• Keine Ergebnisse gefunden

Flecainide Exacerbates Intrinsic Heterogeneity in ΔKPQ

3.3. Expatiated Pathophysiological Heterogeneity in ΔKPQ

3.3.2. Flecainide Exacerbates Intrinsic Heterogeneity in ΔKPQ

One  of  the  arrhythmogenic  mechanisms  proposed  for  the  LQTS  substrate  is  amplification  of  the  SDR,   which  when  present  in  either  early  or  late  phases  of  the  AP  can  lead  to  the  development  of  a  variety   of  arrhythmias403.  Amplification  of  intrinsic  heterogeneity  together  with  premature  impulses  could   principally  underlie  the  mechanistic  trigger  for  ventricular  arrhythmias  in  cardiac  pathologies  such   as   heart   failure271   and   “torsade   de   pointes”   in   LQTS3406.   Gene-­‐specific   therapy   includes   a   2-­‐hit   approach:   The   first   is   linking   the   genetic   mutation   to   the   ionic   channel   dysfunction,   whereas   the   second   is   identifying   the   pharmacological   agents   that   can   modulate   the   mutated   channels   in   a   differential  manner281.  

 

The  response  of  arrhythmogenic  LQTS3  substrate  to  AADs  remains  the  subject  of  strenuous  debate.  

Schwartz  et  al.  and  others  reported  that  NaV1.5  blocker  Mexiletine  (a  Class  IB  AAD)  is  more  effective   in  shortening  the  QT-­‐interval  in  LQTS3  patients  than  other  LQTS  due  to  K+-­‐channel  mutations282,  574.   Shimizu  et  al.  showed  that  a  K+  channel  opening  agent  (Nicorandil)  abbreviated  the  QT-­‐interval  and   the   monophasic   AP   duration   in   LQTS1   patients281.   Shortening   of   QT   interval   isn’t   necessarily   harmonious   with   decreasing   or   preventing   arrhythmia   risk   in   these   patients281,   since   a   direct   validation  of  the  QT  interval  as  a  measure  of  APD  spatial  dispersion  is  still  lacking575.  On  the  other   hand,  NaV1.5  blocking  agents  haven’t  been  reported  to  be  ineffective  in  treating  LQTS3  only576,  but   also   dangerously   proarrhythmic570,   sometimes   despite   a   normalized   QT-­‐interval   on   ECG577.   Hence   normalizing  the  QT-­‐interval  is  not  necessarily  congruent  with  decreased  SCD  risk.  

 

We   show   in   the   following   results   that   exaggerated   SDR   is   predominantly   observed   in   the   ΔKPQ   mouse   upon   exposure   to   Flecainide   at   clinically   valid   concentrations,   which   could   make   it   a   plausible   mechanism   in   increasing   arrhythmia   susceptibility   in   LQTS3   patients   managed   with   NaV1.5  blockers.  

 

Expatiated  Pathophysiological  Heterogeneity  in  ΔKPQ          109  

In  Figure  39,  APs  and  their  corresponding  APD  dispersion  maps  (APD25  (a),  APD50  (b))  for  WT  and   ΔKPQ  at  t0  and  t5  of  Flecainide  [1μM]  are  shown.  As  previously  described,  the  same  mask  of  the  LV   free  wall  was  repeatedly  used  for  the  same  prep  to  reproduce  the  maps  at  different  time  points  of   exposure   to   the   drug.   The   APs   on   the   left   are   chosen   from   the   located   points   in   the   maps   where   white   dots   reside   along   the   longitudinal   direction   with   corresponding   blue   colored   APs,   and   red   dots   along   the   transversal   direction   with   corresponding   red   colored   APs.   Measurements   were   conducted  at  t0,  t1,  t3  and  t5,  but  only  t0  and  t5  are  shown  in  the  figure.  The  morphological  changes  in   OAPs  are  tracked  by  superimposing  the  APs  at  t5  over  their  control  AP  (in  dotted  line).  APWT  at  t0   perfectly   overlap,   and   their   corresponding   APD25   map   further   confirms   the   homogeneity   of   the   cardiac   tissue   under   these   conditions.   The   map’s   associated   histograms   are   shown   in   Figure   40a   (leftmost   panel).   The   unimodal   distribution   of   APD25,WT   values   are   centered   around   7.2ms   with   a   dispersion  of  ΔAPD25,WT  =  7.9ms.  The  average  dispersion  in  the  WT  group  (n=4,  Figure  41)  under   control   conditions   is   8.7±1.7ms.   In   contrast,   the   APD25,ΔKPQ   map   (Figure   39a,   below   left)   shows   patchy  regions  of  more  prolonged  APs  across  the  LV  free  wall  (lighter  blue),  with  reduced  APs  found   mainly  at  the  basal  side.  The  distribution  of  the  APD25,ΔKPQ  values  is  centered  around  13.5ms,  has  a   wider  base  than  its  WT  counterpart  with  ΔAPD25,ΔKPQ  =  16.2ms  (Figure  40a,  right).  In  conclusion,  at   t0  when  Flecainide  is  not  yet  in  perfusion,  not  only  APD25,ΔKPQ  in  terms  of  values  is  significantly  larger   (Figure   42a,   right   and   left   panels),   but   also   ΔAPD25,ΔKPQ   (n=4)   is   significantly   wider   than   its   WT   counterpart   (ΔAPD25,WT   =   8.7±1.7ms;   ΔAPD25,ΔKPQ   =   14.9±4.1ms,   p-­‐value<0.05,   Figure   41),   corresponding  to  the  appearance  of  sketchy  clusters  of  longer  APDs  in  the  mutated  substrate.    

 

At  t5,  the  APWT  have  shallower  upstrokes  with  a  decreased  notch,  followed  by  an  increase  in  the  APD   mainly  at  later  repolarization  phases.  While  the  map  shows  a  homogenous  prolongation  in  APD25,WT   values,  the  histograms  at  t5  (Figure  40a,  left)  conserve  a  high  peak  centered  at  10.2ms  with  a  longer   tail,  causing  an  increase  in  base  width  (ΔAPD25,WT  =  17.4ms  in  this  example).  On  average,  ΔAPD25,WT   increased  in  total  of  ~120%  to  reach  a  value  of  19.7±5.1ms  by  t5  (Figure  41).  The  response  of  the   ΔKPQ  tissue  to  Flecainide  at  t5  however  appears  more  dramatic,  with  multiple  adjacent  regions  of   shorter,  intermediate,  and  prolonged  APD25  allocated  between  the  base  and  apex  of  the  LV  free  wall   (Figure  39a,  bottom,  right).  On  the  left  side  of  the  map,  the  APs  selected  from  4  different  locations   within  the  ventricle  display  gradual  loss  of  their  notch,  followed  by  a  proportional  increase  in  the   APD.  By  looking  at  the  position  of  each  of  the  APs,  it  becomes  obvious  that  epicardial  cells  that  once   displayed   almost   superimposable   APs   at   t0   (for   instance   locations   1   and   3,   along   the   longitudinal   direction)  are  separated  by  an  APD25  gradient  exceeding  30ms  after  5min  exposure  to  Flecainide.  A   direct  comparison  of  the  APD25,ΔKPQ  maps  at  t0  and  t5  reveals  the  possibility  that  the  patterns  formed   at   t5   may   be   the   result   of   amplification   of   intrinsic   heterogeneity   found   within   the   mapped   epicardial  layer,  indicated  by  the  patchy  arrangement  of  APD25  initially  found  at  t0.  Nevertheless,  it’s   not  yet  clear  whether  the  patterns  that  appeared  with  Flecainide  can  potentially  be  predicted  from   the   initial   conditions   at   t0.   The   histograms   of   the   corresponding   map   no   longer   display   any   particular   peak   and   nicely   span   a   whole   range   of   values   with   a   dispersion   ΔAPD25,ΔKPQ   =   35.7ms   (Figure  40a,  right).  From  the  bar  graphs  in  Figure  41,  it  becomes  evident  that  APD25  dispersion  is   significantly  larger  in  the  ΔKPQ  substrate  at  either  t0  or  t5,  with  an  increase  of  ~120%  and  ~135%  in   ΔAPD25,WT  and  ΔAPD25,ΔKPQ  respectively  between  t0  and  t5  (Figure  43).  

 

The   effects   observed   in   APD25   are   translated   to   later   phases   of   the   AP   (Figure   39b).   The   circular   becomes  statistically  significant  (Figure  41).  Counterintuitively,  the  dispersion  in  APD50  values  are   considerably  larger  in  the  WT  group,  despite  the  presence  of  symmetry  breaking  exclusively  in  the   the  substantial  widening  of  the  distribution   base),   where   ΔAPD25,WT   =17.4ms.   The   loss   indicating  a  considerable  loss  of  previously   existing  higher  (dF/dt)max  at  t0.  

Expatiated  Pathophysiological  Heterogeneity  in  ΔKPQ          111  

 

While  some  heterogeneity  is  still  observed  at  repolarization  levels  beyond  50%,  it’s  less  prominent   than   the   one   detected   at   25%   and   50%   (maps   not   shown   here).   The   dispersion   of   APD75   values   (Figure   41)   is   not   significantly   different   between   the   two   groups   at   t0   (ΔAPD75,WT   =24.6±4.3ms;  

ΔAPD75,ΔKPQ   =   28.4±8.3ms;   p-­‐value=0.44),   nor   at   t5   (ΔAPD75,WT   =   33.9±7.2ms;   ΔAPD75,ΔKPQ   =   30.2±3.3ms;  p-­‐value=0.39).    

 

In   addition   to   dispersion   analysis,   APDs   at   different   levels   of   repolarization   were   analyzed   and   compared  between  WT  and  ΔKPQ  at  different  time  points  of  Flecainide  exposure  (Figure  42).  While   APD25,  APD50  and  APD75  show  statistically  significant  differences  at  control  conditions  (t0)  between   the   experimental   groups,   exposure   to   Flecainide   caused   a   consistent   prolongation   of   all   APDs   abolishing  at  almost  all  time  points  the  existing  differences  between  them.  

 

The   effect   AP   abbreviation   or   prolongation   has   on   spatial   dispersion   has   not   been   quantitatively   well   determined.   It’s   strongly   believed   however   that   asymmetrical   AP   prolongation   in   the   heart   leads  to  increased  spatial  dispersion,  enhancing  medium  susceptibility  for  arrhythmic  activity.  From   my   current   data,   the   correlation   between   APDxx   and   ΔAPDxx   (xx   standing   for   any   percentage   repolarization)   could   by   itself   provide   a   quantitative   indicator   for   the   possible   occurrence   of   symmetry   breaking   in   the   ventricle.   Following   the   previous   analysis   of   ΔAPD   (Figure   41),   APD   values   were   compared   between   WT   (N=8)   and   ΔKPQ   (N=8).   APD25   (along   longitudinal   and   transversal  directions,  Figure  42a),  APD50  (longitudinal  only,  Figure  42b),  APD75  (longitudinal  only,   Figure  42c)  bar  graphs  are  displayed.  The  ΔKPQ  heart  for  all  APDs  at  t0  shows  significantly  larger   values   than   its   WT   counterpart.   For   instance,   APD25,WT   (Long.)   =   6.0±1.0ms,   APD25,ΔKPQ   (Long.)   =   10.0±4.1ms   (p-­‐value   <0.05).   The   transversal   APD25   are   particularly   shown   here   because   of   their   distinct  changes  with  Flecainide  (when  comparing  the  groups)  relatively  to  the  longitudinal  values,   which  is  not  the  case  for  the  APD50  or  APD75  therefore  only  longitudinal  values  are  displayed  in  the   figure.  Similarly,  APD50,WT  =  27.7±5.6ms,  APD50,ΔKPQ  =  36.1±6.1ms  (p-­‐value<0.05),  whereas  APD75,WT  =   46.7±6.9ms,  APD75,ΔKPQ  =  54.2±5.7ms  (p-­‐value<0.05).    

Figure  41.  Effects  of  Flecainide   on  APD  dispersion  for  WT  and   ΔKPQ   at   25%,   50%   and   75%  

AP   repolarization.   APDxx   is   calculated   for   each   prep   at   t0   and  t5  as  the  difference  between   the   95th   and   5th   percentile   of   APDxx   distribution.   The   difference   in   ΔAPD25   at   t0   is   further   amplified   with   Flecainide,   by   an   increase   of   120%   and   135%   for   WT   and   ΔKPQ   respectively.   Despite   this   latter   comparable   increase,   symmety   breaking   occurs   only   in   the   mutated   heart   at   this   experimental   time   point.   The     increase   of   ~45%    in   ΔAPD50,WT   vs.  ~5%   in   ΔAPD50,ΔKPQ   changed   the   statistics   at   t5.   The   changes   in   ΔAPD75   remain   statistically   insignificant   between   the   2   groups.  Annotations   in   figure:  

*   (p-­‐value<0.05);   **   (p-­‐

value<0.01);  n.s.  not  significant.    

As   all   APDs   prolong   with   Flecainide   in   both   groups   (WT   and   ΔKPQ),   the   maximal   increase   is   naturally  observed  in  APD25,  being  the  initially  smallest  entity  measured.  The  total  increase  in  APD25   along  both  directions  is  not  only  compared  among  the  groups,  but  also  contrasted  to  the  increase  in   ΔAPD25  between  t0  and  t5  (Figure  43).  To  recall  from  previous  experiments  done  on  the  mdx  heart   with  its  WT  control,  symmetry  breaking  occurs  only  in  the  WT  heart  at  t10  but  didn’t  take  place  in   the  mdx   heart.   The   total   increase   (percentage   wise)   in   APD25   was   significantly   larger   in   WT   (summarized   in   Figure   43)   in   either   direction   compared   to   the   changes   detected   in   the  mdx.  

Contrastingly,   comparing   the   percentage   prolongation   in   APD25   at   t5   between   ΔKPQ   and   WT,   the   latter   has   shown   a   considerably   larger   increase   along   the   longitudinal   direction   (the   transversal   APD25  increase  is  100%  for  either  group),  yet  symmetry  breaking  took  place  in  the  ΔKPQ  ventricle   and  not  the  WT.  Therefore,  it  seems  that  the  extent  of  APD  prolongation  between  control  and  end  of   treatment  conditions  alone  cannot  predict  loss  of  symmetry  in  APD  patterns.  

!"

#" $"

Figure  42.  Bar  graphs  showing  the  progression  of  APD25  (a),  APD50  (b)  and  APD75  (c)  with  Flecainide  in  both  WT   (N=8)  and  ΔKPQ  (N=8).  Only  for  the  APD25,  both  longitudinal  (left)  and  transversal  (right)  are  shown.  For  the  remaining   APD50  and  APD75,  bar  graphs  contain  values  picked  along  the  longitudinal  direction  only.  At  initial  conditions,  the  ΔKPQ   substrate  shows  a  consistent  prolongation  of  its  APDs  compared  to  its  WT  counterpart.  As  Flecainide  proceeds  to  5min,,   the   significant   difference   between   the   groups   is   abolished   except   in   APD25   (transversally),   where   the   APDs   remain   significantly  higher  in  the  mutated  at  all  experimental  time  points.  The  overall  increase  in  APD  values  between  t0  and  t5   can   be   summarized   as   such:   (Long.)   150%   in   APD25,WT   vs.   105%   in   APD25,ΔKPQ.   (Trans.)   100%   in   both   APD25,WT   and   APD25,ΔKPQ  .  55%  in  APD50,WT  vs.  43%  in  APD50,ΔKPQ.  33%  in  APD75,WT  vs.  30%  in  APD75,ΔKPQ.  

Expatiated  Pathophysiological  Heterogeneity  in  ΔKPQ          113   could  bring  forward  particular  requirements  that  might  expedite  its  appearance.  

  dispersion  of  repolarization  in  small  hearts,  where  electrotonic  conduction  is  normally  sufficiently   high  to  smooth  out  functional  heterogeneities.  Such  patterns  formation  in  larger  hearts,  where  more   structural  heterogeneity  prevails,  could  be  several  orders  of  magnitude  more  dangerous  and  lethal.  

In  cardiac  tissues,  where  electrical  excitation  and  conduction  across  coupled  cells  is  maintained  by   Na+,   pharmacological   interventions   through   NaV1.5   blocking   have   the   potential   to   amplify   cardiac   instability  by  decoupling  universal  parameters  of  excitability  and  conductivity,  including  weakening   electrical  depolarization,  slowing  conduction,  increasing  repolarization  time  and  finally  splitting  the   intact  tissue  into  adjacent  zones  of  steep  repolarization  gradients.    

 

!"

#"

$%&'("")

*

("+,-./0"1234,5/"6-7846)1-7"

!"

#"

$%&$%

'()"

$%&'"9")

*

"(":7;-2-</7/-45"0/3-,!01=!)1-7""

!"

#"

$%&$%

'()"

Figure   44.   Activation   (a)   followed   by   repolarization   (b)  from  intact  epicardium  of   a   ΔKPQ   mouse   heart   in   the   absence  of  Flecainide.  From  a   point   stimulation   (pacing   electrode   aiming   at   the   center   of  the  LV  free  wall),  an  elliptical   wave   propagates   towards   the   boundaries.   The   repolarization   pattern   is   not   homogeneous   compared   to   the   WT   example   shown  in  the  Methods’  section.  

Patchy   distribution   of   prolonged   APDs   prevents   a   congruent   repolarization   and   increases   spatial-­‐functional   heterogeneity.   Scale   bar   =   1mm.    

Expatiated  Pathophysiological  Heterogeneity  in  ΔKPQ          115  

     

!" #$%&"'"()*+,"-./012"3

4

"5""6+378!379:"

!"

#"

$%&$%

'()"

;" <=>!37!3*?"@*>9)!A7B!379:"6;:9AC!)737*D"

!"

#"

$%&$%

'()"

Figure   45.   Activation   (a)   followed   by   repolarization   (b)  from  intact  epicardium  of   a   ΔKPQ   mouse   heart   after   5min    of  Flecainide  exposure.  

From   a   point   stimulation   (pacing   electrode   remaining   at   exact   same   position   as   in   Figure  44),  activation  is  slower   and  asymmetrical  on  the  apico-­‐

basal   axis.   Multiple   adjacent   zones   of   inconsistent   repolarization   properties   amplify   spatial-­‐temporal   heterogeneity   and   SDR,   rendering   the   tissue   a   highly   susceptible   substrate   for   arrhythmia.  Scale  bar  =  1mm.  

                   

x-axis y-axis Slope ± error Correlation

coef. (R!)

LSEF PF 0.55±0.17 0.41

LESF PF 0.59±0.20 0.41

PF AF 0.97±0.14 0.75

LSEF PF 0.67±0.15 0.58

LESF PF 0.75±0.14 0.64

PF AF 0.97±0.12 0.82

LSEF PF 0.87±0.05 0.90

LESF PF 0.89±0.05 0.92

PF AF 0.99±0.03 0.97

LSEF PF 0.66±0.07 0.86

LESF PF 0.97±0.11 0.84

PF AF 1.33±0.17 0.82

LSEF PF 0.72±0.13 0.67

LESF PF 0.97±0.20 0.62

PF AF 1.20±0.20 0.75

LSEF PF 0.57±0.08 0.59

LESF PF 0.91±0.06 0.87

PF AF 0.99±0.15 0.65

Longitudinal CVTransversal CV WTmdx MergedWTmdx Merged

Figure   46.   Table   summarizing   the   slopes   and   determination   coefficients   (R2)   extracted   from   the   linear   regressions  of  the  velocities  (analysis  done  in  Figure  15).  The  methods’  outcomes  being  Vmax  (Longitudinal  CV)   and  Vmin  (Transversal  CV)  are  initially  separated  into  two  categories.  The  methods  are  plotted  against  each  other  for   a  direct  comparison.  The  substrates  (WT  and  mdx)  being  two  different  entities  were  treated  each  aside  first,  then   merged.  R2  consistently  scored  higher  values  in  merged  sets  (linear  regressions  in  Figure  15  contain  the  merged   data   points)   than  in   each   set   aside   particularly   for  Vmax   values.   The   slopes   of   merged  sets  are   closer   to   unity  (in   blue)  except  for  the  value  in  pink,  where  the  slope  is  not  close  to  one,  but  associated  with  a  low  R2  value  as  well.  

Values  in  red  show  sporadic  unity  slopes  and  in  green  slopes  higher  than  one  occurring  when  each  of  the  WT  and   mdx  sets  are  treated  separately.  

Expatiated  Pathophysiological  Heterogeneity  in  ΔKPQ          117  

(This  page  is  intentionally  left  blank)    

Chapter 4

Discussion

Microscopic   components   derived   from   active   ionic   and   passive   membrane   properties,   and   macroscopic   discontinuities   reflecting   branching   anatomical   features   or   other   structural   heterogeneities,   can   produce   changes   in   the   shape   of   the   AP   and   CV,   characteristics   of   cardiac   conduction   that   cannot   be   predicted   by   continuous   propagation   models256.   Discontinuous   propagation  implies  that  a  delicate  local  source-­‐sink  balance  governs  successful  conduction  across   the  tissue,  where  the  amount  of  charges  supplied  by  the  source  proximally  must  at  least  be  equal  to   the  charges  required  to  excite  the  cardiac  membrane  at  the  sink  distally257.  At  the  cellular  level,  this   is  controlled  by  membrane  excitability  followed  by  the  state  of  electrical  coupling  between  cells.  In   the  ventricular  myocardium,  the  principal  active  determinant  of  excitability  is  probably  the  cardiac   NaV1.5lxviii,  where  the  magnitude  of  INa,f  plays  a  decisive  role  in  the  subsequent  propagation  of  the   electrical   wave   from   the   source   location   further   down   the   multicellular   network.   Meticulous   opening   and   closing   of   the   cardiac   ion   channels   results   in   the   generation   of   the   AP,   ensures   its   successful  propagation,  maintains  the  intricate  coupling  of  electrical  and  mechanical  activities  and   orchestrates   the   sequence   of   ionic   channels   to   bring   about   the   lucrative   termination   of   the   AP260.   Henceforth,   abnormalities   of   NaV1.5   expression,   regulation   or   kinetics   will   translate   into   cardiac   instabilities   that   induce   electrical   vulnerability   and   precipitate   rhythm   disturbances.  How   could   NaV1.5  perturbations  influence  the  stability  of  the  entire  cardiac  tissue?    

 

In  this  thesis  work,  two  models  of  NaV1.5  abnormalities  were  investigated,  and  further  modulation   of  NaV1.5  was  resumed  through  pharmacological  interventions.  The  results  of  this  thesis  have  tried   to  answer  the  questions  proposed  in  the  last  section  of  the  Introductionlxix  by:    

1. Characterizing  electrical   instabilities   in   conduction   in   a   model   where   NaV1.5   is   lost   exclusively  from  the  LM  of  the  cardiomyocyte.  

2. Implementing   and   validating   different   analytical   strategies   to   evaluate   conduction   velocity  in  a  medium  with  anisotropic  and  atypical  spatial-­‐temporal  patterns  of  activation.    

3. Investigating   a   circumstantiated   proarrhythmic   mechanism   of   Flecainide   (NaV1.5   blocker)  in  normal  heart  tissues  using  clinically  valid  concentrations.    

4. Providing   adminicular   evidence   that   a   model   harboring   a   LQTS3   mutation   is  exceedingly   destabilized  in  the  presence  of  Flecainide.  

 

                                                                                                                         

lxviii  Detailed  description  of  the  two  models  of  propagation  is  found  in  the  Introduction  section  1.3.1.    

lxix  Refer  to  Introduction  section  1.6