or   even   prevent   bistability   from   occurring   altogether.   Alternatively,   hypercalcemia   may   favor   one   stable   state   over   another,   however   it   can   alter   other   Ca2+   dependent   mechanisms   in   the   cell,   which   could   render   the   final   results   harder   to   interpret.  Therefore,  the  detailed  explanations  given  in  this  section  should  only  be  regarded  as  one   potential  mechanism  explaining  the  emergence  of  bistability  in  the  murine  heart.  

 

Although  our  study  was  limited  to  steady  state  pacing  at  a  fixed  BCL  (100ms),  we  hypothesize  that  a   premature  excitation  occurring  in  the  epicardium  would  give  rise  to  drug-­‐induced  arrhythmias  that   are   characterized   by   a   reentrant   mechanism.   The   mechanism   by   which   reentry   is   initiated   would   depend   on   the   specific   location   of   the   ectopic   beat   with   respect   to   the   different   zone   of   AP   morphology.   APD   prolongation   goes   hand   in   hand   with   repolarization   abnormalities,   hence   is   capable  of  influencing  conduction  of  the  propagating  impulse.  Fibers  with  prolonged  APD  will  elicit   a  slowing  of  conduction  with  increased  entrainment  rate,  so  that  each  consecutive  AP  arises  prior  to   the   completion   of   repolarization   of   the   preceding   beat.   The   frequency   at   which   conduction   block   might  ensue  will  be  relatively  lower  in  the  case  of  the  prolonged  APD,  than  the  one  associated  with  a   normal   APD318.   If   the   ectopic   beat   arises   in   the   area   governed   by   shorter   APDs   (APDShort),   the   electrical  wave  would  spread  across  the  tissue,  until  it  hits  the  borders  separating  the  two  adjacent   zones.   Crossing   to   the   prolonged   APD   zone   (APDProlong)   will   depend   on   the   excitatory   state   of   the   cells   in   that   region:   if   theses   cells   had   sufficient   time   to   recover   from   the   previous   excitation,   the   wave   will   propagate.   Otherwise,   conduction   block   will   occur.   In   this   setting,   either   the   electrical   wave  dies  out  or  persists  somewhere  else  until  the  cells  in  the  APDProlong  zone  regain  excitability.  In   this   case,   circus   movements   are   highly   probable   and   reentry   occurs.   If   however   the   ectopic   beat   would  arise  in  APDProlong  zone,  the  activation  would  spread  directly  in  the  APDShort  zone,  exciting  the   cells   in   that   region.   Interestingly,   for   reexcitation   to   occur,   sustenance   of   propagation   would   then   depend  on  the  electrotonic  interactions  between  the  cells  on  either  side  of  the  borders.  It  has  been   suggested  that  in  tissues  where  depolarization  is  normally  Na-­‐mediated,  the  contribution  of  Ca2+  in   maintaining  AP  propagation  increases  significantly  in  the  context  of  severely  depressed  membrane   excitability   (i.e.   <20%   INa   availability)585.   In   the   case   of   Flecainide   induced   heterogeneity,   it   is   the   prominent   plateau   at   some   sites   (APDProlong)   but   not   others   (APDShort)   that   could   generate   local                                                                                                                            

lxxxv  The  effects  due  to  antagonizing  Ito,1  using  4-­‐AP  were  described  by  Krishnan  and  Antzelevitch  in  epicardial  layers  in  the   presence   of   Flecainide.   Ito,1   blocking   was   reported   to   prevent   AP   abbreviation   in   epicardial   cells   (Reference:  Circulation   (1993)  87:562-­‐72).  

A  Novel  Mechanism  Behind  Flecainide  Proarrhythmia          139  

circuit  currents411,  by  acting  as  a  reservoir  of  depolarizing  charges  (Ca2+),  which  would  increase  the   electrotonic  driving  force  in  the  abbreviated  AP  cells,  consequently,  the  depolarizing  current  to  the   downstream  tissue585,  bringing  membrane  voltage  to  threshold  and  initiating  depolarization.  Kléber   and  Rudy  described  this  membrane-­‐switch  from  Na+  to  Ca2+  -­‐supported  propagation  as  an  excellent   example   of   the   “intimate   interaction”   between   passive   network   properties   and   the   excitatory   membrane   currents   during   conduction   in   the   cardiac   tissue254.   Whether   this   switch   in   membrane   conduction  is  sufficiently  strong  to  maintain  a  self-­‐perpetuating  reentrant  mechanism  in  the  heart  in   the  context  of  bistability  is  yet  to  be  investigated.