• Keine Ergebnisse gefunden

APD xx Prolongation and Increased APD xx Dispersion (ΔAPD xx ) with Flecainide in the Murine Heart

4.3. A Novel Mechanism Behind Flecainide Proarrhythmia

4.3.1. APD xx Prolongation and Increased APD xx Dispersion (ΔAPD xx ) with Flecainide in the Murine Heart

Despite  some  similarities  between  the  latter  observations  and  ours,  particularly  with  epicardial  APs   that  initially  showed  a  prolongation  with  Flecainide  followed  by  an  abbreviation,  major  and  crucial   differences   exist   between   their   results   and   ours   on   several   scales.   The   comparison   between   their   results   and   ours   should   be   done   with   caution:   starting   from   the   different   animal   models   used   (canine  vs.  murine  hearts),  the  experimental  tools  to  characterize  the  electrophysiology  in  the  tissue   (extracellular   electrodes   at   a   few   sites   on   the   epicardium   vs.   optical   mapping   using   10,000   recording  sites  and  a  spatial  resolution  of  100μm),  the  high  concentrations  of  Flecainide  that  are  of   little  practical  significance  in  a  clinical  setting631,  632  (15μM  vs.  1μM;  therapeutic  range  of  Flecainide   [0.5-­‐2μM]lxxix)  and  the  adopted  pacing  protocol  to  reveal  the  heterogeneity  in  the  epicardium  (S1-­‐S2   protocol   vs.   steady   state   pacing   at   a   fixed   BCL).   The   impacts   of   these   differences   are   tackled   in   a   more  detailed  manner  in  the  next  subsections  (4.3.1  and  4.3.2).    

 

The  concentrations  of  drugs  Krishnan  and  Antzelevitch  used  in  their  in-­‐vitro  studies  were  very  high   compared  to  ours411.  The  trend  in  pharmacological  interventions  is  to  use  as  high  concentrations  as   possible,   until   an   effect   is   observed633,   634.   Although   these   pharmacological   studies   are   of   great   scientific   importance,   serious   questions   should   be   raised   concerning   the   ones   that   use   tens   or   hundreds   of   mM   of   drug   to   study   their   channel   blocking   action,   when   the   therapeutic   range   lies   more   than   4-­‐5   orders   of   magnitude   lower452.   We   therefore   attempted   to   use   clinically   valid   concentrations,   to   obtain   a   more   realistic   correlation   with   what   could   possibly   be   clinically   observed.  

4.3.1. APDxx Prolongation and Increased APDxx Dispersion (ΔAPDxx) with Flecainide in the Murine Heart

Flecainide   has   been   reported   to   cause   APD90   prolongation   in   mammalian   ventricular   myocytes479,  

635,  as  well  as  human,  guinea  pig,  and  canine  atria636,  637.  However  it  was  also  shown  to  cause  APD90   shortening  in  canine  Purkinje  fibers635.  In  our  measurements,  APD  prolongation  was  observed  at  all                                                                                                                            

lxxix  Manual  of  Laboratory  &  Diagnostic  Tests.  7th  edition.  Lippincott  Williams  &  Wilkins.  

repolarization   levels   (APD25,   APD50   and   APD75)   with   Flecainide   (Figure   30,   Figure   32,   Figure   42),   and   most   prominently   in   APD25   measurements   (Figure   34,  Figure   43)   in   all   substrates   (WT,  mdx,   and  ΔKPQ).  This  suggests  that  with  an  increasingly  shallower  upstroke,  the  amplitudes  and  kinetics   of  sequential  ionic  currents  could  be  modified,  causing  shifts  in  the  phases  of  the  epicardial  AP  with   respect   to   voltage   and   time.   In   reality,   with   the   strong   use-­‐dependence   of   Flecainide,   APD   prolongation  was  not  expected.  Since  our  experiments  were  conducted  using  only  one  frequency  of   stimulation,  carried  at  steady  state,  we  cannot  comment  on  how  the  rate  of  APD  prolongation  would   change,  if  different  frequencies  were  involved,  neither  can  we  speculate  on  the  restitution  behavior   of   the   APD   in   the   presence   of   Flecainide.   Although   we   have   observed   an   APD   prolongation   in   all   sinus   measurements   (both   WT   and   mdx)   with   Flecainide   compared   to   the   starting   control   conditions,  this  finding  is  not  reliable  because  the  measured  APDs  are  at  different  locations  on  the   restitution   curve   (due   to   the   varying   diastolic   interval   between   initial   control   conditions   (t0)   and   after  Flecainide  was  introduced  into  the  system).  At  control  conditions,  the  sinus  rate  was  no  less   than  8-­‐8.3Hz  (i.e.  480-­‐500  bpmlxxx).  After  ten  minutes  of  Flecainide  exposure,  the  sinus  rate  dropped   to  a  value  between  4.5-­‐5.8Hz  (270-­‐350  bpm)  in  almost  all  preparations.  Hence,  we  cannot  confirm   whether  the  observed  APD  prolongation  is  secondary  to  pure  Flecainide  effects  or  due  to  the  final   lower  heart  rates.    

 

The  observation  that  Flecainide  causes  an  actual  prolongation  of  the  APD  doesn’t  correlate  well  with   the   fact   that   this   drug   has   a   strong   use-­‐dependence   block479.   Indeed,   Flecainide   is   unique   among   AADs,   where   use-­‐dependence   block   of   NaV1.5   causes   a   prolongation   of   the   APD   and   not   retraction499,  638.  This  might  suggest  that  Flecainide  blocks  other  channels  than  just  NaV1.5.  Follmer   et   al.   showed   that   Class   Ic   agents   have   a   markedly   different   ionic   profile   among   NaV1.5   blockers:  

Flecainide   has   the   potential   to   block   the   rapid   component   of   the   delayed   K-­‐rectifier   current   (IKr)   using   concentrations   as   low   as   2.1μM   in   cat   ventricular   myocytes639.   Although   the   concentration   used  in  the  latter  experiments  is  at  least  twice  as  large  as  the  one  used  with  our  murine  hearts,  we   cannot   eliminate   the   possibility   that   blocking   K+   channels   could   be   involved   in   the   observed   APD   prolongation  with  Flecainide.  

 

In  a  previous  study  done  by  Starmer  et  al.,  they  showed  that  prolonging  refractoriness  by  blocking   NaV1.5   alone   increases   the   likelihood   of   unidirectional   block   in   the   presence   of   premature   excitations  in  an  otherwise  normal  tissue492.  Follmer  et  al.  showed  that  the  interaction  of  Flecainide   with   K+   channels   closely   correlated   with   channel   activation,   suggesting   an   open-­‐state   blocking   effect639.   As   the   result   of   the   two   previous   findings,   Follmer  et   al.   argue   that   the   antiarrhythmic   efficacy   of   Flecainide   resides   in   its   ability   to   act   on   both   NaV1.5   and   K+   channels,   by   prolonging   refractoriness  in  the  setting  of  decreased  excitability,  without  the  need  to  solely  reduce  INa,f  in  order   to  achieve  the  same  degree  of  refractoriness639.  

 

APD  prolongation  is  of  different  magnitude  for  different  levels  of  repolarization,  with  Flecainide.  For   higher  repolarization  levels  for  which  the  APDs  were  originally  defined  (i.e.  the  closer  temporally  is   the   repolarization   level   to   the   upstroke),   the   more   prominent   is   the   percentage   increase   in   prolongation  observed  between  t0  and  t10,  in  either  WT  or  mdx  (Figure  34).  Both  APD50  and  APD75   showed  no  directional  bias,  in  such  a  way  that  the  percentage  increase  didn’t  vary  whether  the  APs   were  picked  up  along  the  longitudinal  or  transversal  directions.  To  illustrate,  in  the  WT  APD50,Long   prolonged  by  ~65%  and  APD50,Trans  by  ~60%.  Although  the  percentage  increases  in  the  mdx  were   slightly   higher   (but   not   statistically   significant)   compared   to   the   WT,   no   directional   preferences   were   detected;   APD50,   Long   and   APD50,Trans   prolonged   by   ~70%   and   ~69%   respectively.   APD75   and   APD90  in  both  WT  and  mdx  prolonged  overall  by  ~40%  and  ~30%  respectively  in  both  directions.  

                                                                                                                         

lxxx  In  cardiology,  the  heart  rate  is  measured  in  bpm,  i.e.  beats  per  minute.  

A  Novel  Mechanism  Behind  Flecainide  Proarrhythmia          133  

The  dynamics  of  APD25  were  dramatically  different  than  other  APDs.  This  parameter  appeared  to  be   the  most  susceptible  to  Flecainide,  acquiring  both  direction-­‐  and  substrate-­‐dependences  (Figure  34)   as   the   treatment   progressed.   In   the   WT,   the   prolongation   of   APD25   peaked   along   the   longitudinal   direction  with  an  increase  exceeding  ~190%,  vs.  ~170%  in  the  transversal  direction.  The  mdx  heart,   with   lower   available   NaV1.5   channels,   showed   significantly   lower   percentages   of   APD25   increase   between   t0   and   t10   upon   exposure   to   Flecainide,   with   ~155%   and   ~110%   in   the   longitudinal   and   transversal  directions,  respectively.  These  data  emphasize  three  important  findings:    

• As  APD25  encloses  the  time  interval  from  AP  takeoff  till  the  end  of  phase  1,  it  represents  the   interval  during  which  the  dynamical  processes  the  most  affected  by  functional  NaV1.5  take   place.  In  other  words,  this  correlates  well  with  the  fact  that  under  control  conditions,  only   APD25  showed  a  significant  difference  between  WT  and  mdx,  whereas  other  APDs  were  not   statistically   different   (Figure   30,   Figure   32).   In   our   simplistic   assumptions,   the   major   difference  in  the  plasma  membrane  ionic  composition  between  WT  and  mdx  is  the  absence   of   NaV1.5   on   the   LM   in   the   mutated   heart.   Hence,   if   subsequent   ionic   currents   were   perturbed   in   the  mdx   compared   to   the   WT   in   the   earliest   phases   of   repolarization   (in   the   absence  of  Flecainide),  they  should  stem  from  the  differences  in  NaV1.5  availability  between   the  two  substrates  (Figure  19).  

• Flecainide   enhanced   the   appearance   of   directional   bias   only   in   APD25,   whether   in   the   WT   alone   (by   comparing   longitudinal   to   transversal   directions),   in   the  mdx   alone   or   when   comparing   the   two   substrates.   The   lower   percentage   increases   in   APD25,mdx   (compared   to   APD25,WT)   further   underline   that   the   lack   of   NaV1.5   on   the   LM   means   lower   available   channels  to  modulate.  Henceforth,  the  total  change  induced  by  Flecainide  in  either  direction   is  expected  to  be  reduced  in  the  mdx  (as  it  was  indeed  observed  in  the  statistics  in  Figure   34).  

• The   increased   susceptibility   of   APD25   to   Flecainide   (compared   to   APD50,   APD75   or   APD90)   highlights   that   in   our   experiments,   whether   [1μM]   Flecainide   also   blocks   K+   channels,   the   main   functional   effect   of   the   drug   is   localized   to   high   enough   phases   of   the   AP,   where   repolarizing  K+  channels  play  practically  no  role.    

 

Because   of   the   fact   that   APD25   incorporates   other   AP   processes   beyond   the   upstroke   phase,   its   sensitivity   to   directional   influences   is   less   pronounced   than   the   one   observed   for   the   maximum   upstroke  velocity  (dF/dt)max  (Figure  25),  where  the  decay  in  (dF/dt)max  was  similar  between  WT  and   mdx   along   the   longitudinal   direction,   but   more   pronounced   in   the   WT   along   the   transversal   direction   (compatible   with   the   differences   in   NaV1.5   cellular   distribution   between   the   two   substrates).  Hypothetically  speaking,  if  APD25  were  to  represent  the  phase  of  the  AP  where  NaV1.5  is   the  only  functional  channel,  then  the  behavior  of  APD25  and  (dF/dt)max  with  Flecainide  at  any  time   point  of  the  treatment  with  Flecainide  should  exactly  match.  Since  the  latter  statement  is  precisely   not   true,   as   Flecainide   exposure   proceeded,   the   coupling   between   ADP25   and   (dF/dt)max   became   increasingly   ambiguous,   indicating   a   decoupling   between   the   two   parameters   (Figure   35).   This   could   suggest   that   as   the   upstroke   velocity   becomes   progressively   weaker,   under   the   influence   of   the  drug,  the  ability  to  NaV1.5  to  orchestrate  the  sequential  activation  of  the  consecutive  channels   becomes  increasingly  more  limited  (Figure  35b).  At  t10,  further  deterioration  of  the  upstroke  would   hinder  the  capacity  of  NaV1.5  to  even  coordinate  the  earliest  phases  of  the  AP  (particularly  the  ones   involving  Ito,1  and  ICa,L)  after  the  upstroke;  a  mechanism  that  could  promote  electrical  instability  in   the  tissue.    

 

The   spatial   distribution   of   the   above   macroscopic   processes   couldn’t   have   been   elucidated   using   traditional  microelectrodes  positioned  at  few  sites  of  the  epicardium.  The  strength  of  the  observed   findings  relies  in  the  methodology  used  to  dissect  both  spatially  and  temporally  the  effects  related   to   the   propagating   electrical   activity   across   the   entire   epicardium.   Furthermore,   without   optical  

mapping,   the   increase   in   spatial   dispersion   of   repolarization   (SDR)   couldn’t   have   been   described   with  the  precision  adopted  in  this  work.  Flecainide  not  only  induced  a  differential  prolongation  in   the  APD  values,  but  also  in  the  spatial  organization  of  these  APDs  across  the  epicardium,  where  WT   and  mdx  hearts   both   showed   a   pronounced   increase   in   their   SDR   at   different   AP   repolarization   (Figure  33).  Under  control  conditions  (i.e.  when  no  Flecainide  was  introduced),  APD25  was  not  only   significantly   prolonged   in   the   mdx,   but   also   the   dispersion   of   the   APD25   (i.e.   ΔAPD25)   was   significantly   widened   in   the  mdx   (ΔAPD25,WT  =8.4±1.7ms,   ΔAPD25,mdx  =13.1±4.0ms,  p-­‐value<0.01).  

Although  ΔAPD25,mdx  was  higher  on  average  (29.3±7.1ms)  than  ΔAPD25,WT  (25.6±6.6ms),  bistability   erupted  in  at  least  70%  of  the  WT  hearts  (n=10)  at  t10  and  in  0%  of  mdx  heart  (n=7).  The  emergence   of  bistability  in  the  APD50  profile  in  the  WT  heart  at  t10  led  to  the  significance  increase  in  dispersion   (Figure  33).  Hence,  we  believe  that  the  ΔAPD50,WT  and  ΔAPD75,WT  widening  at  t10  is  a  consequence  of   bistability,  rather  the  causative  agent  behind  it.    

 

To  further  illustrate  why  this  point  could  be  crucial  in  our  understanding  of  symmetry  breaking  in   APD,   the   same   analysis   of   APD   prolongation   and   dispersion   was   carried   out   in   the   ΔKPQ   model   treated  with  Flecainide  [1μM]  and  their  WT  control,  over  a  protocol  that  lasted  for  5min  (due  to  the   premature   loss   of   steady   state   conditions   with   the   ΔKPQ   model   beyond   5min   of   treatment).  

Although  the  spatial  organization  of  APDs  in  the  ΔKPQ  heart  doesn’t  show  the  same  sharp  transition   observed   previouslylxxxi,   the   heterogeneous   distribution   of   APD25   and   APD50   at   t5   indicates   the   presence  of  steep  gradients  between  the  distinct  zones  observed  on  the  epicardial  surface  (Figure   39a   and   b).   Although   ΔAPD50,WT   was   significantly   higher   in   the   WT   at   t5   compared   to   ΔAPD50,ΔKPQ,   symmetry   breaking   emerged   in   the   ΔKPQ   and   not   the   WT   (the   difference   in   APD50   values   is   not   significantly  different  between  the  two  groups,  Figure  42).  We  believe  that  since  we  are  principally   targeting  NaV1.5  with  Flecainide,  the  mechanism  by  which  modulation  of  NaV1.5  occurs  is  capable  of   influencing   the   subsequent   events   leading   to   symmetry   breaking.   We   hypothesize   that   in   the   presence   of   Flecainide,   neither   APD25   prolongation   nor   widening   of   ΔAPD25   alone   may   evoke   symmetry  breaking  in  a  well-­‐coupled  tissue.  However,  cumulatively,  whenever  the  global  change  in   ΔAPD25   with   Flecainide   exceeds   the   overall   prolongation   in   APD25,   the   substrate   becomes   more   susceptible  to  symmetry  breaking  (indicated  by  the  statistics  in  Figure  43).  The  latter  statement  is   by  far  just  a  hypothesis  based  on  an  observation  from  our  experiments,  further  investigations  using   computer  models  of  the  mouse  heart  will  be  required  to  find  out,  whether  symmetry  breaking  with   Flecainide  could  occur  under  the  pre-­‐requisites  set  above.  

 

The   concept   of   heterogeneous   repolarization,   as   a   facilitator   of   arrhythmogenic   activity,   has   been   recognized  for  more  than  four  decades407-­‐409.  When  transmembrane  repolarization  at  some  sites  of   the  cardiac  tissue  outlasts  repolarization  at  an  adjacent  site,  local  current  will  be  expected  to  flow  in   proportion  to  the  voltage  gradient  between  the  two  sites411.  If  the  current  is  of  sufficient  magnitude,   it   can   reexcite   the   earlier   repolarizing   site   by   bringing   the   cells’   potential   to   threshold   triggering   reentry264.   The   prominent   increase   in   SDR   observed   in   our   murine   hearts   is   likely   to   be   arrhythmogenic   because   the   dispersion   in   repolarization   occurs   over   very   short   distances264   (approximately,  the  apico-­‐basal  length  of  the  murine  heart  is  ~6mm  and  the  width  of  the  LV  free   wall   in   our   field   of   view   ~3mm),   creating   a   very   steep   repolarization   gradient   (in   the   example   in   Figure   28a,   the   gradient   can   exceed   20ms.mm-­‐1   across   the   borderline   from   the   zone   with   the   prolonged  APDs  to  the  zone  of  the  abbreviated  ones).  It’s  currently  believed  that  the  steepness  of   the   repolarization   gradient,   rather   than   the   total   magnitude   of   the   dispersion   in   a   cardiac   tissue,   determines  the  arrhythmogenic  susceptibility  of  the  substrate  involved263,  264.  

                                                                                                                         

lxxxi  i.e.  in  the  WT  control  group  of  the  mdx  mice.    

A  Novel  Mechanism  Behind  Flecainide  Proarrhythmia          135