• Keine Ergebnisse gefunden

Atypical Activation Spread in ΔKPQ with Flecainide

3.3. Expatiated Pathophysiological Heterogeneity in ΔKPQ

3.3.1. Atypical Activation Spread in ΔKPQ with Flecainide

In  the  next  set  of  experiments,  ΔKPQ  murine  hearts  were  subjected  to  the  same  treatment  protocol   that  was  followed  for  the  WT  and  mdx  heart  (section  3.2).  Over  a  period  of  5min,  the  mutated  hearts   (n=4)   and   their   WT   counterparts   (n=4)   were   perfused   with   Flecainide   [1μM].   The   same   experimental   conditions   used   previously   were   reproduced   in   the   treatment   of   ΔKPQ   hearts.   The   exposure   to   the   drug   was   limited   to   5min   only   (half   the   exposure   time   in   the   previous   sets   of   experiments),   due   to   difficulty   in   entraining   the   mutated   hearts   into   a   10Hz   steady   state   pacing   beyond   5min.   From   the   previous   experiments,   the   increased   sensitivity   of   the   WT   group   to   Flecainide   compared   to   a   substrate   with   lower   availability   of   NaV1.5   was   a   major   finding.   This   sensitivity   was   translated   into   a   symmetry   breaking   effect   that   lead   to   the   coexistence   of   two   adjacent  stable  zones  entrained  by  the  same  frequency.  As  the  outcomes  of  Flecainide  exposure  are   yet   to   be   clarified,   activation,   functional   heterogeneity   profile   and   drug   proarrhythmia   are   investigated  next,  since  a  NaV1.5  blocker  might  turn  to  be  completely  ineffective  or  overly  effective  in   interacting  with  the  mutant  channel.    

3.3.1. Atypical Activation Spread in ΔKPQ with Flecainide

The  ΔKPQ  mutation  destabilizes  inactivation,  as  previously  explained.  Wang  et  al.  measured  INa  from   a   whole   cell   voltage   clamp   using   ΔKPQ   mutated   cardiac   cells   and   reported   that   the   steady   state   activation  curve  was  slightly  (~6mV)  shifted  towards  depolarizing  voltages  compared  to  the  WT395.   In   addition,   the   fractional   amplitude   of   the   fast   component   of   the   INa,f   was   actually   greater   in   the   ΔKPQ  cells  than  the  WT.  The  recovery  from  inactivation  kinetics  was  also  considerably  faster  for  the   mutated   cells:   in   the   WT   the   largest   fraction   (77%)   of   channels   seem   to   have   recovered   from   inactivation  with  a  time  constant  of  τWT  =6.7ms  vs.  59%  in  ΔKPQ  at  τΔKPQ  =2.1ms395.  Based  on  these   cellular   results,   and   assuming   that   the   resting   membrane   potential   (Vrmp)   in   both   substrates   is   unaltered,  we  do  not  expect  the  maximum  upstroke  velocity  (dF/dt)max  to  be  modified  in  ΔKPQ.  As   we   have   seen   in   the   previous   WT   and  mdx   study,   (dF/dt)max   may   represent   an   index   of   NaV1.5   availability  in  some  conditions,  however  may  not  necessarily  give  an  accurate  prediction  of  the  CV   in  the  medium.  

 

In   Figure   36a,   the   optical   APs   (OAP)   were   measured   from   the   LV   free   wall   of   the   WT   and   ΔKPQ.  

Prior  to  normalization,  the  OAPs  were  compared  for  amplitude  and  FC%  (as  previously  described).  

The  APΔKPQ  is  superimposed  over  the  dotted  WT  representation  (same  as  the  APWT,  left)  for  a  direct   comparison.  On  the  right,  the  slightly  shallower  upstroke  is  followed  by  a  hampered  notch,  which   precedes   a   plateau   phase   at   more   positive   voltages.   Unlike   the   APmdx   (Figure   19,   left),   where   the   early  prolongation  phases  are  compensated  with  strong  enough  repolarization  currents  leading  to   an   almost   normal   termination   of   the   AP,   the   APΔKPQ   is   characterized   by   a   continuous   non-­‐

compensated   prolongation   and   a   considerably   delayed   repolarization.   In   that   regard,   the   APΔKPQ   appears  comprehensively  prolonged  compared  to  the  APWT  in  all  phases  (Figure  36a,  right).  

Expatiated  Pathophysiological  Heterogeneity  in  ΔKPQ          103  

After   5min   exposure   to   Flecainide   (t5),   qualitative   differences   between   the   two   maps   reveal   an   atypical   pattern   of   activation   in   the   mutated   heart.   Meanwhile,   the   WT   map   maintains   a   global   anisotropic  propagation  with  slower  components  compared  to  t0  (at  t5:  Vmax,WT  =  0.62±0.05m.s-­‐1  and   Vmin,WT  =  0.21±0.03m.s-­‐1).  As  the  position  of  the  pacing  electrode  remains  unchanged  (Figure  45),  the   wave  clearly  emanates  from  the  tip  of  the  electrode  where  the  pacing  current  is  introduced  into  the   tissue.  However  it  acquires  a  preferential  shift  towards  the  base  where  conduction  is  clearly  faster   (the  first  isochrone  is  located  towards  the  aortic  side),  maintains  an  elliptical  shape  until  the  convex   ends  along  the  major  axis  of  the  ellipses  reach  the  right  and  left  boundaries  of  the  heart  (within  the   red   colored   area   of   the   map),   then   resumes   propagation   towards   the   apex   in   quasi-­‐planar   waves.  

From  the  movie  of  the  measurement  (Figure  44  and  Figure  45),  an  artifact  due  to  electrode  position   change  was  ruled  out.  This  pattern  appears  to  be  generic  for  all  ΔKPQ  preps  treated  with  Flecainide   at  t5  (n=4)  in  this  study.  The  cause  of  such  activation  is  unknown.  Hence,  it’s  tempting  to  speculate   that   the   mechanism   behind   the   deviation   from  global   anisotropy   (to  partial   anisotropy)   could   possibly  be  due  to  a  source-­‐sink  mismatch.  A  point  stimulation,  unlike  a  line  stimulation,  creates  an   elliptical  pattern  of  activation  founded  on  fiber  orientation;  principally  due  to  “facilitation”  of  spread   in   the   direction   parallel   to   the   fiber’s   long   axis   and   increased   “discontinuities”   in   the   direction   perpendicular   to   it254.   In   addition,   planar   waves   have   the   propensity   to   travel   faster   than   convex   ones572,   due   to   more   efficient   distribution   of   depolarizing   charges   as   the   wave   front   crosses   the   medium573.     Since   the   depolarizing   current   was   introduced   into   the   epicardium   from   a   point   stimulation,   it   will   give   rise   to   ellipses   with   convex   wave   fronts.   For   unknown   reasons,   the   upper   half   (from   LV   free   wall   center   to   base)   of   the   heart   appears   to   facilitate   conduction   and   becomes   fully  activated  within  15ms  of  pulse  induction  (Vmax,ΔKPQ=0.44±0.04m.s-­‐1).  The  remaining  half  (center   to  the  apex)  requires  an  additional  15ms  to  fully  activate  (Vmin,ΔKPQ=0.11±0.02m.s-­‐1).  In  consequence,   even  if  conduction  block  is  not  yet  present  here,  double  this  time  was  still  needed  to  reach  the  apex.  

As   the   elliptical   activation   terminates   in   the   upper   half   of   the   heart,   a   quasi-­‐planar   wave   front   is   formed,  more  capable  of  surpassing  the  electrical  load  across  the  remaining  epicardium  to  the  apex   than  the  originally  expected  convex  wave.  

 

The   difference   in   CV   between   the   two   groups   as   Flecainice   proceeds   is   shown   in   Figure   37.   Bar   graphs  for  Vmax  (N=8,  per  group)  and  Vmin  (N=8,  per  group)  indicate  a  decrease  in  velocities  in  both   substrates   with   an   overall   change   (between   t0   and   t5)   of   32%   and   26%   in   Vmax   for   WT   and   ΔKPQ   respectively;  40%  and  39%  in  Vmin  for  WT  and  ΔKPQ  respectively.  It’s  noteworthy  to  emphasize  that   at  this  time  point  of  the  current  protocol,  the  values  reached  in  the  WT  group  are  consistent  with   what   was   reported   in   the   previous   section   for   the   control   group   of   the  mdx   (during   the   10min   protocol),  where  at  t5,  Vmax,WT    and  Vmin,WT  decreased  by  33%  and  39%  respectively  (Figure  22).  At   control  conditions,  the  velocities  recorded  for  the  ΔKPQ  substrate  are  globally  15-­‐18%  lower  than   the  ones  of  the  WT.  The  difference  at  that  stage  is  significant  between  the  two  groups  with  Vmax,WT  =   0.78±0.10m.s-­‐1,   Vmax,ΔKPQ   =   0.66±0.06m.s-­‐1   (p-­‐value<0.05);   and   Vmin,WT   =   0.37±0.08m.s-­‐1,   Vmin,ΔKPQ   =   0.31±0.03m.s-­‐1   (p-­‐value<0.05).   As   NaV1.5   blocking   proceeds,   both   velocities   in   the   two   substrates   start   to   decrease,   until   t5   where   the   difference   in   velocities   between   the   groups   vanishes.   The   percentage  decrease  Vmax  is  slightly  higher  for  the  WT  group  than  it  is  for  the  ΔKPQ,  but  Vmin  seems   to  be  similarly  affected  in  both  groups  at  t5.  In  the  10min  protocol  used  to  compare  mdx  and  WT,   patchy   high   velocity   (or  supernormal   conduction)   zones   erupt   at   t10   in   the   WT   group   along   the   longitudinal  direction.  In  the  current  results,  the  protocol  was  stopped  at  5min,  without  an  area  of   supernormal  conduction  being  detected  in  either  group.    

 

In  Figure  38,  (dF/dt)max  is  calculated  at  each  pixel  for  each  of  the  maps  presented  in  Figure  36.  This   approach  is  necessary  to  identify  how  NaV1.5  blocking  alters  (dF/dt)max  in  the  ΔKPQ  substrate  and   whether  the  fluctuations  detected  in  CV  are  reproducible  for  (dF/dt)max  .  

Expatiated  Pathophysiological  Heterogeneity  in  ΔKPQ          105  

   

In   a   similar   fashion   to   CV,   WT   and   ΔKPQ   (dF/dt)max   dispersion   maps   show   a   decrease   in   all   directions  with  Flecainide  (Figure  38a).  The  maps’  corresponding  histograms  are  shown  in  Figure   40c.  In  the  leftmost  panel,  the  WT  upstroke  velocities  have  a  bimodal  distribution  with  two  peaks  at  

~0.31  and  ~0.44  ms-­‐1,  suggestive  of  the  presence  of  longitudinal  and  transversal  clusters.  The  ΔKPQ   map   also   shows   a   semi-­‐bimodal   configuration   at   control   conditions,   with   the   majority   of   values   lingering  in  the  lower  range  compared  to  WT  peaking  at  ~0.28ms-­‐1  and  a  tail  of  higher  values  in  the   vicinity   of   0.36ms-­‐1.   With   Flecainide   (at   t5),   histograms   shift   to   the   left   indicating   lower   range   of   values  in  the  two  substrates:  the  WT  maintains  the  bimodal  distribution  with  the  highest  frequency   around  0.24ms-­‐1  and  a  smaller  peak  towards  0.35ms-­‐1;  whereas  the  ΔKPQ  histograms  concentrate  to   the  left  with  a  high  peak  around  0.1ms-­‐1  and  another  smaller  one  around  0.16ms-­‐1.    

 

On   average,   the   shallower   upstrokes   in   the   mutated   substrate   (upstroke   =   0.43±0.03   a.u.ms-­‐1)   do   not  reveal  a  significant  difference  to  their  WT  counterpart  at  t0  (0.47±0.10  a.u.ms-­‐1)  with  p-­‐value  =   0.34  (Figure  38b).  The  sharper  decrease  in  the  ΔKPQ  heart  with  Flecainide  alters  this  difference  in   favor   of   considerably   larger   values   in   the   WT   with   ~71%   decrease   in   ΔKPQ   in   the   longitudinal   direction  (WT:  0.31±0.08  a.u.ms-­‐1;  ΔKPQ:  0.15±0.04  a.u.ms-­‐1;  p-­‐value<0.05),  and  ~60%  decrease  in   ΔKPQ  in  the  transversal  direction  (WT:  0.25±0.08  a.u.ms-­‐1;  ΔKPQ:  0.14±0.04  a.u.ms-­‐1;  p-­‐value<0.05).  

The  decrease  in  the  WT  upstrokes,  unlike  the  ΔKPQ  substrate,  doesn’t  show  directional  differences,   in  such  a  way  that  the  total  change  in  (dF/dt)max  is  almost  similar  in  the  longitudinal  (~36%)  and   transversal  (~38%)  directions.  

!"

#"

Figure   37.   Bar   graphs   of   Vmax   and   Vmin   for   WT   (N=8)   and   ΔKPQ   (N=8)   at   t0   and   different   time   points   of   Flecainide   [1μM]  

perfusion.  a.   Decrease   in   Vmax   is   consistent   for  both  groups.  At  t5,  a  maximum  decrease  of  

~32%   was   recorded   in   the   WT   group   vs.  

~26%   in   the   ΔKPQ   (To   note:   a   similar   value   was   recorded   in   the   previous   set   of   experiments   in  the  mdx   control  group   (N=22)   at   t5   with   a   decrease   of   33%,   Figure   22).  

Despite   a   larger   percentage   decrease   in   the   WT,   both   groups   have   almost   identical   velocities   at   t5   (Vmax,WT   =   0.53   ±   0.12m.s-­‐1   ;   Vmax,ΔKPQ  =  0.49  ±  0.11m.s-­‐1).  The  initially  larger   velocity  in  the  WT  group  at  t0  accounts  for  the   larger   decline   (Vmax,WT   =   0.78   ±   0.10m.s-­‐1,   Vmax,ΔKPQ  =  0.66  ±  0.06m.s-­‐1,  p-­‐value  <  0.05).  b.  

A   gradual   decrease   in   Vmin  with  Flecainide.  

A   total   of   ~41%   and   ~39%   decrease   in   Vmin   was   recorded   for   WT   and   ΔKPQ   at   t5   respectively.   Starting   with   Vmin,WT  =   0.37±0.08   m.s-­‐1   and   Vmin,ΔKPQ   =   0.31   ±   0.03m.s-­‐1   (p-­‐

value<0.05),   the   difference   between   the   two   groups   becomes   statistically   insignificant   at   5min   of   Flecainide   perfusion   (Vmin,WT   =   0.22±0.03  m.s-­‐1  and  Vmin,ΔKPQ  =  0.19±0.03m.s-­‐1).  

Annotations   in   figure:  *   (p-­‐value<0.05),  n.s.  

not  significant.    

 

!"

#$%&$'(

)!*"

+,-"

.!,/,&)01!

+

!"##

23"

4"

5"

67"

6"

28"

98:';8<" =>)?:"

$%&'#

=>)?:"

23"

4"

5"

67"

6"

28"

98:';8<"

@"

$"

A"

Figure  38.  Dispersion  maps  showing  at  one  pixel  resolution  the  changes  in  (dF/dt)max  with  Flecainide  [1μM]  in  WT   (N=8)  and  ΔKPQ  (N=8)  and   their  respective  bar  graphs.  a.  Anisotropic  (dF/dt)max   distribution   with   a  consistent   decrease   under   NaV1.5   blocking.  At   t0,   higher   values   are   more   widely   spread   in   the   WT   than   the   ΔKPQ.   However   (dF/dt)max   distribution   remains   anisotropic.   At   t5,   the   ΔKPQ   substrate   reveals   an   area   of   higher   upstroke   velocities   proximal  to   the   base  and  towards   the   right   side,   whereas   the   area   towards   the   apex   indicates  dramatically   diminished   (dF/dt)max,   as   observed   in   the   activation   map.   The   WT   map   at   t5   reveals   slower   upstrokes,   with   an   unremarkable   distribution.  Look-­‐up-­‐table:  (dF/dt)max  [0  0.8].  Scale  bar  =1mm.  Ao  =  Aorta,  Ap  =  Apex,  R  =  Right,  L  =Left,  P  =  Pacing,  PE  

=  Pacing  Electrode.  (b,c).  Bar  graphs  showing  the  gradual  change  in  (dF/dt)max  in  longitudinal  (b)  and  transversal   (c)  directions.  At  t0,  the  shallower  upstroke  in  ΔKPQ  is  on  average  not  significantly  different  from  its  WT  counterpart.  The   sharper  decrease  in  the  ΔKPQ  upstroke  velocity  (d)  in  both  directions  longitudinal  and  transversal  leads  to  a  deviation  in   the   values   between   the   two   groups   at   t5   (see   text).  d.   Overall   decrease   in   (dF/dt)max   between   t0   and   t5   exceeds   70.8±4.8%  in  ΔKPQ  (vs.  35.8±11.2%  in  WT)  longitudinally  and  59.8±7.1%    transversely  in  ΔKPQ  (vs.  38.1±9.4%  in  WT).  

Annotations  in  figure:  #  (p-­‐value<0.0001),  ***  (p-­‐value<0.001),  **  (p-­‐value<0.01),  *  (p<0.05),  n.s.  not  significant.  

Expatiated  Pathophysiological  Heterogeneity  in  ΔKPQ          107  

A  decrease  in  (dF/dt)max  was  reported  for  the  WT  group  with  the  10min  Flecainide  protocol  in  the   previous   section,   where   (dF/dt)max   maximally   dropped   by   ~52%   on   average   in   either   direction   (Figure   27c).   Meanwhile,   it’s   noteworthy   to   recall   that   the  mdx   substrate   showed   a   significantly   smaller  drop  in  (dF/dt)max  at  t10  compared  to  its  WT  counterpart  particularly  along  the  transverse   direction   (with   a   total   decrease   of   ~39%).   Contrastingly,   ΔKPQ   achieves   a   significantly   larger   decrease   in   (dF/dt)max   compared   to   the   WT   group   (at   t5),   which   could   indicate   that   the   change   in   upstroke  velocities  (including  the  transversal  ones)  with  Flecainide  is  possibly  substrate  dependent.  

Although,   both   CV   and   (dF/dt)max   decreased   with   Flecainide   in   the   WT   and   ΔKPQ,   their   characteristic   differences   do   not   match   at   control   conditions,   and   their   response   to   Flecainide   further  consolidates  this  contrast.  While  Vmax  and  Vmin  are  significantly  larger  in  the  WT  group  at  t0   compared   to   ΔKPQ,   their   corresponding   (dF/dt)max   are   almost   similar   (no   significant   difference).  

Similarly,  the  effects  at  t5  are  reversed:  the  velocities  become  almost  comparable  between  the  two   groups   in   either   direction,   whereas   their   corresponding   upstroke   velocities   considerably   differ.  

Indeed  in  these  two  groups,  CV  and  (dF/dt)max  appear  to  behave  characteristically  different  with  or   without  Flecainide.